
SPECIAL POINTS AND LINES OF ALGEBRAIC SURFACES

1. Introduction

As we have seen many times in this class we can encode combinatorial information
about points and lines in terms of algebraic surfaces. Looking at these surfaces can
in turn show us things about the underlying combinatorics that are not obvious at
first glance.

One theme that comes up often when looking at these surfaces is that they con-
tain special points– such as critical points, etc- whose presence or absence tells us
something about our underlying combinatorial problem. Todays lecture focuses on
this theme.

2. Critical points

Consider a polynomial P ∈ R[x1, . . . , xn]. Let Z(P ) be its zero set, aka

Z(P ) = {x ∈ Rn|P (x) = 0}

Recall that a point x is called a critical point if and only if ∇P (x) = 0. Recalling
the implicit function theorem:

Theorem 2.1. If a point x ∈ Z(P ) is not a critical point of P then Z(P ) is a smooth
manifold in some open neighborhood centered at x.

We might hope that, in general, there are very few critical points. This is not
always the case. Consider

P (x1, . . . , xn) = x2
1

Then every point on the plane {x1 = 0} is a critical point of P . Unfortunate as this
may be it turns out that, in some sense, this is the only case we have to worry about.

Definition 2.2. A polynomial P is square free if, whenever a polynomial Q2 divides
P , we have that Q is constant.

Our pathological example is not square free– if, however, we only consider square
free polynomial then everything works out:

Lemma 2.3. If P is square free then P, ∂1P, . . . , ∂nP have no common nonconstant
factors.
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Proof. Assume that P is square free, and that P, ∂1P, . . . , ∂nP have a common non-
constant factor Q. Without loss of generality we can assume that this factor is
irreducible. We say that R ∼ Q if R = cQ for some c = 0. Then note that we can
write

P = ΠPj

where each of the Pj is irreducible. Since Q is irreducible and divides P it must be
the case that Q ∼ Pj for some j. This implies Pj divides ∂iP for all i. Using the
product rule note that

∂iP = ∂iPj0 Pj

j0 j=j0

Therefore, since Pj divide ∂iP for all i,

∑
the fact that

∏
Pj divides k=j Pk for all j0 = j

0

tells us∏that Pj divides ∂iPj

∏
j=k Pk. Since P is square free we know that Pj can not

divide j=k Pk. This implie Pj must divide ∂iPj. However, since

∏
∂iPj has smaller

degree than Pj it must be that ∂iPj = 0 for all i. This implies Pj, and thus Q, is
constant. Therefore we have a contradiction. �

This can be used to prove the following result.

Proposition 2.4. If n = 2 and P is a square free polynomial of degree d then the
number of critical points in Z(P ) is at most 2d2.

Proof. Assume x ∈∏Z(P ) is a critical point, then P (x) = 0 and ∂iP (x) = 0 for all i.
We can write P = Pj, where Pj is irreducible. The product formula then implies
that either x ∈ Z(Pj) for at least two j, or else x is a critical point of Z(Pj) for some
j. We call these points type a and type b respectively.

First let us count the number of type a points. Since each pair Pi, Pj is relatively
prime (assuming i = j) the number of x that are zeros of of both Pi and Pj is,
according to Bezouts theorem, bounded above by deg(Pi)deg(Pj). Therefore the
total number of type a points∑is bounded above by

deg(Pi)deg(Pj)
i=j

≤ d2

Next we want to bound the number of type b points. We know that Pj is irre-
ducible, and that there exists i so that ∂iPj is not identically 0. Since Pj is irreducible
we know that Pj and ∂iPj can have no common factor, so by Bezouts they share at
most

deg(Pj)deg(∂iP
2

j) ≤ deg(Pj)

zero points, so the number of critical points in Z(Pj) is at most deg(Pj)
2, so the total

number of type b points is at most∑
deg(P )2 2

j

j

≤ d

6

6
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Adding these bounds together gives us our result. �

The above theorem relied heavily on Bezouts theorem. In some cases we need a
slightly different version of Bezouts, one that works for lines instead of points.

Theorem 2.5. If P,Q ∈ R[x1, x2, x3] have no common factor then the set Z(P ) ∩
Z(Q) contains at most deg(P )deg(Q) lines

A proof of the above is given in the notes from last time. To gain some intuition of
why it is true assume we pick some random plane Π in R3. We can then restrict P and

˜ ˜Q to Π, giving us P and Q. In general we expect each line in Z(P,Q) = Z(P )∩Z(Q)
to intersect Π exactly once, so if Z(P,Q) contains L lines then

L ≤ |Z(P,Q) ∩ Π| = | ˜ ˜Z(P ,Q)|
˜ ˜we expect that P and Q won’t have any factors in common (though we will not prove

this here), so Bezout tells us that

L ≤ | ˜ ˜Z(P ,Q)| ≤ ˜ ˜deg(P )deg(Q) ≤ deg(P )deg(Q)

which is what we wanted.
Now that we have a version of Bezout for lines we can use an almost identical

argument to the one in Proposition 2.4 to give us

Proposition 2.6. If P ∈ R[x1, x2, x3] has degree d and is square free then Z(P )
contains at most 2d2 critical lines (aka lines all of whose points are critical).

3. Joints and critical points

We saw a connection between combinatorics and critical points in the joints prob-
lem. Below is a sketch of an alternative proof of the joints problem (the original one)
that makes this even more explicit. The bound for the joints problem follows easily
from the below lemma by induction:

Lemma 3.1. If we have L lines in R3 1

one of these lines has at most 1000L 2 joints
on it.

Proof. This is only a sketch.
We will proceed in a proof by contradiction.
The first step is degree reduction: create a polynomial P , P = 0 on all the lines.

1

We can easily choose P to be square free, with deg(P ) ≤ 1 L 2
10

Step 2 is to note that ∇P = 0 on all the joints. Step 3 is to note, since we are
assuming each of the lines has a lot of joints on it that ∇P = 0 identically on all
lines.

This implies that Z(P ) has L critical lines in it, were L > 2deg(P )2. This, however,
is a contradiction. �
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4. Flat Points

In the below assume that n = 3.

Definition 4.1. Assume that x ∈ Z(P ) is not a critical point. We can rotate and
translate Z(P ) so that x = 0 and

TxZ(P ) = {x3 = 0}

(where TxM is the tangent plane of M at x for a given x and M). Then around x
the surface Z(P ) is given by the equation

x3 = Q(x1, x
3

2) + O(x1, x2)

where Q is homogeneous of degree 2. We say that x is flat iff Q = 0.

There are numerous equivalent ways to state this condition. Let N be the normal
to Z(P ). Then x is flat iff ∂vN(x) = 0 for all v ∈ TxZ(P ).

Note that N = ∇P . More than that v|∇P | ∈ TxZ(P ) iff v · ∇P = 0. Therefore we

can use this to try to give an alternative characterization of flat. Before doing so,
however, we want to introduce some tricks.

The first trick is to see that ∂vN = 0 iff ∂v∇P is parallel to ∇P , which happens
iff

∂v∇P ×∇P = 0

The second trick is to note that {ej ×∇P}j=1,2,3 is a spanning subset of TxZ(P ).
The above inspires us to define

SP (x) = {(∂ej×∇P∇P (x))×∇P (x)}j=1,2,3

Note that SP (x) is a collection of 3 vectors, and is polynomial in x. We can then
put the above together in a proposition:

Proposition 4.2. If x ∈ Z(P ) then SP (x) = 0 iff ∇P (x) = 0 or x is flat.

Proof. This just follows by stringing all the above results together.
Clearly if ∇P (x) = 0 then (∂ej P∇P (x))×∇P (x) = 0 so SP (x) = 0. Similarly×∇

if x is flat then

(∂ej P∇P (x))×∇ ×∇P (x) = 0

so SP (x) = 0.
On the other hand assume that SP (x) = 0 and that ∇P (x) = 0 then since

(∂ej P∇P (x))×∇P (x) = 0×∇

for all j = 1, 2, 3, and since {ej ×∇P}j=1,2,3 spans TxZ(P ) it must be that

(∂v∇P (x))×∇P (x) = 0
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for all v ∈ TxZ(P ), which implies

(∂v∇P (x))×N = 0

which implies x is flat. �

We can see that, if every point of Z(P ) is flat then Z(P ) is a plane. This, however,
is the only case when we can have a lot of flat lines.To see this, define a special line
be one where every point on the line satisfies SP (x) = 0 (note that ever flat line is
special).

Proposition 4.3. If P is an irreducible degree d polynomial and P is not linear then
Z(P ) contains at most 3d2 special lines.

Proof. First consider the case that P does not divide every component of SP (x),
which is to say that there is some j so that P does not divide some component of
(∂ej P∇P )×∇P . The claim then follows by Bezout.×∇

Therefore assume P divides every component of SP (x). This implies SP (x) = 0
on all of Z(P ).

First consider the case that there exists a noncritical point x ∈ Z(P ). This
implies Z(P ) is smooth in a neighborhood of x. More than that it is flat in that
neighborhood, so it must locally be a plane. Therefore Z(P ) must contain that entire
plane. This implies that the linear polynomial whose zero set equals this plane must
divide P . Putting this together with the fact that P is irreducible implies that Z(P )
must be linear. This is a contradiction.

Therefore all points in Z(P ) are critical. Therefore every line is critical, but we
know there are at most 2d2 critical lines, so we are done. �

We will apply the above to prove some combinatorial results next week. In par-
ticular we will prove a special case of the ES conjecture, namely that:

Theorem 4.4. Assume we have L lines in R3, with at most B lines on any plane.
Then if P3 is the set of points lying on 3 lines we have that |P3| ≤ cBL for some
constant c

If we define Pk in the analogous way then |Pk| ≤
3

cL 2k−2.
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