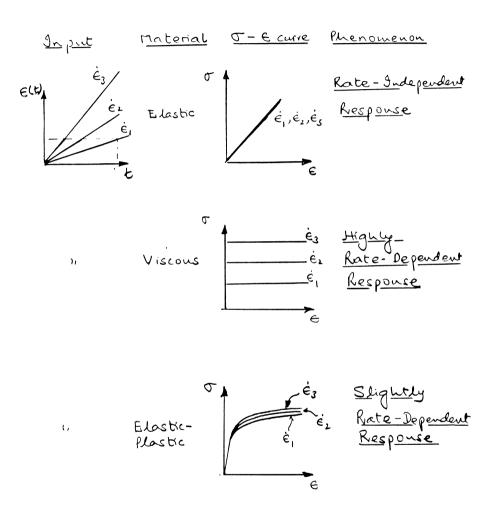
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MA 02139

2.002 MECHANICS AND MATERIALS II Spring, 2004

Creep and Creep Fracture: Part I ©L. Anand

RATE-DEPENDENCE AND RATE-INDEPENDENCE OF PLASTIC RESPONSE



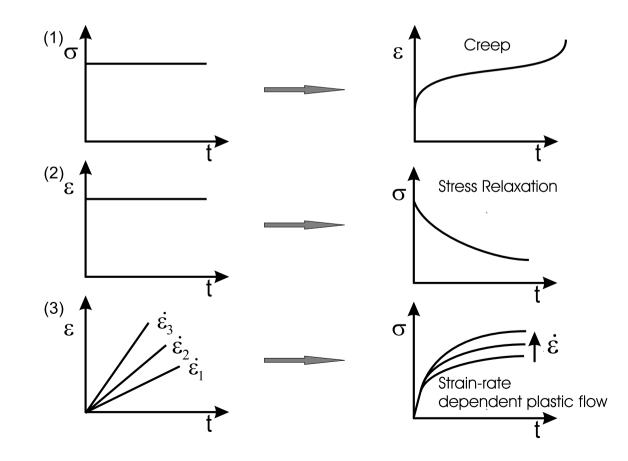
• Plastic deformation in metals is **thermally-activated** and **inherently rate-dependent**.

• However, the plastic stress-strain response of most single and polycrystalline materials at absolute temperatures $T < 0.35 T_m$, where T_m is the melting temperature of the material in degrees absolute, is only slightly rate-sensitive, and in this temperature regime it is often be modeled as rate-independent. We shall first consider a rate-independent theory.

Material Melting Temp, C T_m , K $0.35 T_m$, K \equiv C

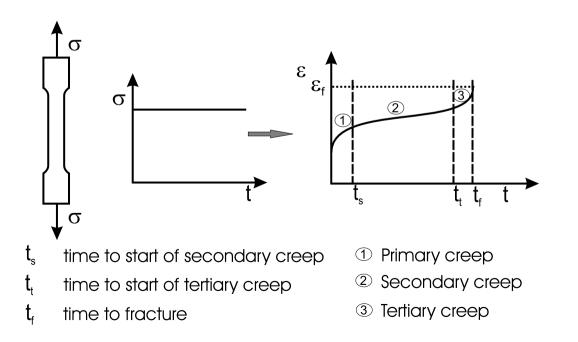
Τi	1668	1941	679	406
Fe	1536	1809	633	360
Cu	1083	1356	452	201
AI	660	933	327	54
Pb	327	660	231	-42

Consequences of Viscoplastic Deformation at High Homologous Temperature



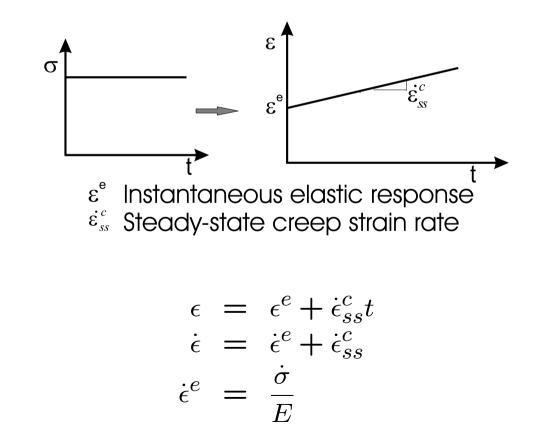
Creep Test

• A typical creep test consists of instantaneously loading a cylindrical test specimen of a material to a constant stress, which is maintained at a constant temperature. The resulting strain is measured as a function of time.

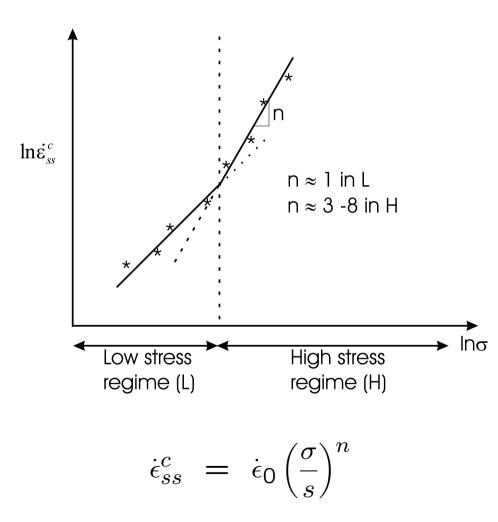


Idealization of Creep Curve

• For deformation analysis at constant temperature, the strain-time response may be idealized as



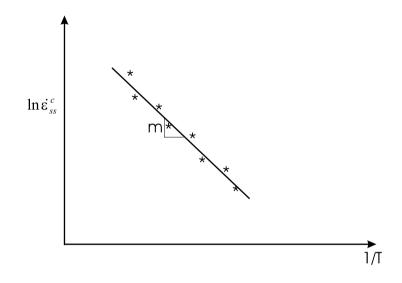
Stress Dependence of $\dot{\epsilon}^c_{ss}$ at Constant Temperature



Temperature-Dependence of $\dot{\epsilon}_{ss}^c$ at Constant σ -Preliminaries

- Avogadro's number: $N_A = 6.022 \times 10^{23}$ atoms/molecules per mole
- Boltzmann's constant $k = 1.381 \times 10^{-23} J/K$
- Universal gas constant $R = N_A k = 8.314 \ J(mol)^{-1} K^{-1}$
- <u>Mole</u>: 1 mole of any substance is that mass of the substance containing N_A atoms/molecules; e.g., the mass of 1 mole of C^{12} atoms is 12 grams.

Temperature Dependence of $\dot{\epsilon}_{ss}^c$ at Constant Stress



• The slope of the curve is m/1 = -Q/R, where Q is called the **activation energy for creep**, with units $J(mol)^{-1}$. Then for a constant $C(\sigma)$, the above curve can be mathematically represented as

$$ln\dot{\epsilon}_{ss}^{c} = lnC - \left(\frac{Q}{R}\right)\left(\frac{1}{T}\right) \iff \dot{\epsilon}_{ss}^{c} = Cexp\left(-\frac{Q}{RT}\right)$$

An Important Observation

• Let us evaluate the increase in $\dot{\epsilon}_{ss}^c$ for a material with $Q = 270 \, kJ/mol$ when the temperature is increased from $T_1 = 800^0 \, C = 1073 \, K$ to $T_2 = 820^0 \, C = 1093 \, K$.

$$\frac{\dot{\epsilon}_{ss1}^c}{\dot{\epsilon}_{ss2}^c} = exp\left\{\frac{Q}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right\} = 0.5746$$

- Therefore, with a temperature increase of only $20^{0}C$, the creep rate almost doubled!!
- Caution: the temperature *T* must be expressed in kelvins

Combined Stress and Temperature Dependence of $\dot{\epsilon}^c_{ss}$

$$\dot{\epsilon}^{c} = \left\{ Aexp\left(-\frac{Q}{RT}\right) \right\} \left(\frac{\sigma}{s}\right)^{n}$$

AQns $<math>\dot{\epsilon}_0 = Aexp\left(-\frac{Q}{RT}\right)$ pre-exponential factor (s^{-1}) creep activation energy (J/mol)creep exponent reference stress which produces a strain rate $\dot{\epsilon}_0$

Summary of One-Dimensional Creep Equation

$$\dot{\epsilon} = \dot{\epsilon}^e + \dot{\epsilon}^c \tag{1}$$

$$e = \dot{\sigma} \qquad (1)$$

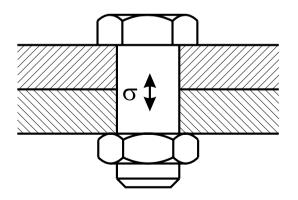
$$\dot{\epsilon}^e = \frac{\sigma}{E}$$
 ; $E = E(T)$ (2)

$$\dot{\epsilon}^c = \left\{ Aexp\left(-\frac{Q}{RT}\right) \right\} \left(\frac{\sigma}{s}\right)^n$$
 (3)

• Note that equation (3) states that the rate of creep (or 'viscoplastic') strain <u>increases</u> exponentially with temperature, so that the time required for a given amount of creep strain <u>decreases</u> exponentially with temperature.

Example Problem: Stress Relaxation

• Consider a bolt with pre-tension $\sigma = \sigma_i$ at time t = 0. Given that the bolt is maintained at constant temperature, determine the pre-tension at some time t. The isothermal constitutive equation for steady state creep is given by $\dot{\epsilon}^c = B\sigma^n$ with $n \neq 1$



Example Problem: Stress Relaxation (cont.)

$$\dot{\epsilon} = \dot{\epsilon}^e + \dot{\epsilon}^c$$

$$\Rightarrow 0 = \dot{\epsilon}^e + \dot{\epsilon}^c \quad \text{since } \epsilon = \text{const in the bolt}$$

$$\Rightarrow 0 = \frac{\dot{\sigma}}{E} + B\sigma^n \Rightarrow \frac{1}{E}\frac{d\sigma}{dt} = -B\sigma^n$$

$$\Rightarrow \sigma^{-n}d\sigma = -EB\,dt \Rightarrow \int_{\sigma_i=\sigma(0)}^{\sigma(t)} \sigma^{-n}d\sigma = -EB\int_0^t dt$$

$$\Rightarrow \sigma(t)^{-(n-1)} - \sigma_i^{-(n-1)} = (n-1)EBt$$

$$\Rightarrow \sigma(t) = \frac{\sigma_i}{[1+(n-1)\,t\,B\sigma_i^n\,(E/\sigma_i)]^{1/(n-1)}}$$

• Defining the characteristic relaxation time t_r such that $\sigma(t_r) = \sigma_i/2$, we get

