MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139
 2.002 MECHANICS AND MATERIALS II HOMEWORK NO. 4

Distributed: \quad Friday, April 2, 2004
Due: \quad Friday, April 9, 2004

Problem 1 (20 points)
Note: for reference material, consult the laboratory write-up on elastic-plastic beam bending

Consider the square cross-section beam shown, of dimensions h by h, subject to "diamondorientation" bending in the plane shown (neutral axis: plane $y=0$). The beam can be considered to be composed of an elastic/perfectly-plastic material having Young's modulus E, and tensile yield strength σ_{y}.

1. Using the standard assumptions of engineering beam theory, evaluate the magnitude of applied moment, M_{y}, just sufficient to bring the most highly-stressed region to the verge of yielding. Express your answer in terms of h and material properties, as appropriate. (Aside: are you "surprised" by the value you got for $I=\int y^{2} d A$ in this orientation?)
2. If the applied curvature is increased to very large values, the elastic/plastic boundaries (tension and compression sides) in this geometry, like those in the bending of rectangular cross-sections studied earlier, will move inward, toward the neutral axis. At "infinite" curvature, the boundaries will reach opposite sides of the $y=0$ surface, resulting in tensile yielding stress values of magnitude σ_{y} in one "triangle" half of the cross-section, and compressive yielding stress values of magnitude $-\sigma_{y}$ in the other triangular half of the cross-section. At this point, the bending moment carried by the cross-section reaches a limiting value, M_{L}. Evaluate M_{L} for this section.
3. Using your answers to the two previous questions, evaluate the ratio M_{L} / M_{y} for bending of this section. How does this value compare with the ratio for bending of this same cross-section, but on rotated axes, so that the cross-section appears as a square? (Our usual orientation for bending.)
4. Compare M_{y} for the "diamond" cross-section with the corresponding M_{y} for the square orientation. What is the ratio of these first-yield bending moments? Explain why they differ in the way that they do. Evaluate the same ratio for the corresponding limit moments, and M_{L}, and comment on reasons why they differ. Which axes should be used for applying bending moments to a square section, and why?
5. Discuss the residual stress state when the diamond-orientation is unloaded to $M=0$ immediately after being deformed to large curvature at $M=M_{L}$. How does this residual stress state compare or contrast with the state for unloading of the square orientation from its limit value of M ? Can any negative moment be applied to the diamond cross-section after unloading from limit load, without causing further plasticity? Discuss

Figure 1: Square cross-section of beam, oriented for bending along "diamond" orientation.

Problem 2 (30 points)
A great deal of the mechanisms and phenomenology of the strengthening of metallic crystals can be summarized in the following phrase:

"Smaller is stronger . . ."

Discuss three specific examples of strengthening mechanisms, and explain how and why the aphorism "smaller is stronger" applies to each strengthening mechanism.

Problem 3 (30 points)

Standard cylindrical compression specimens have an initial height to diameter ratio of $H_{0} / D_{0}=2$. It is desired to conduct a compression test in a demonstration lab, and to compress the specimen to a final height of $H=H_{0} / 2$.

From prior testing, it is known that the material has Young's modulus $E=200 G P a$, Poisson ratio $\nu=0.3$, and its plasticity can be well characterized by an initial value of tensile/compressive yield strength as $s_{0}=500 M P a$, along with a constant hardening modulus, $h=2 G P a$, governing the evolution of uniaxial flow strength, s, with equivalent plastic strain, $\bar{\epsilon}^{p}$, according to

$$
\frac{d s}{d \bar{\epsilon}^{p}}=h=\text { constant }
$$

In turn, this expression can be integrated to express the current value of strength, for any given value of $\bar{\epsilon}^{p} \geq 0$, as

$$
s\left(\bar{\epsilon}^{p}\right)=s_{0}+h \bar{\epsilon}^{p} .
$$

The load cell on the testing machine to be used for the compression test has a maximum load capacity of $100 k N$.

You are asked to provide an answer to the following question:
"What is the largest allowed value of initial diameter in a compression specimen of this material $\left(D_{0(\max)}\right)$ that can be safely compressed to half its initial height in the testing machine?"

In particular:

- (10 points) Explain why the elastic strain is not an important feature in answering this problem. That is, explain why, for this application, you may assume that the material is rigid/plastic, so that the total strains and strain rates are essentially equal to the plastic strains and strain rates, respectively.
- (20 Points) What is the largest diameter that can safely be used for the compression specimen, under the imposed conditions?

HINTS:

- Remember, for active yielding in uniaxial compression, the axial [true]stress, σ, is negative, so the yield criterion becomes $s=\bar{\sigma}=-\sigma$.
- For monotonic loading in compression, the plastic portion of the [true] axial strain, $\epsilon \doteq$ $\epsilon^{(p)}$, is negative, and is thus related to the equivalent plastic strain by $-\epsilon^{(p)} \doteq-\epsilon=\bar{\epsilon}^{p}$.

Problem \# 4 (20 points)

Long bars of an alloy steel are available in stock of rectangular cross-section, with [initial] thickness $t_{0}=25 \mathrm{~mm}$ and width $w_{0}=100 \mathrm{~mm}$. It is desired to use these bars as tensileloaded truss members, and to be able to apply tensile loads up to $P_{\max }=1.1 M N$ without causing plastic yielding in the bars. The initial tensile yield strength of the steel is $\sigma_{y}=$ 350 MPa.

- Can the as-received bars support a load of magnitude $P_{\max }=1.1 \mathrm{MN}$ without yielding? How much tensile load can it support without yielding?
- It is known that the tensile flow strength, s, of this steel increases with equivalent tensile plastic strain, $\bar{\epsilon}^{p}$, according to

$$
s\left(\bar{\epsilon}^{p}\right)=\sigma_{y}\left(1+\frac{\bar{\epsilon}^{p}}{c}\right)^{N}
$$

where the strain hardening exponent is $N=0.14$, and the constant $c=0.01$. Someone suggests that it may be possible to cold-roll the bar stock to a new cross-sectional shape, of reduced thickness t, but essentially the same width, $w=w_{0}$, and in the process generate enough equivalent plastic strain and associated strain-hardening so that the rolled bar stock can be used as truss members that can support tensile loads up to $P_{\max }=1.1 M N$ without [further] plastic yielding, even though the rolling reduces the thickness and cross-sectional area of the bar. We will explore this possibility.

First note that the equivalent plastic strain increment, $d \bar{\epsilon}^{p}$, can be expressed in terms of the cartesian components of the plastic strain increment tensor, $d \epsilon_{i j}^{(p)}$, by

$$
d \bar{\epsilon}^{p}=\sqrt{\frac{2}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} d \epsilon_{i j}^{(p)} d \epsilon_{i j}^{(p)}}
$$

Let the rolling direction (along the length of the bar) be cartesian direction number 1 , let the through-thickness direction be 2, and let the breadth direction be 3. In the process of rolling, there is an incremental reduction in thickness, $d t<0$, so that

$$
d \epsilon_{22}^{(p)}=\frac{d t}{t}<0 .
$$

As noted above, there is negligible transverse plastic straining in rolling, so $d \epsilon_{33}^{(p)} \doteq 0$. Assume further that rolling introduces no change in plastic shear strains (i.e., $d \epsilon_{12}^{(p)}=$ $\left.d \epsilon_{13}^{(p)}=d \epsilon_{23}^{(p)}=0\right)$.
Obtain an expression for $d \bar{\epsilon}^{p}$ in terms of t and $|d t|$, and show how this expression can be integrated to give

$$
\bar{\epsilon}^{(p)}=\frac{2}{\sqrt{3}} \ln \left(\frac{t_{0}}{t}\right) .
$$

HINT: something needs to be done about evaluating $d \epsilon_{11}^{(p)} \ldots$

- What is the maximum rolling-reduced bar thickness, $t=t_{\text {max }}$, which gives a strain-hardened strength s and rolling-reduced thickness $t=t_{\text {max }}$ combination such that the cold-rolled bar stock does, indeed, support tensile load $P_{\mathrm{mx}}=1.1 M N$ without further yielding?
Note: this part of the problem may best be solved by performing a set of numerical evaluations, for different values of thickness, and finding out which t-value answers the question.

