
� 

� 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
DEPARTMENT OF MECHANICAL ENGINEERING 

CAMBRIDGE, MASSACHUSETTS 02139 

2.002 MECHANICS AND MATERIALS II 
SOLUTIONS FOR HOMEWORK NO. 2 

Problem 1 (15 points)

The axial stiffness of the structure is:


Fx σxxA A 
kaxial = = = E (1)

δx εxx L L 

where A is the area of the cross section and L is the length of the beam. The bending 
stiffness is defined as: 

Fy 

δ
kbending = , (2) 

y 

where Fy is the concentrated tip load, and δy is the related tip deflection. According to the 

beam theory, we know that δy = FyL3 

. Thus, the bending stiffness is: 
3EI 

Fy 
= 

Fy 3EI 
kbending = 

δy
FyL3 = 

L3 
. (3) 

3EI 

Combining Eq.1 and Eq.3, the ratio of a slender cantilever’s bending stiffness to its axial 
stiffness is: 

3EIkbending 
= L3 3I/A  

= 3(  
l2 

)2 = (4)
E A L2 Lkaxial L 

where l2 ≡ I/A. Since  L � l2, we find the above ratio is extremely small. 

For a solid circular cross-section beam with diameter d, we  have:  

πd4 

I = (5)
64 

and 
πd2 

A = (6)
4 

Substitution of the A and I into Eq. 4, we have 

kbending 3I/A  3 d 
)2 = = ( (7)

kaxial L2 16 L

Problem 2 (45 points)

Part A:

No forces and moments are applied to the beam. And at any x, 0  < x  < l, we have: 


N = Fx = σxxdA = 0, (8) 
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and � 
M = σxx(−y)dA = 0  (9)  

The stress is a function of y, σxx = σxx(y), and does not change along the x-direction. The 
deformation is composed of two parts: the thermal part and the mechanical part, thus the 
total stain at each point can be expressed as: 

ε(total) = ε(mechanical) + ε(thermal) (10) 

ε
where 

(mechanical) = σ(y)/E (11) 

and ∗∆T y
ε(thermal) = α∆T = α(∆T0 − ) (12) 

h/2 

Meanwhile, since the beam deflects laterally with a constant curvature, κ(thermal) , the total 
strain of the beam can also be expressed as: 

εtotal = ε0 − κ(thermal) y (13) 

where ε0 is the total strain for the mid-surface axial. 

ε
∂u0(x)


0 = = ε0(thermal) → εtotal = ε0(thermal) − κ(thermal) y (14)

∂x 

From Eq.s 10, 11, 12 and Eq. 14, we have: 

∗ 

ε
∆T y 

0(thermal) − κ(thermal)y = ε(mechanical) + ε(thermal) = σ(y)/E + α(∆T0 − 
h/2 

) (15) 

Thus, the stress can be expressed as: 

∗∆T y
σxx(y) =  E[ε0(thermal) − κ(thermal) y − α(∆T0 − )] (16)

h/2 

Substituting Eq. 16 into Eq. 8, we have: 

h/2 ∗∆T y
Eb [ε0(thermal) − κ(thermal) y − α(∆T0 − 

h/2 
)]dy = 0 (17) 

−h/2 

∗ 
The integration of the linear terms in the above equation, −κ(thermal) y and ∆T y , will be 

h/2 

zero, since the integral range is symmetric (from −h/2 to  h/2). Thus we have: 

Eb(ε
h/2 

0(thermal) − α∆T0) dy = 0  → ε0(thermal) = α∆T0 (18) 
−h/2 

ε

Another easier way to get this relation is that: 

0(thermal) = α∆T (y = 0)  → ε0(thermal) = α∆T0 (19) 
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Substituting Eq. 16 into Eq. 9 we have: 
h/2 ∗ 

Eb [ε
∆T y 

0(thermal) − κ(thermal) y − α(∆T0 − 
h/2 

)](−y)dy = 0 (20) 
−h/2 

Considering that ε0(thermal) = α∆T0, and  y2dA ≡ I �= 0,  we  get:  
∗

κ
2∆T α 

(thermal) = (21)
h 

Part B:

Substitution of Eq. 18 and Eq. 21 into the expression of the stress, Eq. 16, we get:


∗ ∗2∆T α ∆T y
σxx(y) =  E[α∆T0 − y − α(∆T0 − )] = 0 (22)

h h/2 

The axial stress in the thermally-loaded cantilever is zero everywhere.


Part C:

The tip deflection caused by the thermal load is:


∗1 ∆T α 
v∆T (x = L) =  κ(thermal)L

2 = L2 (23)
2 h 

The tip deflection caused by the reaction force Rtip is: 

RtipL
3 

(24)vRtip
(x = L) =  

3EI 
The actual tip deflection is zero. By applying superposition, we get: 

∗ ∗∆T α 3EIα∆T
0 =  v∆T (x = L) +  vRtip

(x = L) → 
h

L2 = − 
RtipL

3 

→ Rtip = − (25)
3EI hL 

Part D: 
As shown in Part B, the thermal load does not generate stress, thus the stress field of this 
tip- restrained thermally-loaded cantilever beam is the same as the beam is only subjected 
to a tip load of Rtip. Since the sign of the tip-load is negative, Rtip is downwards and the 
upper part of the beam is in tension and the lower pare is in compression. The bending 
moment is expressed as: 

M(x) =  Rtip(L − x) (26) 

The maximum tensile stress is at (x = 0, y  = h/2), and value is expressed as: 

M h RtipL
h 3 ∗2σmax = − 2 = − = Eα∆T (27)

I I 2 
Part E: 
The problem requests that σmax < σy = 350MP  a, substitution of Eq. 25 into the above 
relation, we have: 

3 ∗ ∗ 2σy
σmax = Eα∆T < σy → ∆T < (28)

2 3Eα 
With E = 210GPa and α = 12  × 10−6/◦K, we find the largest bottom/top difference in 

∗temperature change, ∆T = 92.6◦K. So the largest bottom/top difference in temperature 
change is 2 ∗ ∆T ∗ = 185.2◦K 
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Fig 01: The total deflection 



Problem 3 (20 points)

The lattice-based prediction of the density of iron is:


2 × 55.847 × 10−23g
ρFe  = 6.02 = 7.88Mg/m  3 (29)

30.28663 × 10−27m

For Sodium chloride, there is one half atom (4 × 1/8) of both sodium (Na) and chlorine 
(Cl) in each cell. The atomic mass for sodium is 22.99g/mol and 35.453g/mol for chlorine. 

0.5 × (22.99+35.453) 

ρ
× 10−23g 

NaCl  = 6.02 = 2.17Mg/m  3 (30)
3r0 m

3 

Solving the above equation, we got the estimated lattice spacing r0 = 0.2818nm. 

Problem 4 (20 points) 

Metal 
Ni 
Al 
Pt 
Pd 
Cu 
Au 
Ag 

.
S0 = Er0 

E (GPa) 
214 
70 

172 
124 
124 
82 
76 

A) 
3.1517 
4.0496 
3.9231 
3.8902 
3.6151 
4.0786 
4.0862 

a0 (˚

(31) 

S0 (N/m) 
67.446 
28.347 
67.477 
48.238 
44.827 
33.445 
31.055 

We can see that Au and Ag have the similar value in S0 and Ni and Pt have the similar 
value in S0. Conclusion: elements in the same column of the periodic table of elements tend 
to have similar atomic bond stiffness (S0) 
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Fig 02: E vs. ao 


