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Solid Mechanics in 3 Dimensions: 

stress/equilibrium, strain/displacement, and intro 


to linear elastic constitutive relations


• Geometry of Deformation 
–Position, 3 components of displacement, and [small] strain tensor 
–Cartesian subscript notation; vectors and tensors 
–Dilatation (volume change) and strain deviator 
–Special cases: homogeneous strain; plane strain 

•Equilibrium of forces and moments: 
–Stress and ‘traction’ 
–Stress and equilibrium equations 
–Principal stress; transformation of [stress] tensor components between 
rotated coordinate frames

–Special cases: homogeneous stress; plane stress


•Constitutive connections: isotropic linear elasticity 
–Isotropic linear elastic material properties: E, ν, G, and K 
–Stress/strain and strain/stress relations 
–Putting it all together: Navier equations of equilibrium in terms of displacements 
–Boundary conditions and boundary value problems 



Geometry of Deformation


•Origin : 0; Cartesian basis vectors, e1,e2, & e3 
•Reference location of material point : x; 

1, x2, x3 
•Displacement vector of material point: u(x); 
specified by displacement components, u1, u2, u3 
•Each function, ui (I=1,2,3), in general depends on 
position x functionally through its components: 
e.g., u1 = u1(x1,x2,x3); etc. 
•Deformed location of material point: y(x)=x+u(x) 

specified by its cartesian components, x



Displacement of Nearby Points 
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•Neighboring points: x and x + ∆x 
u(x) and u(x + ∆x) 

•Deformed: y(x) and y(x + ∆x) 
•Displacements: u(x) and u(x + ∆x) 
•Vector geometry: ∆y = ∆x + ∆u, 
where ∆u = u(x + ∆x) - u(x) 

∆ 

• Displacements: 



Displacement Gradient Tensor

Taylor series expansions of functions u :
i

Thus, on returning to the expression

on previous the slide, ∆u is given, for
i 
each component (i=1,..3), by Components of the displacement 

gradient tensor can be put in matrix 
form: 



Displacement Gradient and

Extensional Strain in Coordinate Directions


Suppose that ∆x = ∆x1 e1; 
Then, with ∆y = ∆x +  ∆u, 
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The fractional change in length 
(extensional strain) of a material line 
element initially parallel to x1 axis is 
∂ u1 / ∂ x1 ; similar conclusions apply for 
coordinate directions 2 and 3




Displacement Gradient and Shear Strain


•Let QR = ∆x1 e1 & QP =∆x2e2 
•Line segments initially perpendicular
•Deformed lines: Q’R’ & Q’P’ 
•|Q’R’| = | ∆x1|(1 + ∂ u1/∂ x1) 
•|Q’P’| = | ∆x2|(1 + ∂ u2/∂ x2) 

The total reduction in angle

of 2 line segments initially perpendicular

to coordinate axes 1 and 2 is


Similar results apply for all axis pairs 



Strain Tensor (I)


The cartesian components of the [small] strain tensor are given, 
for i=1..3 and j=1..3, by 

Written out in matrix notation, this index equation is


•Each of the 9 components in the 3 × 3 matrices on each side of the 
matrix equation are equal, so this is equivalent to 9 separate equations. 

•The strain tensor is symmetric, in that, for each i and j, εij = εj;i 



Strain Tensor (II)


The cartesian components of the [small] strain tensor are given, 
for i=1..3 and j=1..3, by 

Written out in matrix notation, this index equation is


•Diagonal components of the strain tensor are the extensional strains along 
the respective coordinate axes; 
•Off-diagonal components of the strain tensor are ½ times the total reduction 
in angle (from π/2) of a pair of deformed line elements that were initially 
parallel to the two axes indicated by the off-diagonal row and column number 



Fractional Volumetric Change


For any values of the strain tensor components, εij,

the fractional volume change at a material point, sometimes called

the dilatation at the point, is given by


This relation holds whether or not the values of ε11, ε22, 
and ε33 equal each other, 
and whether or not any or all of the shear strain components 
(e.g., ε12=ε21) are zero-valued or non-zero-valued. 

The sum of diagonal elements of a matrix of the cartesian components of 
a tensor is called the trace of the tensor; thus, 
the fractional volume change is the trace of the strain tensor. 



Strain Deviator Tensor

Components of the strain deviator tensor, 
are given in terms of the components of 
the strain tensor by 

Here δij are components of the Kronecker identity matrix, 
satisfying δij =1 if i=j, and δij =0 if i is not equal to j 

•Off-diagonal components of the strain deviator tensor equal corresponding 
off-diagonal components of the strain tensor; 
•Each diagonal component of the strain deviator tensor differs from the 
corresponding diagonal component of the strain tensor by 1/3 of the trace 
of the strain tensor 

Exercise: evaluate the trace of the strain deviator tensor. 



Strain Decomposition

Alternatively, the strain tensor can be viewed as the sum of 

•a shape-changing (but volume-preserving) part (the strain deviator)
Plus 
•a volume-changing (but shape-preserving) part (one-third trace
of strain tensor times identity matrix): 

Later, when we look more closely at isotropic linear elasticity, we will find that 
the two “fundamental” elastic constants are 
•the bulk modulus, K, measuring elastic resistance to volume-change, and 
• the shear modulus, G, measuring elastic resistance to shape-change 



Geometric Aspects of Strain


Undeformed segment: 

∆x: undeformed vector from P to Q

∆s : length of vector = |PQ| 

e(P->Q) : unit vector pointing 


in direction from P to Q 

Deformed segment: 

∆y: deformed vector from P’ to Q’ 
∆S : length of vector = |P’Q’| 
e(P’->Q’) : unit vector pointing 

in direction from P’ to Q’ 
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Fractional Length Change:

Arbitrary Initial Direction


Undeformed: Deformed length (squared): 

But, 

Finally:The fractional change 
in length for a line element 
initially parallel to ANY unit 
vector ± m is given in terms of 
direction cosines, mi, and the 
displacement gradient components by 

Same idea, 
But sum on i 



Local Axial Strain in Any Direction


Strain along unit direction m: Vector components of m: 

[Extended] matrix multiplication provides strain in direction parallel to m: 



Example


Suppose that the components of the strain tensor are 

Find the fractional change in length of a line element initially pointing 
Along the direction m = (e1 + e2 + e3) / 31/2 

Solution: equal components m = 1 / (3)1/2
i 



Change of Basis Vectors; 

Change of Components: but


No Change in Vector


Given: 
• a vector v; 
• 2 sets of cartesian basis vectors: 
{ e1, e2, e3} and {e1’, e2’, e3’} 

• components of v wrt {e }: {v } ;i i
• components of v wrt {e ’}: {v ’} ;i i

Question: what relationships exist connecting 
The components of v in the two bases? 



Vector Dot Product and

Vector Components


Consider the following dot product operations: 

Evidently, for any basis vector (primed or unprimed)


Thus, any vector v can be expressed as 



Changing Coordinate Systems (I)

Define a matrix Qij by 

Express primed components in terms of unprimed: 

Alternatively, matrix multiplication to convert vector components: 

Note: the matrix 
[Qij]is said to be orthogonal: 
•Determinant of [Qij] = 1 
•Matrix transpose is matrix inverse:
[Qij]-1 = [Qij]T = [Qji] 



Changing Coordinate Systems (II)

Define a matrix Qij by 

Express unprimed components in terms of primed: 

Matrix multiplication to convert vector components: 

Note: the matrix 
[Qij]is said to be orthogonal: 
•Determinant of [Qij] = 1 
•Matrix transpose is matrix inverse:
[Qij]-1 = [Qij]T = [Qji] 



Transformation of 

Displacement Gradient (Tensor) Components


Vector/vector operation

(unprimed components):


Pre-multiply by [Q]: 

Substitute on both sides: 

Vector/vector operation 
in primed components: 

This must always hold so that 
This procedure transforms 
the cartesian components 
of any second-order 
tensor, including εij 



Change of Tensor Components with Respect to

Change of Basis Vectors 

for any second-order tensor A 


