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Solid Mechanics in 3 Dimensions:
stress/equilibrium, strain/displacement, and intro
to linear elastic constitutive relations

* Geometry of Deformation
—Position, 3 components of displacement, and [small] strain tensor
—Cartesian subscript notation; vectors and tensors
—Dilatation (volume change) and strain deviator
—Special cases: homogeneous strain; plane strain
*Equilibrium of forces and moments:
—Stress and ‘traction’
—Stress and equilibrium equations

—Principal stress; transformation of [stress] tensor components between
rotated coordinate frames

—Special cases: homogeneous stress; plane stress

«Constitutive connections: isotropic linear elasticity
—Isotropic linear elastic material properties: E, v, G, and K
—Stress/strain and strain/stress relations
—Putting it all together: Navier equations of equilibrium in terms of displacements
—Boundary conditions and boundary value problems



Geometry of Deformation

*Origin : 0; Cartesian basis vectors, e,.e,, & e,

orginal shape «_ deformed shape *Reference location of material point : x;
—= SN / specified by its cartesian components, x,, X,, X5
Al N *Displacement vector of material point: u(x);
/ u(x) \ specified by displacement components, u,, u,, u,
X \ Each function, u; (I=1,2,3), in general depends on
y(x) h position x functionally through its components:

Vv ol e.g., U; = U, (X4,X,,X5); etc.

A *Deformed location of material point: y(x)=x+u(x)

X=X-| e-1 +X292+X3€3
0 »©€; U(X)=U;e;+Uyer+Uze;

y(Xx) = x+ u(x)

€3 = (Xy+Uq) €4 + (Xo+Up) €5 + (X3+U3) €3



Displacement of Nearby Points

y(x+ &) = y(x) +Ay *Neighboring points: x and x + Ax

* Displacements: u(x) and u(x + Ax)
*Deformed: y(x) and y(x + AX)

y *Displacements: u(x) and u(x + AXx)
*Vector geometry: Ay = AX + Au,
(AX where Au = u(x + AX) - u(x)
u(x)
X #x y(x)
Au = ( + Ax) —u(x)
L . ]\ u ux X u(x

e; [ui(z1 + Az1,20 + Axp, 23 + Axz) — ui(x1, z2, 23)]

Ve
||'Mw ||M



Displacement Gradient Tensor

Taylor series expansions of functions u;:
ui(z1 + Awy, 22 + Awo, 23 + Ax3z)

Thus, on returning to the expression
on previous the slide, Au; is given, for
each component (i=1,..3), by

+lg($1, 5132,51?3({)9 5

LA LA —A
+8x1 1+ Oxo 2+ 0x3 3
+o(Ax)
3’LLZ'

3
ui(zy,z2,23) + ) .
j=19%j

Components of the displacement
gradient tensor can be put in matrix
form:

Ouy; Oup Oujg
Odxr1 Oxq1 Ox

[aui] _ aui 6ué 8u;13

| T | Oxro Oxp Oz

633] Oouy Oup Oujg

63:3 8563 6a:3 A




Displacement Gradient and
Extensional Strain in Coordinate Directions

Suppose that Ax = Ax, e,; s
Then, with Ay = Ax + Au, y’ /
u-+Au
€s P \
Ouq duy dus AX = AXq@
Ay = A LA —ZA —SA 181
y SUA1Xe1 +33x1 x1e1 + D1 x1ex+ 1 T 631 s
Au €3
ou ou ou
= Az (1+—1) 1+ 2es+ —esl;
ox1q ox1

|Ay| = /Ay Ay

d d d
= !Ax1|¢<1+ﬂ>2+< oG
d o d d
= |Ax] 1+2ﬂ+[( ) G (G
h|gher order
= \Awll 1+ %} The fractional change in length
Ayl — |Ax| Oy ; (extensional strain) of a material line
|Ax| = oz - element initially parallel to x1 axis is
ou,/ 0 X, ;similar conclusions apply for

coordinate directions 2 and 3



Displacement Gradient and Shear Strain

3 ‘Let QR = Ax, e, & QP =Ax.e,
gu1 Ao Line segments initially perpendicular

02 ’lﬂ | Deformed lines: Q'R’ & Q'P’
" |QR| = | Ax,|(1 + 0 u,/d X,)
*|Q'P’| = | AX,|(1 + 0 u,/0 X,)

< A
U; 8/ /P'Q'R =m/2— (014 02)
ous
ul R &ElA‘/E1 N

o0xq

; ug—1 sin 64 %
Oug
62 dz1
L, (1+52)
. sin 0, = 2“2 similarly
The total reduction in angle 1 1™ oy
of 2 line segments initially perpendicular  sjng, 0y = duy
to coordinate axes 1 and 2 is 02
oui1 . Ouo
01+ 0 = + Similar results apply for all axis pairs

Ooxr>  Ox1



Strain Tensor ()

The cartesian components of the [small] strain tensor are given,

fori=1..3 and j=1..3, by

i (axj + 8:137;>

Written out in matrix notation, this index equation is

- . I Ouy l(aul 4+ Oup
€11 €12 €13 01 2\0xo 01
21 €22 €23 | — | 2 gxl ng 5 Oy 5

1 1
31 w2 3 | S+ as) (o s

)

)

1,0uq
j(% +
1,0ug
2((9:133 +
Ous
0x3

*Each of the 9 components in the 3 x[3 matrices on each side of the
matrix equation are equal, so this is equivalent to 9 separate equations.

*The strain tensor is symmetric, in that, for each i and j, g; = ¢;

Jii

Quzy 7]
oxq

)
0xo




Strain Tensor (ll)

The cartesian components of the [small] strain tensor are given,

fori=1..3 and j=1..3, by

€= = + —=
2 (9:13] 8:z;z
Written out in matrix notation, this index equation is
i i I Oug 10wy
€11 €12 €13 Oz 2(8562 +
— 1 8u2 (9U1 (9’(1,2
e21 €2 €3 | = | 5(g;2 + 5.2) Ora
€31 €32 € 1,0uz 4 Ouiy 1,0ug
L3 3 33 . i 2(55E1 + (9:163) 2(8ZE2 +

Oug
ox1

Odug
0x3

)

)

1,0uq
j(% +
1,0ug
2((9:133 +
Ous
0x3

ou3z
oxq
u3s

)
0xo

*Diagonal components of the strain tensor are the extensional strains along

the respective coordinate axes;

*Off-diagonal components of the strain tensor are 2 times the total reduction

in angle (from =/2) of a pair of deformed line elements that were initially
parallel to the two axes indicated by the off-diagonal row and column number

\-
)




Fractional Volumetric Change

For any values of the strain tensor components, ¢;,
the fractional volume change at a material point, sometimes called

the dilatation at the point, is given by

Vdeformed — Vinitial

= €11t €20+ €33
Vinitial

3
= D> €k
k=1

This relation holds whether or not the values of ¢, €.,

and g,, equal each other,
and whether or not any or all of the shear strain components

(e.g., €,,=¢,,) are zero-valued or non-zero-valued.

The sum of diagonal elements of a matrix of the cartesian components of

a tensor is called the trace of the tensor; thus,
the fractional volume change is the trace of the strain tensor.




Strain Deviator Tensor

Components of the strain deviator tensor,
are given in terms of the components of
the strain tensor by

55 = ey — 20y Z €kl i ={

eoNeN
o= O

= OO
L

Here 5, are components of the Kronecker identity matrix,
satisfying &; =1 if i=j, and ; =0 if iis not equal to ]

*Off-diagonal components of the strain deviator tensor equal corresponding

off-diagonal components of the strain tensor;

*Each diagonal component of the strain deviator tensor differs from the
corresponding diagonal component of the strain tensor by 1/3 of the trace
of the strain tensor

Exercise: evaluate the trace of the strain deviator tensor.




Strain Decomposition

Alternatively, the strain tensor can be viewed as the sum of

*a shape-changing (but volume-preserving) part (the strain deviator)
Plus

*a volume-changing (but shape-preserving) part (one-third trace
of strain tensor times identity matrix):

3
o (dev) 1.
€5 — €ij + 5519 ]{21 €kk
shape—changing - o -

volume—changing

Later, when we look more closely at isotropic linear elasticity, we will find that
the two “fundamental” elastic constants are

the bulk modulus, K, measuring elastic resistance to volume-change, and

* the shear modulus, G, measuring elastic resistance to shape-change




Geometric Aspects of Strain

Undeformed segment: Deformed segment:

Ay: deformed vector from P’ to Q
AS : length of vector = |P’Q’|
€p.>q): Unit vector pointing

in direction from P’ to Q’

AX: undeformed vector from P to Q
As : length of vector = |PQ|
€p.-q) - Unit vector pointing

in direction from P to Q

Ax = As e(P_>Q) Ay = AS e(pz_@/)
_ Q
As = |Ax| = VAx - Ax Aae e AS = |Ay| = /Ay - Ay
AX Q i) / Ay Ay

“(P=Q) = Ay °(P-Q) = Ag

< AX ,
u(x) P
X +AX 4()()
= X /\
N




Fractional Length Change:
Arbitrary Initial Direction

Undeformed: Deformed length (squared):
Ax = As e(P_>Q) (AS)Q ‘AY|2 — Ay ) Ay
= (Ax+ Au) - (Ax+ Au)

AX (As)?

M=€Pr-Q)~ As (As)2 4+ As(m - Au+ Au - m)—I—Au Au

3
m= ) me; = (AS)Q + (As) (Z my Auz + Z Aujmj) + Z AuiAu;
i=1 =1 J =1
m; = 1m: e;, 3 o
Ujg .
5. o o But, Au = 3 %Mias Same idea,
1=m -m=m?+m3+m3 j=1 9% But sum on i
3
AX = Asm <= A:L'l = Asmi = As Z 8,&1
7=1 8x]
The fractional change Finally:
in length for a line element T
initially parallel to ANY unit AS = ASJH >, 2 (G + o) mim;
. . . 1=1j5=1 J ?
vector +Im is given in terms of Ayl— |Ax|  AS - As ’
direction cosines, m,, and the ax] T As
displacement gradient components by _ 1 i 23: Qu | Oy
2 : dz; = Oz, v



Local Axial Strain in Any Direction

Strain along unit direction m: Vector components of m:

|Ay| — |AX| 13, 3. oy,

> 2 2 (&Ej T axz-)mimj {m;} = { ma }(3 « 1)

€m

m3

|
M w
M w
E
3

LmiJZ[ml mo m3J(1><3)

[Extended] matrix multiplication provides strain in direction parallel to m:

€11 €12 €13 m1
em = | m1 mo m3 | | e21 € €23 mo
1x3 €31 €32 €33 | | m3

N— s N\, 7

3%x3 3x1



Example

Suppose that the components of the strain tensor are

Find the fractional change in length of a line element initially pointing

€11 €12
€21 €22
€31 €32

€13
€23

€33

0.003 —-0.001
—0.001 -0.002
0.002 0.

Along the direction m = (e, + e, + e;) / 317

Solution: equal components m, = 1/ (3)'?

[ 1/v3 1/v3 1/V3 ]

0.003
—0.001
0.002

1
3 x 0.001 = 0.000333

0.002
0.
~0.002 |

—0.001 0.002
—0.002 0.
0. —0.002

1/v/3
1/v/3
1/v/3



Change of Basis Vectors;
Change of Components: but
No Change in Vector

Given:
* a vector v;
» 2 sets of cartesian basis vectors:

{e e, e}and{e,, e, e;}

« components of v wrt {e}: {v};
« components of v wrt {e.}: {v.} ;

3 3
vV = Zvieiz Zv;-e;-
i=1 j=1

Question: what relationships exist connecting
The components of v in the two bases?



Vector Dot Product and
Vector Components

Consider the following dot product operations:

e; -v=-ejp-(vie; + voes + vzez) = vy
/ / ! ! !/ ! /
ez - v = ej - (vie] + vpes 4 vze3) = 5

Evidently, for any basis vector (primed or unprimed)

vizei-v

J J
Thus, any vector v can be expressed as
3 3
vV = Z Vi€, = Z (v-e;)e;
=1 =1



Changing Coordinate Systems ()

Define a matrix Q; by Qij = efé €5

Q11 Q12 Q13 ej-ey ej-ex € -e3
Qij| =| Q21 Qo2 Qo3 |=|eh-e1 eh-ex € e3
Q31 Q32 Q33 e3-e1 e3-ex e3-e3
Express primed components in terms of unprimed: ,
3 3 {UZ} = [QW} {”J}
/! ! —_
= =d (3 e = 3 @y, @ !
—1 —1 . /
J J {vi} = [Qij] {vj}

Alternatively, matrix multiplication to convert vector components:

Note: the matrix

/
R Qi1 Qu2 Qi3 | | v1 [Q.]is said to be orthogonal:
vr ¢ = | Qo1 Q22 (23 V2 ! -
o Os1 Qs O v *Determinant of [Q;] = 1

3 3h a2 wad 3 *Matrix transpose is matrix inverse:

[Qij]'1 = [Qij]T = [Q]




Changing Coordinate Systems (lI)

Define a matrix Q; by

Q11 Q12 Q13 e] e e:1'62 e -e3
{Qz’j} = | @21 @22 @23 | = | €3-€1 €-e e5-e3
Q31 @32 @33 e3-€e] e3-ep €e3-e3

Express unprimed components in terms of primed:

» {vif = [Qu] {vi}
vizei-vzei-(Zvjej ZQQZU
=1 ~{Uz} — ng { }

Matrix multiplication to convert vector components:

v1 Q11 @21 @31 vy _ :
{ o } = | Q12 Qo Q3o { A } Note: the matrix
v3 | Q13 Q23 Q33 | | v3 [Q,lis said to be orthogonal:
CQ11 Q1o Qiz ] [ -Determinant of [Q;] = 1
= | Q21 Q22 Q23 v *Matrix transpose |s matrix inverse:
| Q31 Q32 Q33 vh [Q, 1= [Q IT=1Q



Transformation of
Displacement Gradient (Tensor) Components

. Ou: |
Vecto_r/vector operation (A} = Uj { ij}
(unprimed components): Oz
O, ]
Pre-multiply by [Q]: Rmil {Auip = [Qnmi 8902' {ij}
~ 0%
{Bum} [Qn)T{A})
[ Ou; T
Substitute on both sides: {Au;n} = [Qmil 8;% [an} {Aa:;l}
J _
[Ou!, /Gazn]
Vector/vector operation ou
in primed components: {Auﬁn} = [8:07’”/] {Afﬁn}
n

This must always hold so that
This procedure transforms

5‘u§n auz the cartesian components
ox! = [Qmil Q]n of any second-order
n

L j tensor, including g;




Change of Tensor Components with Respect to

Change of Basis Vectors

For each primed index, i/

and 3/, the tensor

component with respect to the primed basis

vectors, Ai/j/, IS given by

3 3
Ai/j/ — Z Z Qi’mQj’nAmn

m=1n=1

Alternatively, the complete matrix of the primed
components of the tensor can be obtained from
matrix multiplication:

Aqryr Aqror Aqry Q11 Q21 @31 A1 Ao Ags
Aoyt Agryy Ay | = | Q12 Q22 @32 Ap1 App Aoz
Az Az Aziy Q13 Q23 @33 Az1 Azp Asz

for any second-order tensor A

I

Q11 @21 @31
Q12 Q22 Q32
Q13 Q23 Q33

IT



