
THE REGULUS DETECTION LEMMA

In this lecture we prove the regulus detection lemma, our last result about incidence
of lines in R

3.

Regulus detection lemma. For any polynomial P in R[x1, x2, x3], we can associate
a list of polynomials RP with the following properties.

(1) DegRP ≤ CDegP .
(2) If x is contained in two lines in Z(P ), then RP (x) = 0.
(3) If P is irreducible and RP vanishes on Z(P ), and if there is a non-special

point x contained in two lines in Z(P ), then Z(P ) is a regulus.

The key fact about a regulus that we will use is that it is doubly ruled. A surface
Z(P ) is called doubly ruled if each point of Z(P ) lies in two distinct lines in Z(P ).
The regulus and the plane are the only irreducible doubly ruled algebraic surfaces in
R

3 (as we will prove). The job of the polynomial RP is roughly to detect whether
there are two distinct directions in which the polynomial P vanishes to high order.
(However, there is no polynomial that would do exactly this job. We discuss the
problems below and we will see that RP almost does the job.)

Our first task is to define RP . Suppose that v = (v1, v2, v3). Suppose that Qs(v) is
a homogenenous polynomial of degree s, for s = 1, 2, 3. Let I be the ideal generated
by Q1, Q2, Q3 in R[v]. Recall that I=3 denotes the homogeneous degree 3 polynomials
in I and that H= Rd denotes the homogeneous degree d polynomials in [v].

Lemma 0.1. The set {(Q1, Q2, Q3) ∈ H=1 × ... × H=3|dimI=3 ≤ 8} is an algebraic
set. It is equal to Z(R), where R is a finite list of polynomials in the coefficients of
the Qs. Each polynomial in R has degree ≤ 9.

(This is just a special case of a previous lemma. Our set is given by the vanishing
of some 9 × 9 subdeterminants of a multiplication matrix, whose coefficients are
coefficients of Qs.)

We define Qs,x(v) = ∇s
vP (x) =

∑
I

|I|=s I!∂IP (x)v , a homogenenous polynomial in

v of degree s. The coefficients of Qs,x(v) are polynomials in x of degree ≤ degP . We
let RP be R(Q1,x, Q2,x, Q3,x). Therefore, RP is a finite list of polynomials of degree
≤ 9degP . We have now checked property 1 of the regulus detection lemma.

We let I(x) be the ideal generated by Q1,x, Q2,x, Q3,x. We have RP (x) = 0 if and
only if I(x)=3 has dimension ≤ 8.

The next task is to discuss the geometric meaning of the condition dimI(x)=3 ≤ 8.
The most important fact is contained in the following lemma.
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2 THE REGULUS DETECTION LEMMA

Lemma 0.2. Suppose that x is a regular point of Z(P ). Suppose that ∇2P (x) :
T RxZ × TxZ → has signature (1, 1). In this case there are two linearly-independent
directions, ν1, ν2 ∈ TZ so that ∇2

νi
P (x) = 0. Given these assumptions,

RP (x) = 0 if and only if ∇3

ν1
P (x) = ∇3

ν2
P (x) = 0.

This lemma says that under some fairly mild conditions, RP detects whether
there are two linearly independent vectors which solve the equations 0 = ∇s

νP (x) for
s = 1, 2, 3.

Proof. We start by understanding the ideal I1,2 generated by Q1,x and Q2,x. We claim
that I1,2 is exactly the ideal of polynomials that vanishes on the multiples of ν1 and
ν2. In other words, for any degree d, I1,2,=d is the space of degree d polynomials that
vanish on ν1 and ν2.

We prove the claim as follows. Since x is a regular point of Z(P ), ∇P (x) is non-
zero. The ideal generated by Q1,x is exactly the set of polynomials that vanish on
TZ. After performing a linear transformation, we can arrange that TZ is spanned
by (1, 0, 0) = ν1 and (0, 1, 0) = ν2. Now R[v1, v2, v3]/(Q1,x) is isomorphic to R[v1, v2].
Next, we consider the image of Q2,x in R[v1, v2, v3]/(Q1,x) = R[v1, v2]. This image
is non-zero, because ∇2P (x) : TxZ × TxZ → R is non-degenerate. It vanishes on
(1, 0, 0) and on (0, 1, 0), so it must be a non-zero multiple of v1v2. Therefore, I(x) is
the ideal generated by v3 and v1v2. The rest of the claim is easy to check.

We see that I1,2,=d is the kernel of the evaluation map from R[v]=d to the two
points ν1 and ν2. For each d ≥ 1, this map is surjective, and so for all d ≥ 1,
dimI1,2,=d = dimR[v]=d − 2. In particular, for d = 3, we get dimI1,2,=3 = 8.

Now we are ready to show the the conclusion of the lemma. We know that RP (x) =
0 if and only if the dimension of I=3 is ≤ 8. Now I=3 is spanned by I1,2,=3 and Q3,x,
and the dimension of I1,2,=3 is already 8. So dimI=3 ≤ 8 if and only if Q3,x ∈ I1,2 if
and only if Q3,x(ν1) = Q3,x(ν2) = 0. Since Q3,x(v) = ∇3

vP (x), this last equation is
equivalent to ∇3

ν1
P (x) = ∇3

ν2
P (x) = 0. �

We talk briefly about other situations. If x is a critical point of P , then RP (x) = 0.
If x is a flat point of Z(P ) then RP (x) = 0. These are the only situations we will
actually need. We put the write-up in the appendix.

For context, we talk a little more generally. The basic issue is that we are trying to
detect whether some equations have two distinct roots. But having two distinct roots
is not an algebraic condition - which we can see already by considering quadratic
polynomials. Roughly speaking, if RP (x) = 0 then there are either two independent
directions which satisfy the flecnodal equation, or else there may be one direction that
satisfies the equation “with multiplicity 2”. I believe that this happens for Gaussian
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flat surfaces. So I believe that there are lots of irreducible P where RP = 0 on Z(P ):
planes and reguli and also Gaussian flat algebraic surfaces such as cylinders...

Now we are ready to verify the second property in the regulus detection lemma.

Lemma 0.3. If x lies in two lines in Z(P ), then RP (x) = 0.

Proof. If x is critical or flat, then we have seen that RP (x) = 0. Suppose that x is not
critical or flat. Let ν1 and ν2 be the tangent directions of the two lines. We know that
∇s

νi
P (x) = 0 for i = 1, 2 and for any s. In particular, ∇2P (x) : TxZ × TxZ → R is a

non-zero quadratic form (in two variables) that vanishes on two independent vectors,
and so it must have signature (1, 1). Now Lemma 0.2 implies that RP (x) = 0. �

Finally, we are ready to prove the third property - that under some conditions
RP = 0 implies that Z(P ) is a regulus. We state the result as a lemma.

Lemma 0.4. If P is irreducible and RP vanishes on Z(P ), and if there is a non-
special point x0 contained in two lines in Z(P ), then Z(P ) is a regulus.

The proof is based on local-to-global results for ruled surfaces. In particular, we
will use the following result from last lecture:

Proposition 0.5. Suppose that P ∈ R[x1, x2, x3]. Let O ⊂ Z(P ) be an open subset of
Z(P ). Suppose that V is a smooth, non-zero vector field on O, obeying the flecnodal
equation:

0 = ∇s
V P (x), for all x ∈ O, s = 1, 2, 3.

Suppose that at each point x ∈ O, ∇P (x) = 0 and ∇2P (x) : TZ × TZ → R is
non-degenerate.

Then the integral curves of V are straight line segments.

Proof. We know that ∇2P (x0) vanishes in the tangent directions to the two lines.
Since x0 is not flat, ∇2P (x0) : TxZ × TxZ → R is non-zero, and we see that it must
have signature (1, 1). We can choose an open neighborhood O ⊂ Z(P ) around x0,
so that ∇P = 0 and ∇2P : TZ × TZ → R has signature (1, 1) in O. (In particular,
∇2P is non-degenerate on O.)

At each point of O, there are two independent vectors V1, V2 ∈ TZ with ∇2

V P (x) =
0. We can normalize them to get two smooth vector fields V1 and V2. Since RP = 0 on
O, Lemma 0.2 implies that V1 and V2 each satisfy the flecnodal equation: ∇s

Vi
P (x) =

0 for s = 1, 2, 3. Now by the proposition above, the integral curves of V1 and V2 are
each straight line segments. We call the integeral curves of V1 “horizontal” lines, and
we call the integral curves of V2 “vertical lines”.

In a small neighborhood of x0, we will check that each horizontal line intersects
each vertical line. Then we will find a plane or regulus that contains infinitely many

6
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horizontal lines, and we will conclude that Z(P ) is a plane or a regulus. (Finally the
assumption that x0 is not flat means that Z(P ) can only be a regulus.)

The set O ⊂ Z(P ) is given by a graph. After a rotation and possibly shrinking O,
we can assume that O is given by equation h(x1, x2) = x3 for a smooth function h,
and that x0 is the origin (0, 0, 0). After a linear change of coordinates, we can assume
that at x0, the direction V1 is (1, 0, 0) and V2 is (0, 1, 0). Let L1 be the horizontal
line through x0, and let L2 be the vertical line through x0. Notice that L1 is just the
line x2 = x3 = 0. For each point (t, 0, 0) in L1, let L2(t) be the vertical line through
(t, 0, 0). Notice that L2(t) is the graph of h restricted to a line l2(t) in the x1 − x2

plane. The line l2(t) passes through (t, 0), and if t is small, it has slope close to (0, 1).
Similarly, let L1(u) be the horizontal line through (0, u, 0), which is the graph of h
restricted to l1(u) - a line in the plane thru (0, u) with slope close to (1, 0). If t, u
are small enough, then l1(u) and l2(t) intersect in a small neighborhood of 0, and so
L1(u) and L2(t) interect in O.

By shrinking O, we can arrange that no two vertical lines intesect in O. Now
fix three vertical lines close to L2. There are infinitely many horizontal lines that
intersect all three of the vertical lines in O. If the three vertical lines are skew, then
infinitely many horizontal lines lie in a regulus. Now Z(P ) intersects the regulus in
infinitely many lines - and since P is irreducible, Z(P ) is a regulus. If two of the
vertical lines are coplanar, then infinitely many horizontal lines lie in a plane, and
so Z(P ) would be a plane. �

0.1. On RP at critical and flat points.

Lemma 0.6. If ∇P (x) = 0, then RP (x) = 0.

Proof. Since ∇P (x) = 0, we have Q1,x(v) = 0. Therefore, I(x) is the ideal generated
by Q2,x and Q3,x. Therefore, the dimension of I(x)=3 is at most 3 + 1 = 4 ≤ 8. �

Lemma 0.7. Assume x is a regular point of Z(P ). Then x is flat if and only if
∇2P (x) : TxZ × TxZ → R is equal to zero, if and only if Q2,x is a multiple of Q1,x.

Proof. The first equivalence is an exercise in multivariable calculus. Rotate and
translate space so that x = 0, and ∂1P (0) = ∂2P (0) = 0 but ∂3P (0) = 0. Without
loss of generality we can work with these coordinates for the rest of the proof.

Locally near 0, the surface Z(P ) is given by a graph of a function h: x3 = h(x1, x2).
Therefore P (x1, x2, h(x1, x2)) = 0 for all (x1, x2) in a neighborhood of 0. Differentiat-
ing once, we see that ∂1h(0) = ∂2h(0) = 0. Using this information and differentiating
twice, we see that

∂ijP (0) = ∂3P (0)∂ijh(0), for i, j ∈ {1, 2}.
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This proves the first equivalence. In these coordinates, we have at x = 0, Q1,x(v) =
cv3 for a non-zero constant c. Also, Q2,x(v) =

∑
I

|I|=2
I!v ∂IP (x). So Q2,x(v) is a

multiple of v3 if and only if ∂1,1P (x) = ∂1,2P (x) = ∂2,2P (x) = 0, if and only if x is a
flat point of Z(P ). �

Lemma 0.8. If x is a flat point of Z(P ), then RP (x) = 0.

Proof. By the last lemma, Q2,x is in the ideal generated by Q1,x. Therefore, I(x) is
the ideal generated by Q1,x and Q3,x. Therefore, the dimension of I(x)=3 is at most
6 + 1 = 7 ≤ 8. �

1. Incidence estimates

Using the regulus detection lemma, and the ideas in the proof of the P3 estimate
(lecture 15), it’s straightforward to prove the following.

Theorem 1.1. Suppose that L is a set of L lines in R
3 with ≤ B lines in any plane

or regulus, and suppose that B ≥ L1/2. Then |P2(L)| . BL.

Remark: It’s not clear at all what happens for B smaller than L1/2 - for example
B = 10.

This finishes our work on incidences of lines in R
3. For large k, the number of

k-rich points is covered by the incidence estimate using polynomial ham sandwich
(lecture 20). All together we get the following result.

Theorem 1.2. Suppose that L is a set of L lines in R
3 with ≤ B lines in any plane

or regulus. Suppose that B ≥ L1/2 and 2 ≤ k ≤ L1/2.
Then |Pk(L)| . BLk−2.

Remark. The incidence estimate in lecture 20 gives the slightly sharper but more
complicated estimate . L3/2k−2 + BLk−3 + Lk−1, which holds for all 2 ≤ k ≤ L.

This incidence estimate gives enough information to carry out the program of
Elekes and Sharir on distinct distances (lecture 11).

At the beginning of next lecture, we’ll talk briefly about how everything fits to-
gether, and then we’ll close this chapter of the course.



MIT OpenCourseWare
http://ocw.mit.edu

18.S997 The Polynomial Method
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



