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2.002 MECHANICS AND MATERIALS II 
SOLUTIONS FOR HOMEWORK NO. 4 

Problem 1 (20 points) 
Part A: 

Because the beam is still in elastic region, the stress field can be expressed as: 

σ(y) =  −yMy 

I 
(1) 

Since the most highly stressed region is at the verge of yielding, we have 

|σ(y)max| = | −  
yMy 

I 
|y=±h/ 

√ 
2 = σy ⇒ My = 

σy I 

h/ 
√ 

2 
(2) 

For the diamond-orientation beam, I is calculated as: 

h√ h4h
2
2dA = 2  ( √ − y) × 2dy =I (3)= y 
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The area moment of inertia for this diamond-orientation is the same as the cross-section 
appears as a square. Substitution of I into Eq. 2, we get that: 

√ 

M
2σy h
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y(diamond) = (4)
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Part B: 
√h√ h3h 2σ2 y

ML(diamond) = σy (−y)dA = 2  σy y × ( √ − y) × 2dy = (5)
620 

Part C: 

√ 

ML(diamond)
2σyh3 

6 = √ = 2  (6)  
2σyh3My(diamond) 
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σ

When the cross-section appears as a square, My is calculated as: 

y I σy h
4/12 σy h
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M = = = y(square) 
ymax h/2 6 
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and ML is: 
h 

M
h3 

L(square) = σ(−y)dA = 2  σy y × hdy = (8) 
2 σy 

40 

So the ratio of ML/My for square-orientation is: 

ML(square) 
σyh3 

34 

M
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Part D: 

The ratio of the first-yield bending moments for the two orientations is: 
√ 

My(diamond)
2σyh3 √ 
12 

M
= = 1/ 2 (10) 

y(square) 
σyh3 
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The first-yield bending moment is calculated by: 

σy I 
y

My = (11) 
max 

Since σy is a constant, and I is the same for these two orientations, the above ratio is only 
determined by the ratio of ymax. The ratio of limit moment for the two orientations is: 

√ 

ML(diamond)
2σyh3 

2 √ 
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M
= = 2 < 1.0 (12) 
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σyh3 3 
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The limit moment for a symmetrical cross-section is calculated by: 

ML = 2σy ydA (13) 
A/2 

where A/2 is the  1/2 area of the cross section in which y ≥ 0. For the diamond-orientation, √ 
though the maximum value of y is 2 times larger than the square-orientation, the major 
part of its cross-section is located at the region with small y coordinate. Thus the ratio of 
limit moment calculated above is smaller than one. 

Since My(diamond) < My(square) and ML(diamond) < ML(square), we should use the beam in 
the square-orientation. 

Part E: 

The unloaded stress field is expressed as: 

σunloaded = σloaded + ∆σ(y) (14) 

With the assumption of elastic unloading from the limit condition ML, ∆σ(y) can  be  ex-
pressed as following: 

−y∆M yML(diamond)
∆σ(y) =  = (15)

I I 
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Substitution of ∆σ(y) , I  and  ML(diamond)into Eq. 14, we find that: 

√ 

σunloaded = { −σy + 2  2σy (y/h) if  y ≥ 0;√ (16)
σy + 2  2σy (y/h)  if  y <  0. 

Similarly, the unloaded stress field for the square-orientation is expressed as: 

yML(square) −σy + 3σy (y/h) if  y ≥ 0;
σunloaded = σloaded + 

I 
= { 

σy + 3σy (y/h)  if  y <  0. 
(17) 

The stress field is shown in Figure 1. 

For the diamond-orientation, since the residual stress at y = ymax is σy , no negative 
moment (which will cause positive stress increment to the upper part and negative increment 
of stress for the lower part) can be applied without further plasticity. 
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(a) diamond-orientation 

(b) square-orientation 
Figure 1 Unloaded stress



Problem 2 (30 points) 

There are 4 basic ways to strengthen metallic crystalline materials. All 5 mechanisms 
impede dislocation motion by creating an impedance to dislocation motion which raises the 
shear stress required for dislocation motion. Three of the mechanisms involve objects that 
get in the way of dislocation motion. In those mechanisms, the shear strength has the general 
relation τ = Gb where L is some characteristic length between objects. 

L 

1. One mechanism is obstacle/precipitate strengthening.	 The shear stress required for 
a dislocation to loop around an obstacle or second phase precipitate in the matrix 
is a function of the precipitate spacing or diameter L0 is precipitate spacing, D0 is 
precipitate diameter, c0 is alloy concentration: 

Gb 

L

D

L
τ = 

0 

0
3 

( ) ∼ c0 
0 

1/3
Gbc 0 

D
τ =


0


So, smaller diameters increase the shear stress required for dislocation motion, thus 
“smaller diameters are stronger.” This is valid down to the diameter where the dis-
location begins to cut through the particle, at which point the shear stress begins to 
decrease with diameter. 

2. A second strengthening mechanism is solid solution strengthening (SSS). In SSS, al-
loying atoms fill either substitutional positions or interstitial positions in the lattice. 
In a solid solution of concentration c0, the spacing of dissolved atoms on the slip plane 

−1/2 GbL varies as c0 . Since, τ = 
L , we have  τ ∝ c 1/2 

. So, the greater the concentration 0 

the ‘rougher’ the slip plane, which reveals “Smaller defect spacing is stronger.” 

3. A third strengthening mechanism is strain hardening.	 When dislocations meet each 
other during plastic deformation they impede each other and also multiply. More 
plastic strain means more dislocations are created. Because a large shear stress is 
required to have one dislocation pass through another, a higher dislocation density 
means the shear stress required for dislocation motion should be higher. Thus if dis-
location density is higher, the space between dislocations is smaller. Therefore having 
“smaller spaces between dislocations is stronger.” Mathematically, this is seen by the 
dislocation density, ρ. 

Ld
ρ = 

V

where Ld
 V√is the dislocation line length in a given volume and is the volume. The 
spacing between dislocations can be thought of as Lds = 1/ ρ . Thus the distance √ 
between other dislocations is Lds and τ = Gb = Gb ρ

Lds 
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4. A final strengthening mechanism fitting into the ”smaller is stronger” category is grain 
size strengthening. Single crystalline grains are randomly aligned and misoriented 
with each other. Thus, at a boundary, the dislocation has a problem entering the next 
grain. The smaller the grain size, the more boundaries exist, therefore creating high 
impedance to dislocation motion. Again,“smaller grain size is stronger.” The relation 
between grain size and strength is known as the Hall-Petch relation, σy = σ0 + Kd1/2 
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Problem 3 (30 points) 

PART A: The elastic strain is not important because we are talking about a very large 
deformation (H/H0 = 0.5 � σy /E) Almost all of this deformation takes place in the plastic 
regime. This can be seen numerically. Because deformations are so large, true stress true 
strain must be used. 

H 
H

εtotal = ln(1 + εeng ) =  ln(1 + − 1) = −0.69 (18) 
0 

−σy
εelastic = = −0.0025 (19)

E 
|εelastic|
|εtotal | � 1.0 ⇒ εtotal ∼ εplastic (20) 

You can see the percentage of total strain in the elastic region is only 0.3%. 

Part B: Considering now only analysis in the plastic regime, note the following relationship 
between the material strength, s and the absolute value of plastic strain, ε̄p, is given  to  be  
linear: 

ds 
dε̄p 

= h (21) 

Integrating that from ε̄p = 0  gives:  

s

εp) =  s0 + hε̄p (22) 

0 is the stress at the beginning of plastic deformation. Because the loading is monotonic, 
once yielding begins the following relationship is true (σ is negative in compression) 

σ 

s(¯

s = ¯ = |σ| = −σ (23) 

Also realize that in compression, axial strain is negative: 

ε̄p = −εp (24) 

From part a) it was determined that ε ≈ εp Therefore we have 

−σ = s0 − hε 

σ = −s0 + hε 

Denote the condition where H/H0 = 0.5, ε = −0.69 with a subscript c. 

σc = −s0 + hεc ⇒ σc = −500 + 2000 × (−0.69) = −1886MP  a  (25) 

Thus σ must equal σc when the desired deformation is achieved. The question asks for 
largest diameter that can be safely used in the machine for this specific test. We have the 
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constraint that σ = σc. The machine has a load capacity of −100[kN ], which means that 
|P | ≤ 100kN . For uniaxial compression, 

P 
σ = (26)

A 

Where P is the axial load and A is the cross sectional area. 

|P | = |σcA| ≤ 100[kN ] ⇒ σcA ≥ −100[kN ] (27) 

Realizing that area changes under plastic deformations and then realizing that the governing 
principle for area change under plastic deformation is volume conservation, we have: 

H 
H

A = A0 = 2A0 (28) 
0 

So now we have: 
100[kN ]

2σcA0 ≥ −100[kN ] ⇒ A0 ≤ (29)−2σc 

Rewrite in terms  of  the diameter  
πd2 

A0 = 
4 

, (30) 

we have: � � 

d ≤ 
4 × 100[kN ] 

−2πσc 
= 

4 × 100[kN ] 
−2π(−1.886E6[kP a]) 

= 5.8[mm] (31) 

Thus, the maximum diameter we can choose that will still be safe and give the dis- placement 
needed is d = 5.8[mm]. 
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Problem 4 (20 points) 
Part A: 

Pmax 1.1[MN  ] 
= = 440[MP  a] > 350[MP  a] (32) 

A 25[mm] × 100[mm] 

The as-received bar can not support the Pmax . The maximum load it can support without 
plastic deformation is: 

N 
Pelastic = σy × A = 350[ ] × 25[mm] × 100[mm] = 0.875MN  (33)

2mm

Part B: 

Under plastic deformation, there is no volume change: 

k=3 

dεp = 0 (34)kk 
k=1 

33 = 0,  thus  we  have:  We know that dεp 

dε
(p) 

+ dε
(p) 

= 0  ⇒ dε
(p) 

= −dε
(p) 

= − 
dt 

(35)11 22 11 22 t 

Substitution of dε
(p) 

and dε
(p) 

into the equation for the equivalent plastic strain increment, 11 22 

we have: � � 3 3 � 2 
22 )

2) =  √ 
2 |dt|

d¯ = dε
(p)

dε
(p) 

= 
2
((dε

(p)
εp � 

3 ij ij 11 )
2 + (dε

(p) 
(36)

3 3 t 
i=1 j=1 

Because dt < 0, the above equation can be rewritten as: 

2 dt 
dε̄p = −√ (37)

3 t 

Integration of the above equation from ε̄p = 0, we get the expression of the equivalent 
plastic strain: 

t 2 dt 2 
ε̄p = − √ = √ ln

t0 
(38)

3 t 3 tt0 

Part C: 

2√ ln t0 2√ ln t0Pmax 

tw 
3 t 

]N = s(t) =  σy [1 + 3 t 
]N ⇒ Pmax = twσy [1 + (39) 

c c 
Solving the above equation with matlab (Figure 2) for t, we get the maximum rolling=reduced 
bar thickness: tmax = 23.57[mm] 
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