MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139

2.002 MECHANICS AND MATERIALS II SOLUTIONS FOR HOMEWORK NO. 3

Problem 1 (20 points)
(a) The equilibrium equations are

$$
\begin{align*}
& \frac{\partial \sigma_{11}}{\partial x_{1}}+\frac{\partial \sigma_{12}}{\partial x_{2}}+\frac{\partial \sigma_{13}}{\partial x_{3}}+\rho b_{1}=0 \tag{1}\\
& \frac{\partial \sigma_{21}}{\partial x_{1}}+\frac{\partial \sigma_{22}}{\partial x_{2}}+\frac{\partial \sigma_{23}}{\partial x_{3}}+\rho b_{2}=0 \tag{2}\\
& \frac{\partial \sigma_{31}}{\partial x_{1}}+\frac{\partial \sigma_{32}}{\partial x_{2}}+\frac{\partial \sigma_{33}}{\partial x_{3}}+\rho b_{3}=0 \tag{3}
\end{align*}
$$

All shear stresses are zero. Furthermore, the gravitational body force loading b has one non-zero component only, in the direction of e_{3}. Therefore, from the third equilibrium equation we get:

$$
\begin{equation*}
\frac{\partial \sigma_{33}}{\partial x_{3}}+\rho b_{3}=0 \Leftrightarrow \frac{\partial \sigma_{33}}{\partial x_{3}}=-\rho b_{3} \tag{4}
\end{equation*}
$$

We also know that $\sigma_{33}(\mathbf{x})=-p(\mathbf{x})$ and $b_{3}=-g$. We can substitute these into Equation 4 and integrate both sides with respect to x_{3}

$$
\begin{gather*}
-\int_{0}^{x_{3}} \frac{d p(x)}{d x_{3}} d x_{3}=\int_{0}^{x_{3}}-\rho b_{3} d x_{3} \Leftrightarrow-\int_{p_{0}}^{p(x)} d p(x)=\rho g x_{3} \Leftrightarrow-p\left(x_{3}\right)+p_{0}=\rho g x_{3} \tag{5}\\
p\left(x_{3}\right)=p_{0}-\rho g x_{3} \tag{6}
\end{gather*}
$$

Note that p is only a function of x_{3}.
(b) 1. The traction vector on a surface can be found by multiplying the stress with the unit outward normal vector on that surface. In this case, the normal vector is

$$
n_{l}=\left\{\begin{array}{c}
-\cos \theta \tag{7}\\
0 \\
-\sin \theta
\end{array}\right\}
$$

The traction vector is then

$$
t_{l}=\left[\begin{array}{ccc}
-p(x) & 0 & 0 \tag{8}\\
0 & -p(x) & 0 \\
0 & 0 & -p(x)
\end{array}\right]\left\{\begin{array}{c}
-\cos \theta \\
0 \\
-\sin \theta
\end{array}\right\} \Leftrightarrow t_{l}=\left\{\begin{array}{c}
p(x) \cos \theta \\
0 \\
p(x) \sin \theta
\end{array}\right\}
$$

2. Action and reaction, forces need to balance at the interface.

$$
t_{l}=\left\{\begin{array}{c}
-p(x) \cos \theta \tag{9}\\
0 \\
-p(x) \sin \theta
\end{array}\right\}
$$

3.

$$
t_{d}=\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \tag{10}\\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right]\left\{\begin{array}{c}
\cos \theta \\
0 \\
\sin \theta
\end{array}\right\}
$$

which gives 3 linear equations involving $\sigma_{i j}$

$$
\begin{gather*}
-p \cos \theta=\sigma_{11} \cos \theta+\sigma_{13} \sin \theta \tag{11}\\
0=\sigma_{21} \cos \theta+\sigma_{23} \sin \theta \tag{12}\\
-p \sin \theta=\sigma_{31} \cos \theta+\sigma_{33} \sin \theta \tag{13}
\end{gather*}
$$

Problem 2 (20 points)

$$
\begin{equation*}
\epsilon_{i j}=\frac{1+\nu}{E}\left(\sigma_{i j}-\frac{\nu}{1+\nu} \delta_{i j} \sum_{k=1}^{3} \sigma_{k k}\right)+\alpha \Delta T \delta_{i j} \tag{14}
\end{equation*}
$$

The procedure is similar to what was discussed in class for elastic constitutive relations without thermal effects. The idea is to eliminate $\sum_{k=1}^{3} \sigma_{k k}$ from the given equation and solve for $\sigma_{i j}$. To do this, take the sum of both sides of the given equation as follows

$$
\begin{equation*}
\sum_{i=1}^{3} \epsilon_{i i}=\frac{1+\nu}{E}\left(\sum_{j=1}^{3} \sigma_{j j}-\frac{\nu}{1+\nu} \sum_{k=1}^{3} \sigma_{k k} \sum_{i=1}^{3} \delta_{i i}\right)+\alpha \Delta T \sum_{j=1}^{3} \delta_{j j} \tag{15}
\end{equation*}
$$

The indexes can be anything in this case (i, j, or k) and don't affect the result. $\sum_{j=1}^{3} \delta_{j j}$ is simply the sum of the diagonal elements of the (3x3) identity matrix. Thus, $\sum_{j=1}^{3} \delta_{j j}=3$. Therefore, the equation becomes

$$
\begin{equation*}
\sum_{i=1}^{3} \epsilon_{i i}=\frac{1+\nu}{E}\left(\sum_{j=1}^{3} \sigma_{j j}-3 \frac{\nu}{1+\nu} \sum_{k=1}^{3} \sigma_{k k}\right)+3 \alpha \Delta T \tag{16}
\end{equation*}
$$

Solving for $\sum_{k=1}^{3} \sigma_{k k}$ yields

$$
\begin{equation*}
\sum_{k=1}^{3} \sigma_{k k}=\frac{E}{1-2 \nu}\left(\sum_{i=1}^{3} \epsilon_{i i}-3 \alpha \Delta T\right) \tag{17}
\end{equation*}
$$

We can now substitute this expression into Equation 14 and solve for $\sigma_{i j}$ to get

$$
\begin{equation*}
\sigma_{i j}=\frac{E}{1+\nu}\left(\epsilon_{i j}+\frac{\nu}{1-2 \nu} \delta_{i j} \sum_{i=1}^{3} \epsilon_{i i}-\frac{1+\nu}{1-2 \nu} \alpha \Delta T \delta_{i j}\right) \tag{18}
\end{equation*}
$$

To evaluate the stress components for the given data, use any commercially available software to carry out the matrix operations, such as MATLAB. The stress tensor is

$$
\sigma=\left[\begin{array}{ccc}
-0.6704 & 0.0808 & -0.0323 \tag{19}\\
0.0808 & -0.2665 & 0 \\
-0.0323 & 0 & -4281
\end{array}\right] G P a
$$

$$
\begin{align*}
\epsilon_{i j} & =\epsilon_{i j}^{(\text {thermal })}+\epsilon_{i j}^{(\text {mechanical })}=\alpha \Delta T \delta_{i j}+\epsilon_{i j}^{(\text {mechanical })} \tag{1}\\
\epsilon_{i j} & =\alpha \Delta T \delta_{i j}+\frac{1}{E}\left[(1+\nu) \sigma_{i j}-\nu \delta_{i j}\left(\sum_{k=1}^{3} \sigma_{k k}\right)\right] \tag{2}
\end{align*}
$$

This equation can be inverted to give

$$
\begin{equation*}
\sigma_{i j}=\frac{E}{(1+\nu)}\left[\epsilon_{i j}+\frac{\nu}{(1-2 \nu)}\left(\sum_{k=1}^{3} \epsilon_{k k}\right) \delta_{i j}-\frac{(1+\nu)}{(1-2 \nu)} \alpha \Delta T \delta_{i j}\right] \tag{3}
\end{equation*}
$$

1. The strain components are determined by the derivatives of displacement components. Since the displacement should be continuous in the interface separating surface layer from substrate, the in-plane strain components in the thin surface layer should correspond to those in the substrate, too. Therefore, $\epsilon_{11}=\epsilon_{22}=\epsilon_{12}=0$.
2. The problem stipulates that the thick substrate undergoes negligible total strain and temperature change. It means $\Delta T \doteq 0$ and $\epsilon_{i j \text { (substrate) }} \doteq 0_{i j}$.
The constitutive equation (3) gives the relation between stress components and strain components. In the equation, $\sigma_{i j(\text { substrate })}$ can be calculated by substituting $\epsilon_{i j \text { (substrate) }}$ and ΔT (which are all zeros).

$$
\sigma_{i j(\text { substrate })}=0_{i j}
$$

3. We know that the surface layer has a boundary condition at surface $x_{3}=0$ which remains traction-free ($\mathbf{t}^{\mathbf{n}}=\mathbf{0}$).

$$
\begin{gather*}
\mathbf{n}=n_{1} \mathbf{e}_{\mathbf{1}}+n_{2} \mathbf{e}_{\mathbf{2}}+n_{3} \mathbf{e}_{\mathbf{3}}=\mathbf{e}_{\mathbf{3}} \\
n_{1}=n_{2}=0, \quad n_{3}=1 \\
t_{1}=\sigma_{11} n_{1}+\sigma_{12} n_{2}+\sigma_{13} n_{3}=0 \Rightarrow \sigma_{13}=0 \tag{4}\\
t_{2}=\sigma_{21} n_{1}+\sigma_{22} n_{2}+\sigma_{23} n_{3}=0 \Rightarrow \sigma_{23}=0 \tag{5}\\
t_{3}=\sigma_{31} n_{1}+\sigma_{32} n_{2}+\sigma_{33} n_{3}=0 \Rightarrow \sigma_{33}=0 \tag{6}
\end{gather*}
$$

The in-plane components $\epsilon_{11}, \epsilon_{22}$, and ϵ_{12} are zero.
By the equation (3),

$$
\begin{equation*}
\sigma_{12}=\sigma_{21}=\frac{E}{1+\nu}[0+0+0]=0 \tag{7}
\end{equation*}
$$

Invoking the symmetry of the stress tensor, $\sigma_{i j}=\sigma_{j i}$

$$
\left[\sigma_{i j}\right]=\left[\begin{array}{ccc}
\sigma_{11} & 0 & 0 \tag{8}\\
0 & \sigma_{22} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

In order to justify the sign of the non-zero stress components, σ_{11} and σ_{22}, we can imagine that, when the temperature increases, the surface layers tends to extend while the substrate tends to prevent it from deforming by shrinking it. Therefore the non-zero stress components would be compression stresses. And similarly, when the temperature decreases, the two in-plane components are tensile stresses. The non-zero components σ_{11} and $\sigma 22$ always have opposite sign from that of the change of temperature (ΔT).
4. By the equation (2) and the in-plane strain continuity $\left(\epsilon_{11}=\epsilon_{22}=\epsilon_{12}=0\right)$,

$$
\begin{align*}
& \epsilon_{11}= \alpha \Delta T \delta_{11}+\frac{1}{E}\left[(1+\nu) \sigma_{11}-\nu \delta_{11}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right)\right] \\
&= \alpha \Delta T+\frac{1}{E}\left[(1+\nu) \sigma_{11}-\nu\left(\sigma_{11}+\sigma_{22}+0\right)\right]=0 \\
& \epsilon_{11}=\alpha \Delta T+\frac{1}{E}\left[\sigma_{11}-\nu \sigma_{22}\right]=0 \tag{9}\\
& \epsilon_{22}= \alpha \Delta T \delta_{22}+\frac{1}{E}\left[(1+\nu) \sigma_{22}-\nu \delta_{22}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right)\right] \\
&= \alpha \Delta T+\frac{1}{E}\left[(1+\nu) \sigma_{22}-\nu\left(\sigma_{11}+\sigma_{22}+0\right)\right]=0
\end{align*}
$$

$$
\begin{equation*}
\epsilon_{22}=\alpha \Delta T+\frac{1}{E}\left[\sigma_{22}-\nu \sigma_{11}\right]=0 \tag{10}
\end{equation*}
$$

On solving equation (9) and (10),

$$
\begin{gathered}
\sigma_{11}=\sigma_{22}=-\frac{\alpha \Delta T E}{1-\nu} \\
\epsilon_{11}=\epsilon_{12}=\epsilon_{22}=0, \quad \sigma_{11}=\sigma_{22}=-\frac{\alpha \Delta T E}{1-\nu}
\end{gathered}
$$

Since all the components of the stress tensor in equation (8) are known, the strain tensor can be calculated by the equation (2).

$$
\begin{gather*}
\epsilon_{13}=\alpha \Delta T \delta_{13}+\frac{1}{E}\left[(1+\nu) \sigma_{13}-\nu \delta_{13}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right)\right]=0+\frac{1}{E}[0-0]=0 \\
\epsilon_{23}=\alpha \Delta T \delta_{23}+\frac{1}{E}\left[(1+\nu) \sigma_{23}-\nu \delta_{23}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right)\right]=0+\frac{1}{E}[0-0]=0 \\
\epsilon_{33}=\alpha \Delta T \delta_{33}+\frac{1}{E}\left[(1+\nu) \sigma_{33}-\nu \delta_{33}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right)\right] \\
=\alpha \Delta T+\frac{1}{E}\left[0+\nu\left(\frac{2 \alpha \Delta T E}{1-\nu}\right)\right]=\alpha \Delta T \frac{1+\nu}{1-\nu} \\
{\left[\epsilon_{i j}\right]=\alpha \Delta T \frac{1+\nu}{1-\nu}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]} \tag{11}
\end{gather*}
$$

5. The Mises equivalent stress σ is given by

$$
\begin{gather*}
\bar{\sigma}=\sqrt{\frac{1}{2}\left[\left(\sigma_{11}-\sigma_{22}\right)^{2}+\left(\sigma_{22}-\sigma_{33}\right)^{2}+\left(\sigma_{33}-\sigma_{11}\right)^{2}\right]+3\left[\sigma_{12}^{2}+\sigma_{23}^{2}+\sigma_{13}^{2}\right]} \tag{12}\\
\bar{\sigma}=\frac{E}{1-\nu} \alpha|\Delta T| \tag{13}
\end{gather*}
$$

To prevent yielding, it is required that $\bar{\sigma} \leqslant \sigma_{y}$.

$$
|\Delta T| \leqslant \frac{(1-\nu) \sigma_{y}}{E \alpha}
$$

Problem 4 (30 points)

In uniaxial loading, only one stress component is non-zero. Let's assume uniaxial loading in the 1-direction. The stress tensor is then

$$
\sigma=\left[\begin{array}{ccc}
\sigma_{11} & 0 & 0 \tag{20}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The stress deviator tensor is then

$$
\sigma^{(d e v)}=\left[\begin{array}{ccc}
\frac{2}{3} \sigma_{11} & 0 & 0 \tag{21}\\
0 & -\frac{1}{3} \sigma_{11} & 0 \\
0 & 0 & -\frac{1}{3} \sigma_{11}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{2}{3} \Sigma & 0 & 0 \\
0 & -\frac{1}{3} \Sigma & 0 \\
0 & 0 & -\frac{1}{3} \Sigma
\end{array}\right]
$$

The double summation in the Mises stress equation is calculated by squaring each component of the deviatoric stress tensor and adding them all up. More specifically,

$$
\begin{equation*}
\sum_{i=1}^{3} \sum_{j=1}^{3} \sigma_{i j}^{(d e v} \sigma_{i j}^{(d e v}=\left(\frac{2}{3} \sigma_{11}\right)^{2}+\left(\frac{1}{3} \sigma_{11}\right)^{2}+\left(\frac{1}{3} \sigma_{11}\right)^{2}=\frac{2}{3} \Sigma^{2} \tag{22}
\end{equation*}
$$

Therefore, the Mises stress becomes

$$
\begin{equation*}
\bar{\sigma}=\sqrt{\frac{2}{3} \frac{3}{2} \Sigma^{2}}=|\Sigma| \tag{23}
\end{equation*}
$$

Hydrostatic pressure only has normal components, ie it doesn't have shear components. As a result, the stress components that are affected by the addition/subtraction of a uniform hydrostatic pressure p are σ_{11}, σ_{22} and σ_{33}, which become in the case of addition, $\sigma_{11}+p$, $\sigma_{22}+p$ and $\sigma_{33}+p$ accordingly. The deviatoric stress components are then

$$
\sigma_{11}^{(d e v)}=\sigma_{11}+p-\frac{1}{3}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}+3 p\right)=\sigma_{11}-\frac{1}{3}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right)
$$

$$
\begin{align*}
& \sigma_{12}^{(d e v)}=\sigma_{12} \\
& \sigma_{13}^{(d e v)}=\sigma_{13} \\
& \sigma_{21}^{(d e v)}=\sigma_{21} \\
& \sigma_{22}^{(d e v)}=\sigma_{2}+p-\frac{1}{3}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}+3 p\right)=\sigma_{22}-\frac{1}{3}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right) \\
& \sigma_{23}^{(d e v)}=\sigma_{23} \\
& \sigma_{31}^{(d e v)}=\sigma_{31} \\
& \sigma_{32}^{(d e v)}=\sigma_{32} \\
& \sigma_{33}^{(d e v)}=\sigma_{3}+p-\frac{1}{3}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}+3 p\right)=\sigma_{3}-\frac{1}{3}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right)(2 \tag{24}
\end{align*}
$$

which is equal to the original stress deviator tensor.
In plane stress

$$
\sigma=\left[\begin{array}{ccc}
\sigma_{11} & \sigma_{12} & 0 \tag{25}\\
\sigma_{12} & \sigma_{22} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Thus, the stress deviator tensor is

$$
\sigma^{(d e v)}=\left[\begin{array}{ccc}
\frac{2}{3} \sigma_{11}-\frac{1}{3} \sigma_{22} & \sigma_{12} & 0 \tag{26}\\
\sigma_{12} & \frac{2}{3} \sigma_{22}-\frac{1}{3} \sigma_{11} & 0 \\
0 & 0 & -\frac{1}{3}\left(\sigma_{11}+\sigma_{22}\right)
\end{array}\right]
$$

Then, the Mises stress becomes
$\bar{\sigma}=\sqrt{\frac{3}{2} 3 \sigma_{12}^{2}+\frac{3}{2} \frac{1}{9}\left(4 \sigma_{11}^{2}+\sigma_{22}^{2}-4 \sigma_{11} \sigma_{22}\right)+\frac{3}{2} \frac{1}{9}\left(4 \sigma_{22}^{2}+\sigma_{11}^{2}-4 \sigma_{11} \sigma_{22}\right)+\frac{3}{2} \frac{1}{9}\left(\sigma_{11}^{2}+\sigma_{22}^{2}+2 \sigma_{11} \sigma_{22}\right)(27)}$
After some manipulation, we get

$$
\begin{equation*}
\bar{\sigma}^{2}=3 \sigma_{12}^{2}+\sigma_{11}^{2}+\sigma_{22}^{2}-\sigma_{11} \sigma_{22} \tag{28}
\end{equation*}
$$

Finally, in the case of pure shear, the stress tensor is

$$
\sigma=\left[\begin{array}{lll}
0 & \tau & 0 \tag{29}\\
\tau & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The stress deviator tensor is identical to the stress tensor since pure shear does not cause volumetric changes (only shape changes). Thus, $\sigma=\sigma^{d e v}$. The Mises stress is

$$
\begin{equation*}
\bar{\sigma}=\sqrt{\frac{3}{2} 2 \tau^{2}} \Leftrightarrow|\tau|=\frac{\bar{\sigma}}{\sqrt{3}} \tag{30}
\end{equation*}
$$

As mentioned in the problem statement, yielding occurs when $\bar{\sigma}=\sigma_{y}$. Therefore, $\tau \left\lvert\,=\frac{\sigma_{y}}{\sqrt{3}}\right.$. Furthermore, the only non-zero variable in the Tresca condition is $\sigma_{12}=\tau$. Thus, the first inequality yields $|\tau| \leq \frac{\sigma_{y}}{2}$ and the second one $|\tau| \leq \sigma_{y}$. Thus, the Tresca condition predicts yielding when $|\tau|=\frac{\sigma_{y}}{2}$.

