Gear - 2
$\mathrm{N}_{2}=12$
Gear - 3
$N_{3}=60$
Gear - 4
$\mathrm{N}_{4}=8$
Gear - 5
$N_{5}=64$
Gear - 6
$\mathrm{N}_{6}=8$
Gear - 7
$\mathrm{N}_{7}=56$

Gear - 8
$\mathrm{N}_{8}=7$

Gear-9
$N_{9}=15$

LAB 4, PROBLEM \# 7: ALARM CLOCK GEAR TRAIN

A. First goal is to find ω_{g} / ω_{1}. You MUST follow the gear path; gear 1 to 2 to 3 ...

When gears are on separate shafts (I.e between gears 1 and 2):

$$
\omega_{\mathrm{a}} / \omega_{\mathrm{b}}=\left(\mathrm{N}_{\mathrm{b}} / \mathbf{N}_{\mathrm{a}}\right) \quad \mathrm{N}_{\mathrm{i}}=\# \text { of teeth on gear } \mathrm{i}
$$

When gears are on the same shaft (I.e. between gears 2 and 3):

$$
\omega_{\mathrm{a}}=\omega_{\mathrm{b}}
$$

B. Second goal is to find the torque ratio (T_{9} / T_{1}) using power flow.

You can relate the power between gears 1 and 9 directly! You do not have to go through each gear as you did above.

$$
\begin{array}{ll}
\eta_{\mathrm{m}} \times \mathrm{P}_{\mathrm{IN}} & =\mathrm{P}_{\text {out }} \\
\eta_{\mathrm{m}} \times \mathrm{T}_{1} \times \omega_{1} & =\mathrm{T}_{9} \times \omega_{9}
\end{array}
$$

Gear train receives

Wind to input energy: $\mathrm{E}=\mathrm{T}(\theta) \mathrm{d} \theta$
For our rough estimate, we assumed T was near constant so $\mathrm{E} \sim \mathrm{T} \Delta \theta$ This energy is stored in the spring

