Lecture \#21
11/21/2006
Prof. Carol Livermore
Recall from last time:
Beam Bending

$y=0$ on neutral axis
$\epsilon_{x x}=\frac{-y}{\rho}$ (Note: purely geometric, no material properties)
$\sigma_{x x}=\epsilon_{x x} E$ (All other σ are equal to 0$)$

So:

Force Equilibrium:

$$
\begin{gathered}
\sum F_{x}=0 \\
\int_{A} \sigma_{x x} d A=0
\end{gathered}
$$

$$
\int_{A} \frac{E y}{\rho} d A=0
$$

If E is constant in y then $\int_{A} y d A-0$.
Moment Equilibrium

$$
\begin{gathered}
\sum M_{z}=0 \\
M=-\int_{A} \sigma_{x x} y d A \\
M=\int_{A} \frac{E y^{2}}{\rho} d A
\end{gathered}
$$

Special case: E constant:

$$
\begin{gathered}
M=\frac{1}{\rho} E I \\
I=\int_{A} y^{2} d A
\end{gathered}
$$

New this time:
Recall:

$$
\sigma_{x x}=\frac{-E y}{\rho}
$$

For constant E (special case):

$$
M=\frac{E I}{\rho}
$$

So:

$$
\begin{gathered}
\frac{E}{\rho}=\frac{M}{I}=\frac{-\sigma_{x x}}{y} \\
\sigma_{x x}=\frac{-M y}{I}
\end{gathered}
$$

EXAMPLE: Find location of neutral axis for rectangular beam

E is constant across cross-section. Recall force equilibrium.

$$
\begin{gathered}
\int_{A} \frac{E y}{\rho} d A=0 \\
\frac{E}{\rho} \int_{A} y d A=0 \\
\frac{E}{\rho} \int_{\frac{-b}{2}}^{\frac{b}{2}} \int_{a}^{h-a} y d y d z=0 \\
\int_{\frac{-b}{2}}^{\frac{b}{2}}\left[\frac{y^{2}}{2} b i g g l\right]_{a}^{h-a} d z=0 \\
\frac{1}{2} \int_{\frac{-b}{2}}^{\frac{b}{2}}\left[(h-a)^{2}-a^{2}\right] d z=0 \\
\frac{1}{2} \int_{\frac{-b}{2}}^{\frac{b}{2}}\left(h^{2}-2 h a\right) d z=0 \\
\frac{1}{2}\left[\left(h^{2}-2 h a\right) z\right]_{\frac{-b}{2}}^{\frac{b}{2}}=0 \\
\frac{1}{2}\left(h^{2}-2 h a\right)\left(\frac{b}{2}+\frac{b}{2}\right)=0 \\
\frac{b}{2}\left(h^{2}-2 h a\right)=0 \\
h^{2}=2 h a \\
a=\frac{h}{2}
\end{gathered}
$$

So the neutral axis is in the center of the beam.
What if $E_{2}>E_{1}$ in:

a is the distance to neutral axis.

$$
\int_{\frac{-b}{2}}^{\frac{b}{2}}\left[\int_{-a}^{-a+\frac{h}{2}} E_{1} y d y+\int_{-a+\frac{h}{2}}^{h-a} E_{2} y d y\right] d z=0
$$

Note:

Example: Moment of Inertia
One material rectangular beam

$$
\begin{gathered}
I=\int_{A} y^{2} d A \\
I=\int_{\frac{-b}{2}}^{\frac{b}{2}} d z \int_{\frac{-h}{2}}^{\frac{h}{2}} y^{2} d y \\
I=\int_{\frac{-b}{2}}^{\frac{b}{2}} d z b i g g l\left[f r a c y^{3} 3\right]_{\frac{-h}{2}}^{\frac{h}{2}} \\
I=\int_{\frac{-b}{2}}^{\frac{b}{2}} d z \frac{h^{3}}{12} \\
I=\frac{b h^{3}}{12}
\end{gathered}
$$

Beam Design

Example:

Find $\sigma_{x x}$.
FBD:

$$
\begin{gathered}
\sum F_{y}=0 \\
V_{y}-P=0 \\
V_{y}=P \\
\sum M_{*}=0 \\
-M_{z}-P(a-x)=0 \\
M_{z}=-P(a-x)=0 \\
\frac{1}{\rho}=\frac{M_{z}(x)}{E I}
\end{gathered}
$$

What about shear?
Distortion of planar sections of beam. The can be ignored for slender (long and skinny beams)

$$
\sigma_{x x}=\frac{-M y}{I}=\frac{-M_{z}(x) y}{I}=\frac{P(a-x) y}{I}
$$

$$
\sigma_{x x_{m} a x}=\frac{P a \frac{h}{2}}{\frac{1}{12} b h^{3}}=\frac{6 P a}{b h^{2}}
$$

Solve for I
a. Do areas of integration
b. $I=\frac{b_{0} h_{0}^{3}}{12}-\frac{b_{i} h_{i}^{3}}{12}$

What about a composite beam? This does not work because E was take out of integral during derivation.

Example: Skis

Get good stiffness (bending) but give up axial stiffness and lower weight.
Other examples:
Plants
Bird bones
Airplanes
Recall, x -axis is all for "pure bending"

