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Problem 1 (20 points) 

Note: for reference material, consult the laboratory writeup on elasticplastic 
beam bending 

Consider the square crosssection beam shown, of dimensions h by h, subject to “diamond
orientation” bending in the plane shown (neutral axis: plane y = 0). The beam can be 
considered to be composed of an elastic/perfectlyplastic material having Young’s modulus 
E , and tensile yield strength σy . 

1. Using the standard assumptions of engineering beam theory, evaluate the magnitude 
of applied moment, My , just sufficient to bring the most highlystressed region to 
the verge of yielding. Express your answer in terms of h and material properties, as 
appropriate. (Aside: are you “surprised” by the value you got for I = 

� 
y2 dA in this 

orientation?) 

2. If the applied curvature is increased to very large values, the elastic/plastic bound
aries (tension and compression sides) in this geometry, like those in the bending of 
rectangular crosssections studied earlier, will move inward, toward the neutral axis. 
At “infinite” curvature, the boundaries will reach opposite sides of the y = 0 surface, 
resulting in tensile yielding stress values of magnitude σy in one “triangle” half of the 
crosssection, and compressive yielding stress values of magnitude −σy in the other 
triangular half of the crosssection. At this point, the bending moment carried by the 
crosssection reaches a limiting value, ML. Evaluate ML for this section. 

3. Using your answers to the two previous questions, evaluate the ratio ML/My for bend
ing of this section. How does this value compare with the ratio for bending of this 
same crosssection, but on rotated axes, so that the crosssection appears as a square? 
(Our usual orientation for bending.) 

4. Compare My for the “diamond” crosssection with the corresponding My for the square 
orientation. What is the ratio of these firstyield bending moments? Explain why they 
differ in the way that they do. Evaluate the same ratio for the corresponding limit 
moments, and ML, and comment on reasons why they differ. Which axes should be 
used for applying bending moments to a square section, and why? 
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5. Discuss the residual stress state when the diamondorientation is unloaded to M = 0 
immediately after being deformed to large curvature at M = ML. How does this 
residual stress state compare or contrast with the state for unloading of the square 
orientation from its limit value of M? Can any negative moment be applied to the dia
mond crosssection after unloading from limit load, without causing further plasticity? 
Discuss 

Figure 1: Square crosssection of beam, oriented for bending along “diamond” orientation. 

Problem 2 (30 points) 

A great deal of the mechanisms and phenomenology of the strengthening of metallic crystals 
can be summarized in the following phrase: 

“Smaller is stronger . . .” 

Discuss three specific examples of strengthening mechanisms, and explain how 
and why the aphorism “smaller is stronger” applies to each strengthening mech
anism. 
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Problem 3 (30 points) 

Standard cylindrical compression specimens have an initial height to diameter ratio of 
H0/D0 = 2. It is desired to conduct a compression test in a demonstration lab, and to 
compress the specimen to a final height of H = H0/2. 

From prior testing, it is known that the material has Young’s modulus E = 200 GP a, 
Poisson ratio ν = 0.3, and its plasticity can be well characterized by an initial value of 
tensile/compressive yield strength as s0 = 500 MP a, along with a constant hardening mod
ulus, h = 2 GP a, governing the evolution of uniaxial flow strength, s, with equivalent plastic 
strain, �̄p, according to 

ds 
= h = constant. 

d�̄p 

In turn, this expression can be integrated to express the current value of strength, for any 
given value of �̄p ≥ 0, as 

s(�̄p) = s0 + h �̄p. 

The load cell on the testing machine to be used for the compression test has a maximum 
load capacity of 100 kN . 

You are asked to provide an answer to the following question: 

“What is the largest allowed value of initial diameter in a compression spec
imen of this material (D0(max) ) that can be safely compressed to half its initial 
height in the testing machine?” 

In particular: 

•	 (10 points) Explain why the elastic strain is not an important feature in 
answering this problem. That is, explain why, for this application, you 
may assume that the material is rigid/plastic, so that the total strains and 
strain rates are essentially equal to the plastic strains and strain rates, 
respectively. 

•	 (20 Points) What is the largest diameter that can safely be used for the 
compression specimen, under the imposed conditions? 

HINTS: 

•	 Remember, for active yielding in uniaxial compression, the axial [true]stress, σ, is 
¯negative, so the yield criterion becomes s = σ = −σ. 

•	 For monotonic loading in compression, the plastic portion of the [true] axial strain, � = 
= 

. 

�(p), is negative, and is thus related to the equivalent plastic strain by −�(p) . −� = �̄p. 
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Problem # 4 (20 points) 

Long bars of an alloy steel are available in stock of rectangular crosssection, with [initial] 
thickness t0 = 25 mm and width w0 = 100 mm. It is desired to use these bars as tensile
loaded truss members, and to be able to apply tensile loads up to Pmax = 1.1M N without 
causing plastic yielding in the bars. The initial tensile yield strength of the steel is σy = 
350 M P a. 

•	 Can the asreceived bars support a load of magnitude Pmax = 1.1M N without 
yielding? How much tensile load can it support without yielding? 

•	 It is known that the tensile flow strength, s, of this steel increases with equivalent 
tensile plastic strain, �̄p, according to 

�p �N
¯

s(�̄p) = σ 1 + ,y 
c


where the strain hardening exponent is N = 0.14, and the constant c = 0.01. Someone 
suggests that it may be possible to coldroll the bar stock to a new crosssectional 
shape, of reduced thickness t, but essentially the same width, w = w0, and in the 
process generate enough equivalent plastic strain and associated strainhardening so 
that the rolled bar stock can be used as truss members that can support tensile loads 
up to Pmax = 1.1M N without [further] plastic yielding, even though the rolling reduces 
the thickness and crosssectional area of the bar. We will explore this possibility. 

First note that the equivalent plastic strain increment, d�̄p, can be expressed in terms 
of the cartesian components of the plastic strain increment tensor, d�

(p) 
ij	 , by 

3�3�2 
d�

(p)
d�

(p) 
. 

3 ij ij 
i=1 j=1 

Let the rolling direction (along the length of the bar) be cartesian direction number 
1, let the throughthickness direction be 2, and let the breadth direction be 3. In the 
process of rolling, there is an incremental reduction in thickness, dt < 0, so that 

d�
(p) 

= 
dt 

< 0.22 t 
.

As noted above, there is negligible transverse plastic straining in rolling, so d�
(p) 

= 0.33 

Assume further that rolling introduces no change in plastic shear strains (i.e., d�
(p) 

= 

d�
(p) 

= d�
(p) 

= 0).13 23 

Obtain an expression for d�̄p in terms of t and dt , and show how this ex|	 |
pression can be integrated to give 

�pd¯ = 

2 
� 

t0
�(p)¯ = √

3 
ln . 

t 

HINT: something needs to be done about evaluating d�
(p) 
11 ... 
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•	 What is the maximum rollingreduced bar thickness, t = tmax , which gives a 
strainhardened strength s and rollingreduced thickness t = tmax combina
tion such that the coldrolled bar stock does, indeed, support tensile load 
Pmx = 1.1MN without further yielding? 

Note: this part of the problem may best be solved by performing a set of numerical 
evaluations, for different values of thickness, and finding out which tvalue answers the 
question. 
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