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1 1st Order Systems

1.1 First Order Time Constant

This problem concerns the first-order response shown in Figure 1.1.1.

Amplitude

|
0 0.1 0.2 0.3 0.4 0.5 0.6

Time (sec.)

Figure 1.1.1: Plot of Response

(a) What is the time constant of this response? (You can work directly on the given time response
plot and turn this in as part of your homework.)

(b) Show us a mechanical system which will give this response, under the assumption that the
indicated response is angle in radians. What are possible numerical values of the system
parameters and initial conditions that go with this response? Be sure to show your reasoning.

13



1.2 Rise and Settling Times
Consider the first-order system
ity =u

driven with a unit step from zero initial conditions. The input to this system is u and the output
is y. Derive expressions for the 10-90% rise time ¢, and the settling time ts, where the settling is
to within an error £A from the final value of 1. How many time constants are required in order to
settle to within an error of A = 10767

14



1.3

First Order System Response

You are given an equation of motion of the form:

¥+ by = 10u
What is the time constant for this system?

If w = 10, what is the final or steady-state value for y(¢)? Now assume that u = 0 (no input)
and the system was started at some initial position y,, which you do not know. But, you do
know that 0.5 seconds later it was at a position y(0.5) = 2.

What was the initial condition y(0) that would lead to this result?

Sketch as accurately as you can, the time response for case (c) starting from ¢ = 0 until the
response is nearly zero, and indicate where the one data point at ¢ = 0.5 would lie.

When does the response reach 2% of the initial value?

When does the response reach a value of 0.027

15



2 2nd Order Systems

2.1 Second-Order System Response

For a system described by the homogenous equation:
203 + 160y + 8000y = 0

Determine the solution y (t) for three different initial conditions:

(d) For all three cases, create a separate plot of y(t) using MATLAB, but be sure to use the same
scale on all three plots.

(e) Compare the time for each of the three plots to reach steady-state. Comment on how you
can make this comparison and why the three answers do or do not differ.
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2.2 Second Order Responses

This problem concerns the second-order response shown in Figure 2.2.1.

300 T T

200

100

8
2
2
& of
-100
-200
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (sec.)
Figure 2.2.1: Second Order Response
3
2
2
5
<<

L
0 0.05 0.1
Time (sec.)

Figure 2.2.2: Zoomed Second Order Response

(a) What are the natural frequency and damping ratio of this response? (You can work directly

17



on the given time response plot and turn this in as part of your homework paper.)

(b) Show us a mechanical system which will give this response, under the assumption that the
indicated response is position in millimeters. What are possible numerical values of the system
parameters and initial conditions that go with this response? Be sure to show your reasoning.

18



2.3 Second Order Derivation

The supplemental notes handed out in class give results for the position response of a second-order
system to an initial condition of g = 0 and vy = 1 for the underdamped, critically damped, and
overdamped cases, in Equations (15), (16), and (17), respectively. However, these results are given
without showing the derivation. Carry out the detailed calculations to verify these homogeneous

responses.
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2.4 Second Order Derivation Continued

Repeat the results of Problem 2.3 for the different initial condition zg = 1 and vy = 0, showing
the details of your derivation, as well as an expression for the position as a function of time for the
underdamped, critically damped, and overdamped cases. Use Matlab to plot the resulting position
as a function of time for each of the parameter sets of values used in Figures 15, 16, and 17.
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3 Higher Order Systems

3.1 Structure of Higher Order System Solutions

As we will see later in the term, the ship roll stabilizer problem can lead to an equation of motion
that is 4th order:

dx d3x d*x d’x

GA@ + G3ﬁ + a2ﬁ + G2W

Where x would be the roll angle and u the desired stabilizer fin angle. Right now all we want
to do is understand the basic nature and range of possible homogeneous solutions for this type of
equation. For this problem we will not use LaPlace transforms, but instead rely on what we already
know about homogeneous solutions for linear ordinary differential equations. Assuming that u=0,
consider three different sets of parameters . a = a4 a3 a2 al a0 [|: Case I: . a =110 35 50 24 |
| Case IT: . a =18428550 ] Case III: . a =17 135 550 2500 | ] Assuming that only x(0) is

non-zero:

+ apx = bu(t)

(a) For each case, write out the basic form of the homogeneous solution where m is the number
of complex conjugate root pairs and n-2m is the number of real distinct roots, leaving any
real coefficients as undetermined variables.

(b) Describe (Briefly in words!) the resulting characteristic response.
(c) Sketch an approximation of what it will look like, but do not solve for the ci or cj coefficients.

HINT: You might find it useful to use the MATLAB command roots(a), which will find the roots
of a polynomial whose coefficients are in a vector a.
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3.2 Structure of Higher Order System Solutions

As we will see later in the term, the ship roll stabilizer problem can lead to an equation of motion
that is 4th order:

dx d3x d*x d’x

04@ + a3ﬁ + G2W + GZW

where x would be the roll angle and u the desired stabilizer fin angle. Right now all we want

to do is understand the basic nature and range of possible homogeneous solutions for this type of

equation. For this problem we will not use LaPlace transforms, but instead rely on what we already

know about homogeneous solutions for linear ordinary differential equations. Assuming that u=0,
consider three different sets of parameters. a = [a4, a3, a2,al,a0] :

+ apz = bu(t)

Case I: a =[1 10 35 50 24|
Case II: a = [1 8 42 85 50]
Case III: a = [1 7 135 550 2500]

Assuming that only x(0) is non-zero:

(a) For each case, write out the basic form of the homogeneous solution where m is the number
of complex conjugate root pairs and n-2m is the number of real distinct roots, leaving any
real coefficients as undetermined variables.

(b) Describe (briefly in words!) the resulting characteristic response.
(c) Sketch an approximation of what it will look like, but do not solve for the ¢; or ¢; coefficients.

HINT: You might find it useful to use the MATLAB command roots(a), which will find the roots
of a polynomial whose coefficients are in a vector a.
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4 Mechanical Systems

4.1 Balloon

A string dangling from a helium-filled balloon has it’s free end resting on the floor as shown in Fig.
4.1.1. As a result the balloon hovers at a fixed height off the floor and when it is deflected a little
from that height it oscillates up and down for a while, eventually returning to the same height.
Develop the simplest mathematical model competent to describe the vertical motion of the balloon.
You may take all the elements of your model to be linear. Show that your model is competent to
describe the observed hovering behavior.

Balloon

inot attached
to the floor)

Figure 4.1.1: Hovering Balloon

(a) Show that your model has a steady state.

(b) Show that displacement from the steady state evokes a restoring force. What is the equivalent
stiffness parameter?

(c) Show that your model could predict oscillation about the steady state.

(d) Show that your model predicts that the motion will eventually approach the steady state.

The balloon is released from rest at a small distance a above its steady-state height of 3.0 feet.
After the first half-cycle of oscillation, which takes 1.5 seconds, the balloon is at a point 0.2a below
the steady-state height,with an instantaneous velocity of zero. The string is known to weigh 0.5
ounces per foot. Use these data to estimate the following behavioral parameters:

(e) the damping ratio (;
(f) the undamped natural frequency wy;
and the following model element parameters:

(g) the effective mass m;
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(h) the effective damping coefficient b;

(i) the effective stiffness k.
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4.2

Bungee Jumper

A bungee jumper weighs 150 pounds. Bungee cords attached to her ankles have a slack length of
100 feet. She dives off a high tower, the elastic cords extend and instantaneously arrest her motion
at a lowest point A (well above the ground). The cords then retract and she bounces through
several cycles before finally coming to rest at a point B, where her ankles are 120 feet below the
upper attachment point of the bungee cord.

(a)
(b)

()

(d)

Estimate the location of the low-point A.

During the portion of her jump from the initial take-off to the point A, estimate her maximum
downward acceleration?

During the portion of her jump from the initial take-off to the point A, estimate her maximum
upward acceleration.

Briefly explain the assumptions made in obtaining the previous estimates.

Seeking an ever-greater thrill the jumper doubles the slack length of the bungee cords(the new
lowest point A’ of her jump is still comfortably above the ground). For this second jump

(e)

Estimate the location of the low-point A’.
Estimate the location of B’ where she finally comes to rest.

During the portion of her jump from the initial take-off to the point A’, estimate her maximum
downward acceleration?

During the portion of her jump from the initial take-off to the point A’, estimate her maximum
upward acceleration?

Make a careful sketch of the time histories of vertical position during the initial downward
phase (from initial take-off to point A , or A’) for the two jumps.Use the same time and
position axes for both curves.
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4.3 Elevator Model

@ T

Velocity

3 ft/sec

ol 1 sec Time

Figure 4.3.1: Elevator Dynamics

An elevator (Fig.4.3.1) is designed to move between floors as follows: starting at rest it accelerates
to a speed of 3 feet/second in 1 second, then moves at a constant speed until it decelerates to rest
in 1 second. Would it be reasonable to design the structure supporting the winch motor (and hence
the elevator) without considering dynamic forces? That is, does dynamics matter in this situation?
Provide a quantitative justification for your answer. Work in SI units.
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4.4 Hoisting for Engineers

R— Gear

Sl

Combined inertia of gear and drums J

Pulley P

Neglect Friction
Rigid base fixed to ground

Figure 4.4.1: Hoisting Mechanism

Figure 4.4.1 shows a mechanism for hoisting a mass M up a plane inclined at an angle § to the hor-
izontal. The massless hoisting cable rolls with no slip over a pulley P and over two drums (of radii
r1 and r2) attached rigidly to a gear of radius R. The combined inertia of the gear and the drums is J.

A motor drives the pinion of radius r with an input torque 7. The transmission ratio of the gear
drive is N,/ N, where N, and N, are the number of teeth on the gear and the pinion respectively.
Note that this ratio is the same as R/r-

The system is mounted on a rigid base fixed to the ground. To simplify our model, we neglect (i)
friction, (ii) inertia of the motor and the pinion and (iii) mass and inertia of the pulley P. The
cable remains under positive tension at all times. X is positive when measured upward along the
inclined plane as shown in the figure. Gravity acts on the system in the downward direction.

(a) If the pinion rotates by an angle € in the clockwise direction as shown in the figure, show that
the mass M moves up the inclined plane by a distance X given by

X:% (r+12) = 0 (1)

==

Clearly show your reasoning.

(b) Derive the equation of motion for the system. Use and show appropriate free body diagrams
showing all the forces and torques acting on

(i) the pinion

(ii) the gear and drum unit
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(iii) the pulley P and (iv) the mass M.
Your answer must be a differential equation in X alone, with 7 and ¢ as inputs.

Given the values R = 400 mm, ro = 300 mm, r; = 200 mm, r = 50 mm, M = 50 kg, g =
9.8 m/s?, B = 30°, and J = 5 kgm?, what value of torque 7 should be applied to the pinion
by the motor so that the mass M has an acceleration of 0.1g up the inclined plane?

Now consider the system in Part (d) without the gear transmission drive. The drums are
driven directly by the motor in this new system. J, in this case, is the combined inertia of
the motor and the drums. If the value of J remains unchanged, calculate the value of torque
7 that should be applied to the drums by the motor to achieve the same acceleration of 0.1 g
for the mass M.

Assuming that the cost of a motor is proportional to its torque output rating, does your
answer in Part (d) support the use of the gear transmission drive? Explain.
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4.5 Blocked Springs

Figure 4.5.1 depicts the main components of the suspension for one wheel of an automobile. To
change the ride and handling qualities, automobile enthusiasts sometimes insert ”blocks” between
some of the coils of the spring to prevent that part of it from deflecting. Consider the case where
“blocks” are added to immobilize exactly half of the coils of each spring. Assume that:

A ©(— point of attachment
' to car body

‘D
o
lo <«—— coil spring

shock absorber

A AA

fen
Ty

wheel hub

< tire

Figure 4.5.1: Automobile Suspension

All four wheels are identical and have identical suspensions.
The car moves vertically as a rigid body.
The tire deflections are negligibly small compared to the spring deflections.

The shock absorbers exhibit linear viscous behavior.

(In practice these assumptions are not especially accurate but they will keep the analysis simple
and provide insight to the behavior of the suspension.)

It is known that the vehicle weighs 2,500 pounds, and that before the blocks were added the
suspension was critically damped ({ = 1). After the blocks were added, the ride height was changed
by 2.5 inches. Use these data to estimate the following parameters. Work in SI units.

(a) The suspension stiffness before, and after, the blocks were added.
(b) The undamped natural frequency of oscillation before, and after, the blocks were added.

(¢) The suspension damping coefficient before the blocks were added.
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(d) The suspension damping ratio after the blocks were added.

Write state equations and output equations to compute the response to an abruptly applied vertical
load of 1,000 pounds. Adapt the MATLAB scripts below to provide plots of the vertical displace-
ment of the vehicle from its resting height vs. time, for (i) the suspension without blocks, and for
(ii) the suspension with blocks added.

eqpos.m
Download

% ’eqpos.m’ Provides equation of motion for plate on springs
% to be integrated by script POS.m

function Xdot = eqpos(t,X)
global m k b fa
Xdot = [0 1 ; -k/m -b/m I1*X + [ 0 ; fa/m 1;

pos.m
Download

% °P0S.m’> A MATLAB script for Plate On Springs. Produces plots of

% (i) position vs. time

% (ii) velocity vs. time

% (iii) velocity vs. position

% for the response of a steel plate on springs, with mass m, stiffness k,

% and damping parameter b, when the plate starts from initial conditions

% y = y0 and v = vO under the action of a suddenly applied force fa at t = 0.

clear variables

global m k b fa

% Input parameters

m = input (’Enter the mass "m" in kilograms ’);

k = input(’Enter the stiffness "k" in Newtons/meter ’ );

b = input (’Enter the damping constant "b" in kilograms/sec ’);

fa= input (’Enter the magnitude "fa" of the suddenly applied force in Newtons ’);
% Input initial conditioms.

yO= input (’Enter the initial displacement from equilibrium, in meters ’);
vO= input (’Enter the initial velocity, in meters/second ’);

tspan = input(’Enter the duration "T" of the desired time history, in seconds ’);
X0 =[yo ; v0 1;

% Integrate equations of motion

[t,X] = ode45(’eqpos’, tspan, XO0);

% Plot results

plot(t,X(:,1)), title(’Time History of Displacement’),

xlabel(°Time [Seconds]’), ylabel(’Displacement [meters]’), pause
plot(t,X(:,2)), title(’Time History of Velocity’),

xlabel(°Time [Seconds]’), ylabel(’Velcity [meters/second]’), pause
plot(X(:,1), X(:,2)), title(’Velocity vs. Displacement’),
xlabel(’Displacement [meters]’), ylabel(’Velcity [meters/second]’)
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4.6 Engine Vibration

A single piston weighs 1 pound and oscillates at frequency € with a total stroke (top to bottom of
piston travel) of 2 inches.

(a) Assuming that the piston motion is sinusoidal, calculate the amplitude of the sinusoidal force
that is required to move the piston at the following crankshaft speeds in revolutions per
minute (rpm):

= 1500 rpm
3000 rpm
= 6000 rpm

222
|

The piston in (a) is assumed to be part of an engine, which weighs 200 pounds,and which is sup-
ported on a fixed frame by mounts which have an effective stiffness (for vertical motion) of 18,000
pounds/inch, and an effective linear damping coefficient of 2pounds/inch/sec. The oscillating forces
considered in (a) are forces acting on the piston. By Newton’s law of action and reaction, equal and
opposite forces act on the engine block whenever the crankshaft rotates at the speeds considered.
The rest of the problem is devoted to estimating how much vibration of the engine block results
from the action of one piston.

(b) Formulate an equation of motion for the engine block in which the output is the displacement
of the engine block, and the input is the reaction force from the motion of one piston.

(c¢) Derive expressions for the amplitude and phase of the steady-state displacement response to
piston reaction forces of the form f(t) = f, sin Q.

(d) Estimate the amplitude of the engine block displacement, due to the motion of one piston,
when the engine operates at

= 1600rpm
1800rpm
= 2000rpm

N
N
N

(e) If these three speeds are generated by starting with the engine block at rest,in equilibrium,
and then immediately rotating the crankshaft at the full indicated speed,estimate how long
it would take the engine block, in each case, to reach steady state vibration.
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4.7 Garage Door

Side View of Garage Door support

cable attached to fixed support

pulley

coil spring

chain drive to raise
door not shown

Aor in four

hinged segments

cable attached to
lowest door segment

track to guide
door segments

Figure 4.7.1: Schematic of Garage-Door-Support System

Figure 4.7.1 shows a side view of one side of the support mechanism used in many garage-door
openers. On each side of the garage door a portion of the weight of the door is supported by a
long coil spring attached to the door through a cable and pulley system. It was observed, after the
mechanism was recently serviced and freshly lubricated, that the suspended door had a tendency
to oscillate up-and-down when disturbed.

Figure 4.7.2: Simplified Schematic of Garage-Door-Support System
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Figure 4.7.2 shows a simplified schematic of one-half of the door support system. Half of the total
door inertia is coupled to one of the overhead springs by the pulley system . Take the total weight
of the door to be 200 pounds and the stiffness of each spring to be 5 pounds/inch.

(a) Formulate a model to analyze the oscillations of the door.
(b) Estimate the frequency, in Hz, of the oscillations.

(c¢) List the main assumptions underlying your model.
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4.8

Rotating Damped

Consider the rotor with moment of inertia I rotating under the influence of an applied torque 7" and
the frictional torques from two bearings, each of which can be approximated by a linear frictional
element with coefficient B (Fig. 4.8.1).

(a)

(b)

T

B /o) B
0)
J I

Figure 4.8.1: Rotating Inertia

Formulate the state-determined equation of motion for the angular velocityw as output and
the torque T as input.

Consider the case where:

I = 0.001 kg-m?
B = 0.005 N-m/r/s

What is the steady-state velocity wss when the input is a constant torque of 10Newton-meters?

When the torque T varies sinusoidally at a frequency €2, the steady-state angular velocity
also varies sinusoidally at frequency §2. Derive a formula for the steady-state angular velocity
when T = T,sinQt. Evaluate the steady-state angular velocity response for the following
cases:

(i) T = 10sin(50t) Newton-meters

(ii) T = 10sin(5t) Newton-meters

(iii) T = 10sin(0.5¢) Newton-meters
Consider the amplitudes A(Q2) of the steady-state angular velocity response as the frequency

Q) approaches zero. What is the limiting amplitudeA, as Q@ — 07 Evaluate the ratio A(Q)/A4,
for Q = 50 rad/sec, Q = 5 rad/sec, and Q = 0.5 rad/sec.

What is the break frequency of this system?

Make an accurate, labeled, sketch of the Bode plots for the amplitude ratioA(£2)/A, and the
phase angle ¢(Q) of this system.
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4.9 Car Suspension 1

For the second-order car suspension model shown in Figure 4.9.1, perform the following tasks:

(a) Solve for the unit step response from zero initial conditions. Write an expression for the
response as a function of time, and use Matlab to graph this response. For this problem, use
the parameters: m = 500 kg, k = 5 x 10* N/m, and ¢ = 2 x 10> Ns/m.

(b) For these parameters, the system will be underdamped. What are the values ofw,, (, wq,
and o?

(c) Comment on the quality of the response to the step. Will the passengers like this ride? For
what value of ¢ would the system have critical damping? Recalculate the step response for
this critical value of damping, and compare the maximum resulting acceleration experienced
by the passengers to the underdamped case.

(d) Compare the 5% settling time for both cases.

(e) Use a Laplace transform approach to solve for the time response. Of course, this result should
be the same as what you found in part (a).

E‘ to car body
o 4; shock absorber

> <«—— coil spring

wheel hub

tire

Figure 4.9.1: Car Suspension
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4.10 Disk Drive

Figure 4.10.1: Picture of Hard Disk drive

A hard disk drive as shown in Figure 4.10.1 has two main components:

1. The head/arm assembly which moves the read/write heads laterally over the disk surface to
the desired tracks. The arm is driven by a voice coil motor.

2. The spindle/disk assembly which is driven by a permanent magnet spindle motor which
rotates at near constant speed.

This problem studies the spin-up/spin-down transients of the spindle assembly. Assume that the
spindle assembly has a rotational inertia J, and that the motor acts as a source of torque 7,,,, which
is constant independent of speed. Further assume that we can model the air drag acting on the
spindle as linearly dependent upon the angular velocity w, with a rotational damping coefficient b.

(a) For this system draw a free body diagram for the spindle inertia J showing the torques acting
on it.

(b) Use this free body diagram to derive a differential equation in terms of the spindle angular
speed w, an input torque 7,,, and using the parameters given above.

(c) Now assume that the spindle inertia is 1072 kgm?. (This is a big disk drive from an older
computer!) We experimentally observe that the disk spins down with a time constant 7 = 0.5
sec. What is the numerical value of the associated damping term b7

(d) Finally, assume that the disk is initially at rest at ¢ = 0, is spun up by the motor using a
constant torque of 0.5 Nm. What is the resulting transient w(t)? Make a dimensioned graph
of this response.
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(e) After a long time, at ¢ = t;, the motor is turned off and exerts no torque on the spindle.
Write an expression for w(t) for ¢ > t1, and make a dimensioned graph of the response.

37



4.11 Crashworthiness

o

m

OO

Figure 4.11.1: Model of Vehicle Impacting a Barrier

A vehicle weighing 1 ton is driven into a fixed concrete barrier at 10mph. The vehicle’s fender,
which strikes the barrier first, is of the type that can deform under this load and return to its
original shape (undamaged) when it is unloaded. If the fender were unable to dissipate energy, its
maximum deflection would be 6 inches.

(a) Estimate the effective stiffness of the fender.

(b) Estimate the peak deceleration of the vehicle in SI units.

To absorb collision energy, linear dampers are added to the fender. Write state equations and
output equations to predict the dynamics of the vehicle-fender system while the fender is in contact
with the barrier. The outputs should include:

(i) The deflection of the fender.
(ii) The deceleration of the vehicle.

(iii) The total force exerted on the barrier.

Adapt the MATLAB script “pos2.m” and “eqpos2” shown below to integrate these state equations
to find the response of these outputs starting from the moment the fender first contacts the barrier.
Make plots of the time histories of these three outputs for the following values of the damping ratio

(c) (=0.25
(d) ¢ =0.50
(e) ¢ =0.75
(f) ¢ =1.00
(g) In which, if any, of the cases (c) through (f) does the fender remain in contact with the barrier

after the impact is over?

(h) Can the peak deceleration of a vehicle with a fender with damping ever be greater than the
peak deceleration of a vehicle with an undamped fender? Give a brief physical explanation
for your answer.

(i) In which of the cases (c) through (f) is the peak deceleration the greatest?

(j) Estimate the value of the damping ratio ¢ which would minimize the peak deceleration.
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eqpos2.m
Download

% ’eqpos2.m’ Provides equation of motion for plate on springs
% to be integrated by script P0S.m

function Xdot = eqpos2(t,X)
global m k b fa
Xdot = [0 1 ; -k/m -b/m 1*X + [ 0 ; fa/m 1;

pos2.m
Download

% °P0S2.m’> A MATLAB script for Plate On Springs. Produces plots of

% (i) position vs. time

% (ii) velocity vs. time

% (iii) velocity vs. position

% for the response of a steel plate on springs, with mass m, stiffness k,

% and damping parameter b, when the plate starts from initial conditions

% y = y0 and v = vO under the action of a suddenly applied force fa at t = 0.

clear variables

global m k b fa

% Input parameters

m = input (’Enter the mass "m" in kilograms ’);

k = input(’Enter the stiffness "k" in Newtons/meter ’ );

b = input (’Enter the damping constant "b" in kilograms/sec ’);

fa= input(’Enter the magnitude "fa" of the suddenly applied force in Newtons ’);
% Input initial conditioms.

yO= input(’Enter the initial displacement from equilibrium, in meters ’);
vO= input (’Enter the initial velocity, in meters/second ’);

tspan = input(’Enter the duration "T" of the desired time history, in seconds ’);
X0 =[yo ; v0 1;

% Integrate equations of motion

[t,X] = ode45(’eqgpos2’, tspan, X0);

% Plot results

plot(t,X(:,1)), title(’Time History of Displacement’),

xlabel(’Time [Seconds]’), ylabel(’Displacement [meters]’), pause
plot(t,X(:,2)), title(’Time History of Velocity’),

xlabel(’Time [Seconds]’), ylabel(’Velcity [meters/second]’), pause
plot(X(:,1), X(:,2)), title(’Velocity vs. Displacement’),

xlabel (’Displacement [meters]’), ylabel(’Velcity [meters/second]’)
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4.12 Nonlinear Rotational System

Figure 4.12.1 shows a rotational inertia and damper system. The moment inertial of the rotor is
I. The damping torque from the damper is a nonlinear function of angular velocity,T.(w) = aw? .
For each of three inputs (i) 71 = 1, (ii) 72=8 and (iii) 73=64

Find the equilibrium point @

b) Derive a linearized model about the equilibrium point

(a)
(b)
(c) Solve for roots and plot them on the complex place.

(d) Plot the response of w for step input 7 = 7;(1 + 0.01us(t)).

T, input o, output

4

Figure 4.12.1: Nonlinear Rotational System
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4.13 Developing Differential Equations

T, input 0, output

S S S S S S S S S S S

(i): Rotational system

X, output
F, input
K, K,
% % BV e AVAVe

= —|
1= —|

C, O QO C,

T T 77 77777777

(ii): Translational system

Figure 4.13.1: System Figures

For each of the systems shown in Figure 4.13.1:

(a) Separate the system at a node or nodes into a free body diagram to show the forces acting
on each element.

(b) Use the free body diagram to develop a differential equation describing the system in terms
of the indicated input and output. For each system, what is the system order?
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4.14 Mass Spring System Frequency Response

F

m _VC

/S S S S S S

Figure 4.14.1: Mass Spring System

In this problem, m =1 [kg], K = 100 [N/m] and F(t) = sinwt [N].

(a) Calculate an expression for the steady-state response z(t) = M sin(wt 4 ¢), with expressions
for M(w) and ¢(w).

(b) Make hand sketches of M (w) versus w on log-log coordinates and ¢(w) versus w on semi-log
coordinates (linear in phase and log in frequency).
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4.15 Modeling Practice

This problem concerns the spring-mass-damper system shown in Figure 4.15.1.

l Position input w(t)

[—— 1 ky

‘l Mass position x(t)
[
l g

Figure 4.15.1: Sprin-Mass-Damper System

In this figure, gravity acts on the mass in the downward direction as shown. The position of the
mass in the downward direction is x(t). A force F' acts on the mass in the upward direction. The
upper spring and damper are connected to a position source w(t). That is, the position w(t) is
specified as in independent input. The position z is defined to be zero when gravity is not acting
on the mass, and when the applied inputs are zero.

a) Draw a free-body diagram for the mass which shows all the forces and associated reference

D free-body di for th hich sh 1l the f d iated refi
directions acting on the mass. Be sure to label the forces with their dependence on the system
position/velocity variables (if any).

(b) Use this free-body diagram to derive a differential equation in terms of x and the system
parameters and inputs which describes the dynamics of this system.
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4.16 Small Motion Transfer Function

For the system shown in Figure 4.16.1, calculate the transfer function X (s)/F(s), under the as-
sumption of small motions. Clearly show the steps in your derivation. The massless linkage has
lever arms l; and Iy as shown.

k

Figure 4.16.1: Small Motion System
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4.17 Mass Spring Damper System Frequency Response 1
lF
m, —¢ X

k A b

/S S S S SS

Figure 4.17.1: Mass Spring Damper System

In this problem, m =1 [kg], K = 100 [N/m], b = 1 [Ns/m] and F(t) = sinwt [N].

(a) Calculate an expression for the steady-state response z(t) = M sin(wt 4 ¢), with expressions
for M(w) and ¢(w).

(b) Make hand sketches of M (w) versus w on log-log coordinates and ¢(w) versus w on semi-log
coordinates (linear in phase and log in frequency).
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4.18 Mass Spring Damper System Frequency Response 2

Consider the mechanical system shown in Figure 4.18.1. Note that F' acts on my in the direction

of x1.
X
m —T ?

k. M b
m, _Tx]
k] F 7l b1

/S S S S SS

Figure 4.18.1: Mass Spring Damper System

(a) Calculate the transfer functions Hi(s) = Xi(s)/F(s) and Ha(s) = Xa(s)/F(s) in terms of
the given parameters.

(b) Now let m; = 25 [kg], ma = 1 [kg], k1 = 100 [N/m], ks = 10* [N/m] and b = by = 1
[Ns/m]. Use MATLAB to plot the Bode plots for H; and Hj. Also plot the poles/zeros for
both transfer functions. Relate features on the Bode plots to the pole/zero locations and the
damping ratio of the poles and zeros. For a unit sinusoidal input F'(t), at what frequency
is the motion on m; a relative maximum? What is the magnitude of motion on ms at this
frequency? For a unit sinusoidal input F'(t), at what frequency is the motion on m; a relative
minimum? What is the magnitude of motion on ms at this frequency?
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4.19 Propeller Shaft Vibration

This is a different kind of vibration problem for the light aircraft engine we have been considering.
Previously, we considered uniaxial translation of the engine block due to the inertia loading from
accelerating pistons. We now consider oscillations in the rotational speed of the propeller due to
torsional vibration of the short elastic coupler shaft connecting the propeller to the crankshaft. The
source of the oscillation is the fluctuating speed generated by the reciprocating engine.

Periodic firing of the cylinders in an internal combustion engine causes its rotational speed to vary
periodically. One stroke of a piston is one move from top dead center to bottom dead center (or
from bottom to top). In a four-stroke engine, three strokes are used to clear out the products of
combustion from the previous firing, let in fresh air and fuel, and compress the mixture prior to
firing. It is only in the fourth stroke that the explosion occurs and a very large force on the piston
exerts torque around the axis of the crankshaft. Ina four-cylinder engine the resulting torque on the
crankshaft is smoothed out considerably by arranging it so that one cylinder fires on every stroke.
The remaining fluctuation in torque, when applied to the inertia of the crankshaft, results in a
fluctuation in the output speed of the engine, which varies in an approximately sinusoidal manner
at the firing frequency, which is half the rotational frequency of the crankshaft. It is this periodic
engine speed fluctuation which excites the torsional vibration.

Consider the case of a four-cylinder 150 horsepower engine which operates between 500 and 2700
rpm. The moment of inertia of the two-bladed propeller can be estimated to be the same as that of
a uniform solid rod of aluminum, six feet long and two inches in diameter (the density of aluminum
is 2.72grams/cc). It is observed that the steady-state oscillations of propeller speed at the firing
frequency reach a peak amplitude when the engine runs at2200 rpm. Furthermore the magnitude
of the oscillation at 2200 rpm is four times larger than the magnitude at 500 rpm.

(a) Develop a model to describe the steady-state fluctuations in propeller speed(output) in re-
sponse to the fluctuations in engine speed (input). To keep the analysis simple, assume that
the amplitude of the engine-speed fluctuations delivered to the coupler shaft are independent
of the engine speed, so that in the steady state the angular position 0.,, and the angular
speed wepgof the engine can be assumed to take the form

Q
Ocng = St +esin §t
€ Q
Weng = Q1+ 3 cos 515)

(b) Use your model to estimate the torsional stiffness K of the elastic coupler shaft.
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4.20 Safe Packaging

A packing crate was designed to protect a fragile instrument during shipment. Assuming that the
packing material can be modeled as an ideal linear spring of stiffness, k , in parallel with an ideal
linear damper, b , and that the instrument and crate are of mass, my and mo , respectively, the
system can be modeled as shown in Figure 4.20.1A.

Packi g
Crate\ N?:terilfl + my + g
b £ k | Lo m _* v(0)=Vo
i ) o | Lorto
Y/ e
A B C

Figure 4.20.1: Shows actual system and two models of the situation.

The packing crate (with instrument inside) is dropped from a height, h , as shown in Figure 4.20.1B.
The height is sufficiently large that by the time the crate hits the ground, the spring is fully extended
to its unloaded length, L, , as shown in Figure 4.20.1C. Note that the crate hits the ground with
velocity, V, , and in the presence of gravity.

(a) Derive the differential equation for the system. Clearly indicate the initial conditions, and
any inputs present.

(b) For what values of, b , will the instrument oscillate?

(c) Assuming that the instrument does oscillate, derive an analytical expression for the complete
solution.
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4.21 Sliding Damped

Consider the mass m sliding horizontally under the influence of the applied force f and a friction
force which can be approximated by a linear friction element with coefficient b (Fig. 4.21.1.

—)

/ Friction, b

ROBOBOBOEOLODOO

Figure 4.21.1: Sliding Mass

(a) Formulate the state-determined equation of motion for the velocityv as output and the force
f as input.

(b) Consider the case where:

m = 1000 kg
b = 100 N/m/s

What is the steady-state velocity vss when the input is a constant force of 10Newtons?

(¢) When the force f varies sinusoidally at a frequency €2, the steady-state velocity also varies
sinusoidally at frequency 2. Derive a formula for the steady-state velocity when f = f, sin (t.
Evaluate the steady-state velocity response for the following cases:

(i) f = 10sin(0.5t) Newtons
(ii) f = 10sin(0.05¢) Newtons
(iii) f = 10sin(0.005¢) Newtons
(d) Consider the amplitudes A(€2) of the steady-state velocity response as the frequency 2 ap-

proaches zero. What is the limiting amplitude A4, as 2 — 07 Evaluate the ratio A(€2)/A, for
Q = 0.5 rad/sec, 2 = 0.05 rad/sec, and Q = 0.005 rad/sec.

(e) What is the break frequency of this system?

(f) Make an accurate, labeled sketch of the Bode plots for the amplitude ratioA(€2)/A, and the
phase angle ¢(Q) of this system.
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4.22 Toy Flywheel

A toy consists of a rotating flywheel supported on a pair of bearings as shown in Figure 4.22.1.
The flywheel is connected to a pulley , around which is wrapped a flexible but inextensible cable
connected to a spring. In operation, the flywheel is initially at rest, the string made taut, and at
t = 0, the input z4(¢) undergoes a step change in position of magnitude xg.

=

x(t) Xg(t)

> bulley “ flywheel Xs(h)

bearings

Figure 4.22.1: Flywheel Diagrams

Assume that the flywheel-shaft-pulley unit has rotational inertia, J. The bearings can be modelled
as a viscous rotational damper of coefficient, ¢;. the pulley is of radius, r. The spring is an ideal
linear spring with spring constant, k.

(a) Write the system equation as a differential equation in z(t), the length of cable unwound from
the pulley, as well as system parameters, J, r, and k. [Note that z(0) = 0]

(b) For what range of values of ¢; (expressed in terms of system parameters J, r, and k) will the
cable never go slack?

(c) Assuming that ¢; has some non-zero value such that the cable does go slack, write an expres-
sion (in terms of system parameters J,r, and k) for the response z(t), i.e. the length of cable
unwound from the pulley. Sketch the response, x(t). Carefully indicate the time over which
the expression and the sketch are valid.

(d) Assume that ¢; is zero. Write an expression (in terms of system parameters J, r, and k) for
t, the time at which the cable first goes slack.
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4.23 Truck Shocks

At a tailgate party, it was observed that when Uncle Massive, a sprightly 250-pounder,hopped up
on the back of his pick-up truck, the truck suspension bounced for more than 5clearly defined cycles
(it has been some time since Uncle Massive has replaced his shock-absorbers) at a frequency of 2
Hz. When the vibration stopped it was noted that the back of the truck was one inch lower than
it was before Uncle Massive sat down.

(a) Estimate the effective mass of the back end of the truck.

(b) Briefly explain any assumptions you have made in arriving at your estimate.
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4.24 Car Suspension 2

A simplified model for a car suspension is shown in Figure 4.24.1. Here, the road position is r(t),
and the car body position is z(t). A force F' is applied to the body mass. Assume r(t) = 0
throughout this problem. We also let the force be a step function F'(¢) = 500us(t) [N].

(a) Solve for the resulting step response x(t) from zero initial conditions. Write an expression for
the response as a function of time, and use Matlab to graph this response. For this problem,
use the parameters: m = 500 kg, k = 5 x 10* N/m, and b = 2 x 10® Ns/m.

(b) For these parameters, the system will be underdamped. What are the values of wy,, (, wq,
and o7

(¢) Comment on the quality of the response to the step. Will the passengers like this ride? For
what value of b would the system have critical damping? Recalculate the step response for
this critical value of damping, and compare the maximum resulting acceleration experienced
by the passengers to the underdamped case.

(d) Compare the 5% settling time for position z(¢) for both cases.

F

k& |l]b

Figure 4.24.1: Car suspension quarter model
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4.25 Kid-Skid

You have a great new business idea! Sick and tired of seeing kids injured when their friends jump
off the see-saw (teeter-totter, etc), you invent the Kid-Skid®). The Kid-Skid®) is simply a spring
damper mechanism that insures a soft landing if the friend on the other end jumps off. A schematic
is shown in Figure 4.25.1:

: |

Figure 4.25.1: Kid-Skid® Schematic

Assuming that the see-saw has an length L, and a mass mg, and that the kid on the right hand
side is of mass my:

(a)

(b)

How would you model this system, for the case where the nasty kid on the left jumps off while
the poor kid on the right is at the full height A above the ground. Since we do not know how
to model impact(wait until 2.004 for that), assume that the Kid-Skid®) is massless.

If you want to write the equation of motion for the kid-seesaw—Kid-Skid®) system once contact
has been made, what would the equation be, and what would be the initial conditions. (Be
specific about the initial conditions, and express them in terms of the system parameters
given.)

If the Kid-Skid® has a full range of motion = ¥,4., how would you ensure that it was not
exceeded given the parameters above?
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4.26 Rolling Machine

®
o7

Figure 4.26.1: Rolling Machine Schematic

A model of a commercial rolling machine (for metals processing) has been created and is shown
above. The model comprises a cylinder with a mass, m, with a radius, » = 0.5 m, that spins about
an axle. The cylinder rolls without slip on the lower surface. Attached to the axle housing are a
damper, b, a spring, k = 200 N/m, and a force source, f. In testing the machine, to impose a step
on the force source f, and measure the following response for the horizontal motion of the axle, x.

Step Response
08 ) ) ) ) ) ) T T

Amplitude

S PP SR PP S
] T s PP P PSP FPSPPS ST

0 i i i i i i i i
0 0.5 1 15 2 25 3 35 4 45
Time (sac)

Figure 4.26.2: System Step Response

Using the given parameters and the measured step response in Figure 4.26.2,

(a) Show the a free body diagram of the mass/inertia, and determine the equation of motion for

x(t)
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(b) From the data determine the damping constant, b, and the equivalent mass, meq, where meq
is mass equivalent of the combined rotational inertia and linear mass.

(c) If the cylinder has a m = 3 kg, determine the inertia of the cylinder.
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4.27 Sunday Bike Ride

A couple is out for a Sunday bike ride. The guy (weighing 200 lbs) is on a 30 yr old, all steel (very
heavy) 10 speed, and his wife (weighing 100 lbs) is on a lightweight racing bike with high-pressure
tires, aluminum rims; etc. They are riding alongside each other when they reach a significant
downhill. They agree to coast and not pedal or brake on the hill. At the bottom, the guy ends up
very far ahead of his wife. They are both confounded; why spend $1000 on her fancy bike if this is
going to happen?

You must explain it using system dynamics.

(a) Create a model for the bike that will lead to a first order equation of motion (even though
it has two rotating wheels with inertia + the inertia of the frame and rider!). Consider all
sources of friction or drag on the bike as it is pulled downhill.

(b) Draw the free body diagram for the bike that will show all forces acting on it.
(c) Write the equation of motion and justify the assumption that the system is linear.

(d) Based on the description of the bikes and the riders, use the model to show why the hefty
guy on a clunky bike ends up going faster at the bottom of the hill.

'Remember we said we could only deal with ”fixed axes of rotation” using 2.003
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4.28 Compound Mass Spring Damper System 1
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Figure 4.28.1: Mass Spring Damper System

Refering to Figure 4.28.1 and neglecting gravity, please do the following;:
(a) Draw free body diagrams for the mass m, and each of the nodes n; and na.
(b) Derive the 2" order differential equation for the position z(t) of the mass m.

(c) Using the following parameters

m = 1[kg]
k1 = ko = 10000 [N /m]
ks = 5000 [N /m]
by = by = 10 [Ns/m]
bs =5 [Ns/m]

give values for the damped natural frequency wy and the damping ratio ¢. Plot the poles of
this system on the complex s-plane.

(d) Using MATLAB, plot the response of this system for the following inputs and initial condi-
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tions:

z(0) = 1072 [m]
£(0) =0 [m/s]
Fi=F,=0[N]
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4.29 Compound Mass Spring Damper System 2
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Figure 4.29.1: Mass Spring Damper System

This problem is a continuation of Problem 4.28. You should use the solutions for that problem to
aid you in this problem. Use the same parameters for the mass, damping coefficients and spring
constants. Referring to Figure 4.29.1 and neglecting gravity, solve x(¢) and sketch the solution by
hand using the following parameters:

Fy =10 [N]
Fy=0|N]
2(0) = £(0) = 0
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4.30 Wind Induced Building Vibrations

Tall buildings are often subject to noticeable "sway” or horizontal motion at the upper floors. This
sway is driven by wind pressure variations on the building. The building itself is an interconnected
set of columns and beams, all with continuously distributed mass and elasticity. Assume that we
want to create a simple, lumped parameter model of this building to capture the sway motion
dynamics.

A measurement was made of this motion along with wind velocity, and the data is shown in
Figures 4.30.1 and 4.30.2.

(a)

Propose a mechanical model to describe the motion that would lead to the equation:
Z+4at+bxr =cu

where x is the sway motion of the building and w is the force from the wind. Be sure to provide
a simple sketch of your equivalent mechanical model and the resulting free body diagram.

From the data, which of the parameters of the equation (a, b and ¢) could you determine?
(Or in other words, why can’t you determine all three?)

For this data, determine: wy, (, o, and wy.

Plot the roots of the characteristic equation for this system on an s-plane. A highly paid
consultant has said that she can double the damping of the building with a feedback control
system.

On the s-plane plot from d) show where the new roots would end up if she succeeds.

Describe how the building would have reacted to the increased damping, and sketch the
response on a plot with scales similar to Fig. 2. Please make your description in terms of 2nd
order system transient characteristics.

0.8 B

0.6 i

0 10 20 30 40 50 60 70 80 90 100

Figure 4.30.1: Wind pressure versus time. (Note the wind stops suddenly at ¢ = 50.)
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Figure 4.30.2: Building Motion (z(t)) vs. time.
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5 Electrical Systems

5.1 Camera Flash Circuit

This problem considers further the flash circuit described in class. Suppose that the capacitor has
a value C' = 120uF, and the battery voltage is Vpqr = 1.2V. Also suppose that the largest inductor
you can use is L = 1 mH, and that this inductor has a maximum current limit of 0.1 A.

(a) How much energy can be transferred from the inductor to the capacitor in one cycle?

(b) How many cycles would be required to charge the capacitor from 0 to 300 volts? What
frequency of charging (in inductor charge/discharge cycles per second) would be required to
do this in one second?

(c) What is the maximum charging frequency in cycles per second which is possible given the
parameters for L, C, and V4 above? Explain your reasoning. What changes could you make
to the components to allow faster charging?
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5.2 Batteries and Capacitors

With terminals shorted, a battery has a short circuit current defined as I;.. With its terminals
open, it has an open-circuit voltage defined as V,.. For example, a 1.5V AA cell as shown in the
figure 5.2.1
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Figure 5.2.1: AA Battery

can be modeled internally as a 1.5 V voltage source in series with an internal resistance R; as
shown in the figure 5.2.2
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Positive terminal

b Battery package

Insulating ring

\

Negative Terminal

Figure 5.2.2: AA Battery Schematic

If we eliminate the packaging details, this circuit appears more simply as figure 5.2.3, where V} is
the voltage appearing at the battery terminals.

Ry,

+

1.5V Vb

o -

Figure 5.2.3: Simplified battery circuit

(a) With a short briefly applied to such a 1.5 V battery, I measured a current out of the +
terminal and back into the - terminal of Iy, = 5.7A. What is the value of Rp?

(b) In the experiment above, how much power is the battery voltage source supplying? Where
is it being dissipated? (Batteries are really not happy having a short-circuit applied to them
for any significant time, as they can dangerously overheat due to the internal dissipation.).

An electrolytic capacitor, as shown in the picture 5.2.4, allows a relatively large amount of
capacitance in a small package as compared with other types of capacitors. These capacitors
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are polarized, in the sense that they should only have voltage applied of the indicated polarity.
Reversal of voltage can be hazardous, and cause failure or explosion.

Figure 5.2.4: Electrolitic capacitor of a single use flash camera

The capacitor shown is used to provide a pulse of current used to fire a flash lamp in a single
use camera.

After the capacitor is charged, we observe that the capacitor voltage bleeds away to zero over
the course of about 30 minutes. This internal loss can be modeled by including a leakage
resistor R; in parallel with the capacitor as shown in figure 5.2.5.

—
S

R
M

4@_4

~—_] | _—
Negative Terminal Positive Terminal

Figure 5.2.5: Electrolitic capacitor model

If we eliminate the packaging details, this circuit appears more simply as in figure 5.2.6.
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Rl C — v

Figure 5.2.6: Electrolitic capacitor circuit

The + sign is usual to indicate that this is an electrolytic capacitor, as well as its associated
allowed polarity.

Suppose that C = 120uF’, and that we observe that from an initial charge it takes 10min for
the capacitor voltage to fall to 37 percent of its initial value. What is the value of the leakage
resistor R;?

Now, we want to study using the battery to charge the capacitor. At t = 0, the battery is
connected to the initially uncharged capacitor.

Draw a circuit diagram showing this connection.

Write a differential equation which discribes the behavior of the circuit in this connection.
The differential equation should be written in terms of the capacitor voltage v..

From the initially uncharged state at ¢ = 0, write a solution v.(t) for this charging process.
What is the associated time constant? Make a dimensioned graph of v.(t) and show the time
constant on this graph. Where is the system pole located? Make an s-plane sketch showing
this pole location.

After charging for a long time, the capacitor voltage reaches a final, or steady state value.
Then, at time t1, the battery is disconnected from the capacitor.

Write a differential equation which describes the behavior of the capacitor voltage v.(t) in
this disconnected condition. Solve the differential equation for v.(t), t > t1, and make a
dimensioned sketch of v.(f). Where is the system pole located? Make an s-plane sketch
showing this pole location.
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5.3 Loaded Motor

This problem considers the motor system shown below.

Figure 5.3.1: Loaded Motor

The motor in Figure 5.3.1 is driven by a voltage source V' through a switch, which can be opened
and closed. The motor internal coil resistance is modeled by the resistor R as shown. The motor
itself is ideal and described by the relations 7 = Ki, and e = Kw, where 7 is the torque applied
to the load, and w is the load speed. The load consists of a rotary inertia .J, and a rotational
damper b.

(a) Suppose the system is initially at rest. At ¢ = 0 the switch is closed. Solve for the resulting
rotor speed as a function of time, and write an expression for w(t) in terms of the system
parameters. Clearly show the steps in your solution. Make a labeled and dimensioned sketch
of w(t).

(b) After the switch has been closed for a long time, the switch is opened. Let’s call this opening
time t1. Solve for the resulting rotor speed as a function of time for ¢ > t1, and write an
expression for w(t) in terms of the system parameters. Clearly show the steps in your solution.
Make a labeled and dimensioned sketch of w(t).

(c) Solve for the value of the coil current i as a function of time throughout the motions deter-
mined above, and write an expression for i(¢) in terms of the system parameters. Clearly
show the steps in your solution. Make a labeled and dimensioned sketch of i(t).
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6 Fluid Systems

6.1 Rotational Fluid System

Cross-section

2,0 A

VYV VYO
/

e

Top View

Inertia, J
/

<
=g fluid-filled
| ' / cup
<040

Figure 6.1.1: Cross-Sectional and Top view

This problem considers the rotational mechanical system shown in Figure 6.1.1.

The setup is similar to the one used in Lab 2. The central shaft rotates at an arbitrary velocity
Q1 (t) in a fluid filled cup, which is fixed. Unlike Lab 2, there is an intermediate ring, of inertia J.
This ring is supported on bearings which are not shown in the figure. The ring rotates with angular
velocity Qo(t) as shown.

The fluid-filled annuli create a damper c¢; between the shaft and the ring, and a damper ¢2 between
the ring and the cup. Assume that any other damping is negligible.

(a) Draw a free-body diagram for the ring showing the torques acting on the ring.

(b) Use this free-body diagram to derive a differential equation in terms of Q4 (t) and Q2(¢) which
describes this system. Note that Q;(¢) is an arbitrary velocity which is externally specified.

(c) Assume that Qq(¢) is a step, i.e., Q1(t) = us(t), and that Q2(0) = 0. solve for the resulting
motion Q(¢) for ¢ > 0.

(d) In steady-state, what torque must be exerted on the input shaft? Why?
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6.2 Fluid Leak

(o]

P: B (0%
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Figure 6.2.1: Diagram of Fluid Problem

You must read the Fluid Example on the webpage before starting this problem. Imagine
that in the system in Figure 6.2.1 the valve is shut so that there is no flow at t = 0 and that Ps(¢)
leaks down from 3-10° Pa very rapidly after the valve is closed, ie. Ps(07) = 3-10° and Ps(0") = 0.

(a) Solve for P.(t).
(b) At what time is P.(¢) at it’s minimum value?

(c) How long does it take this system to settle withen P.(t) = 300 Pa?
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6.3 Where’d the water go?

This problem extends the plumbing example presented in the supplementary notes. The figure
from the notes is repeated below.

%
P: Zar10% ?7
- R Pog romn of Pofia 7
- ' ' -~ g3 ’ - f

Figure 6.3.1: Shower Figure

You are upstairs taking a shower while your 9 year old daughter is downstairs skating madly around
in the basement on her in-line skates with a hockey stick. (Why indoors? Why in the basement?
Why with a hockey stick? Why didn’t she ask if this was a good idea? If these questions haven’t
occurred to you, you aren’t a parent yet.)

Anyway, taking an especially sharp turn, she slides out skates first into the pipes where they connect
to the pressure tank which breaks them off essentially instantaneously. With calm engineering
detachment, we will model this “event” as taking the pressure rapidly to zero, i.e., as Ps(t) =

3 x 10°(1 — us(t)) [Pa.

Py(1) [Pa]

310" [Pa]

Figure 6.3.2: Pressure function

(a) Use the model and parameters from the example problem. Develop an analysis which predicts
the resulting pressure and flow at the shower nozzle. Sketch these two functions. About how
long does it take for the shower flow to go to zero?
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(b) So now you're standing there naked in the shower with soap in your hair and no water flow
wondering what happened, when you hear your kid screaming that the basement is starting
to fill up with water. (The water pump is valiantly trying to restore pressure to P; = 3 - 10°
Pa). We leave the next steps to your imagination...

(c) If all of this seems a bit rigorous, perhaps you lack the stern constitution required for parent-
hood?

(d) (Adapted from a true story).
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7 Thermal Systems

7.1 Thermal Block Question

A block of copper is brought out of an oven at an initial temperature of 1000 K, and allowed to
cool to the ambient temperature of 300 K. The graph below shows data which might represent this
experiment. The copper block has a mass of 0.1 kg. Given that copper has a specific heat of 385
k’gioC’ propose a thermal model of this experiment, and write the equation of motion. Given the
experimental data, determine the value of thermal resistance to ambient. Clearly show the steps
in your derivation.
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Figure 7.1.1: The block temperature (Tpoc) is plotted against time (¢). The ambient temperature
is given by .
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7.2 The Hot Copper Block 1

This problem considers the thermal dynamics of water and a copper block inside a vacuum bottle.
A diagram for the system is shown below in Figure 7.2.1.

Figure 7.2.1: Copper block and water thermal system

Initially, a 100 gm copper block is heated outside the bottle in an oven to a temperature of 95°C.
We are not concerned with the heating process. The water in the vacuum bottle has been there for
a long time and is equilibrated to the ambient temperature T, = 25°C.

At t = 0, the stopper is removed, the copper block is lowered into the bottle, and the stopper is
replaced. Now we would like to develop a model which can describe the temperature dynamics as
a function of time.

The system parameters are as follows: The copper block has a mass of 100 gm; copper has a specific
heat of 0.385 J/gm°C= 385J/kg°C. The bottle contains 1 liter of water; water has a specific heat
of 4.2 J/gm°C= 4200J /kg°C.

The temperature of the block is defined as 1. The water is assumed uniform in temperature, with
a value of Ty,.

The heat flow from the block to the water is defined as g, [W]. The heat flow from the water
to ambient is defined as guq [W]. These flows are modeled as passing through thermal resistances
Ry, = 0.1°C/W and Ry, = 17°C/W, respectively. Note: Take a look at the 2"¢ order ther-
mal example on the course web page before attempting this problem.
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(a)

Write the governing differential equations for the system in state-space form as

dT,
— = [1(Tw, Ty, T,
pr fi( bs Ta)
AT,

o~ (T

I fa( b)

where f; and fy are linear functions.

Convert this representation to a 2"¢ order differential equation in T}, (t). You may assume

that the ambient temperature is constant, and thus dd% =

Solve for the response T, (t) for ¢ > 0. What are the system natural frequencies? Plot the
system poles on an s-plane plot.

Use Matlab to plot Ty,(t), and its two constituent modes, over an interesting time range.
You may need to use two plots with different time scales to capture the dynamics. Explain
qualitatively why the plot looks as it does. Can you show us the effect of the system time
constants?

Suppose the block were initially at only 60°C. Make a sketch on your time response plot of the
resulting T3,(t). Explain your reasoning. (Hint: If you exploit linearity, this should require
no new calculations.)
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7.3 The Hot Copper Block 2

This problem is a continuation of Problem 7.2. Reconsider the system of Problem 7.2, but with
an electrical heater added to the inside of the copper block. The heater provides an input power
qin = 4 W. This new system is shown in Figure 7.3.1. The system starts at t = 0 in a rest state
with T, = T, = T, = 25°C. At t = 0, the heater is turned on.

Figure 7.3.1: Copper block and water thermal system with heater

(a) Write the governing differential equation in terms of water temperature T,,.
(b) Solve the differential equation for T, (t), with the numerical values given in Problem 7.2.

(c) Use MATLAB to plot T,,(t) over both a short and long time interval to show the interesting
parts of the graphs. What is the steady-state value of Tp,7 What is the 10% to 90% rise time
t.? How long does the response take to settle within 1% of the final value?
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7.4 Transistor on heat sink

Figure 7.4.1 is a schematic cross-section of a power transistor mounted on a heat sink. The tran-
sistor itself is fabricated on a thin piece of silicon, perhaps 5mm x 5mm x 0.5mm. This device
is mounted within a package (case) which provides mechanical protection as well as electrical and
thermal connections to the outside world. The case is mounted on a finned heat sink in order to
transfer heat dissipation in the transistor into the ambient air.
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Figure 7.4.1: Transistor Schematic

The case of most transistors needs to be electrically insulated from the heat sink. This is ac-
complished with the indicated thermal washer, which has the conflicting requirements of thermal
conduction and electrical insulation.

We define the device temperature as T}, the case temperature as T;, and the heat sink temperature
as Ts. The ambient temperature is T, = 25°C. The thermal resistance between the device and case
is R4, between the case and heat sink is R.s, and between the heat sink and air is Rg,.

The transistor is used as an electrical switch or amplifier. In the process electrical power is converted
to heat. The heat flow needs to be managed without allowing the device to become too hot
(generally the device temperature should stay below 100°C).

(a) Assume Ry, = 0.1°C/W, R.s = 0.2°C/W, and Rs, = 0.5°C/W. Further assume that in
steady-state the transistor is dissipating 50W. What are the steady-state values of Ty, T¢,
and 1,7

(b) Now assume the heat sink is constructed with 500gm of aluminum, which has a specific heat
of 0.90 J/g°K. The system is operating in the steady-state condition above when, at ¢t = 0 the
transistor is pulsed with 500W of power dissipation for 1 second, and returns to dissipating
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50W. Write expressions for Ty(t), T,(t), and Ts(t) for ¢ > 0, and make plots of these functions.
Assume that the device and case have zero thermal capacitance. What is the peak device
temperature in this linear model. Will it likely survive the transient? Would a bigger heat
sink help?
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8 Circuits

8.1 RC Transfer Function

This problem considers the circuit shown in Figure 8.1.1.

Figure 8.1.1: RC Circuit

(a) Calculate the transfer function V,(s)/Vi(s).

(b) For the values Ry = 3k, Ry = 12k, and C = 10 uF, solve for the pole and zero of the
system, and plot these on the s-plane.

(¢) For the values given in part (b), calculate the transfer function magnitude and phase as a
function of frequency for a sinusoidal input. Make an accurate hand-sketch of the Bode plot
for this transfer function, i.e., the magnitude and phase as a function of the input frequency w.
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8.2 RLC Transfer Function

This problem considers the circuit shown in Figure 8.2.1.

R L

v,a C —— Vo

Figure 8.2.1: RLC Circuit

(a) Calculate the transfer function V,(s)/Vi(s).

(b) Let L = 0.01 H. Choose the remaining parameters of the circuit such that w, = 10° and
¢ = 0.05. Plot the poles of the system, indicating the pole positions in rectangular coordinates

and polar coordinates.

(c) For these parameters, make a carefully-dimensioned sketch of the response to a unit step in
input voltage. Specifically, show the overshoot value, the time to the peak, and the time-scale
for each of the next 3 peaks in the response. What is the time required to settle to 5%?

(d) For these parameters, make an accurate sketch of the Bode plot for the transfer function in

part (a).
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8.3 Bandpass Filter

The circuit shown in Figure 8.3.1 acts as a bandpass filter, in that input frequencies will only sig-
nificantly propagate to the output if they are near the filter resonant frequency. Input components
away from the resonant frequency will be attenuated; the degree of attenuation will depend upon
the separation between the driving and resonant frequencies.

Al ],
_|_

]S T) C::V L vL R V

C R

Figure 8.3.1: Bandpass Filter Circuit

An example of the use of such a filter would be at the front end of a radio. Here the filter is used
to select a particular radio station carrier frequency for listening, and to attempt to reject other
radio station carrier frequencies. In this situation, the current ¢ would represent current from the
antenna attached to the radio, and the output signal vg would represent a voltage used in the radio
for further processing.

In this problem, the numerical values have been selected to tune the filter to a Boston-area FM
radio station. We ask you to work out the frequency response function for the filter and then
consider how much an adjacent station’s signal is attenuated. For the purposes of this problem,
assume that radio stations emit a pure sinusoidal signal at their carrier frequency. So, for example,
a station such as WBCN operates at 104.1 MHz (104.1 x 10% Hz). Although the real signal consists
of a band in the vicinity of this frequency, we will assume that the station puts out a pure sine
wave at 104.1 MHz, and that this is what the filter is processing. In this problem, be careful to
keep track of what frequencies are in Hz and what frequencies are in rad/sec.

(a) Solve for the differential equation which relates the input current I to the output voltage vg.
Show the steps in your derivation.

(b) Use the results of a) to derive the transfer function from input I(s) to output Vg(s).

(c) In terms of the circuit parameters, what are the values of the natural frequency w, and the
damping ratio (7 What are the locations of the system poles and zeros?

(d) In the following parts of the problem assume the components take the values:R = 50 k{2,
C =10"" F =10 pF, and L = 3.14815 x 10~ H. (Caution: The values chosen must be used
with all given digits to guarantee a sufficiently accurate answer.) For these parameter values,
what are the numerical values of w, and (7
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(e) Use the MATLAB bode command to plot the frequency response magnitude and phase for
this filter. Can you see why it is called a bandpass filter? What is the center frequency of
the filter in MHz? What Boston-area radio station operates at this frequency?

(f) In a given area, radio stations are generally spaced in frequency by at least 400 kHz. Use
the frequency response function to determine how much attenuation will be experienced by a
signal at 400 kHz above the filter resonant frequency. Show this frequency and the resulting
attenuation on a Bode plot zoomed in on the relevant frequency region.
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8.4 LC Circuit Differential Equations

Consider the circuit in Figure 8.4.1

v, () o v,

Figure 8.4.1: LC Circuit
(a) Write the governing differential equation for this circuit.

(b) The input is a unit step v;(t) = us(t). Calculate v,(t), t > 0, assuming initial rest. Write an
expression for v,(t), and make a properly labeled sketch of v,(t).
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8.5 Equivalent Impedance

Calculate the equivalent impedance, Z,,, at the indicated terminal pair in Figure 8.5.1.

L

Figure 8.5.1: LRC Circuit
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8.6 Circuit Response

For each of the circuits below, derive the differential equation which relates input to output, and
solve for the unit step response for the listed initial conditions. Note that some of the circuits use
a current source input. In each case, make a sketch of the output vs. time.

a) Solve for i, as output

<&

v i) 1.(0)=0 V
v C=="y, iyO=10V
- " i) (0=l V

Figure 8.6.1: Circuit for Part (a)

(b) Solve for vy, as output

R i
W

+ + 1) i; (0)=0 Amps
Vin ii) i, (0)=10/R Amps
; VL ii) i, (0)=1/R Amps

t~

Figure 8.6.2: Circuit for Part (b)

(c) Solve for v, as output

4—)1:"

in R s Di0=0A
L

Figure 8.6.3: Circuit for Part (c)

(d) Solve for v, as output
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in R CZ:+ o D=0V

Figure 8.6.4: Circuit for Part (d)

(e) For parts (a) — (d), use impedance techniques to directly find the appropriate transfer func-
tions.
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8.7 LRC Circuit 1

This problem studies the circuit shown below.

Vl 1Q v2

+
i, =1-u(t) D 10 —IF 1 H

iic iiL

v

Figure 8.7.1: LRC Circuit

(a) For t<0, what are the values of vy, ve, i1, and i,

(b) What are the initial conditions at ¢ = 07, i.e., the values of v1(0%) and 2(0%)? Be sure to
show how you derived these results.

(c) For t > 0 a differential equation describing this circuit in terms of v; is

d2v1 dv1

— +2—+2v; =0.

az Tt T
Write the solution of this equation as a function of time for 7" > 0. Show carefully how you
derived the solution and satisfied the initial conditions from the previous section. If you were

not able to derive the initial conditions, you can write your solution in terms of v;(0") and
M(m)
di :
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8.8 LRC Circuit 2

This problem studies the circuit shown below. Note that the circuit is driven by an “unstep” func-
tion i5(t) = 1 — us(t), and thus the input is 1 [A] for t < 0 and 0 [A] for ¢ > 0.

Vl 1Q V2

i =1-u (1 D 10 —IF 1H

lic liL

v

Figure 8.8.1: LRC Circuit

(a) Write node equations at v; and vs to derive a differential equation describing the circuit. The
differential equation should be in terms of v; and i, (that is vy should be eliminated).

(b) For t < 0, what are the values of is, v1, va, ir, and 7.7
(c) Use Laplace transform techniques to develop a solution vy (t) for this system for ¢ > 0.

(d) Make a hand sketch of this solution.

Vi(s Ip(s
(e) Calculate 151((5)) and zf((s))
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8.9 LR Circuit Step

Figure 8.9.1: Circuit Diagram

(a) Derive a differential equation which describes the circuit behavior in terms of the variables
Vo(t) and Vj(t). Plot the system pole on the complex plane.

(b) For this section of the problem, let Ry = 1k. The output V,(¢) in response to a unit step
input, from zero initial conditions is shown below. Determine the values of L and R; that
correspond to this response. Be sure to show your reasoning.

Step Response

0.1

0.09

0.08

0.07

0.06

0.05

Amplitude

0.04

0.03

0.02

0.01

0 1 2 3 4 5 6
Time (sec.) x10°

Figure 8.9.2: Step Input Response from zero initial conditions

(¢) Now let the input the to circuit be a sinusoid V;(¢) = sinwt. In steady-state, the output will
have the form V,(t) = M sin(wt + ¢). Using the numerical values of the circuit elements you
derived above, calculate expressions for M and ¢ as a function of w.
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(d) Make plots by hand of M(w) and ¢(w). For the plots, use logarithmic axes for w, log axes
for M, and linear axes for ¢. That is, the magnitude is displayed on a log-log plot, and the
phase is displayed on a semi-log plot. What is the DC gain of this circuit? What is the
high-frequency asymptotic gain?
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9 Op Amps

9.1 Opamp Arithmetic

Design an opamp circuit that realizes the following input-output relationship
Vo = dv1 + 3vg — 10v3

where v1, vo, and v3 are three indepdent output voltages. Use the minimum number of opamps
that you find possible, and assume that the opamps follow the ideal infinite gain model. Explain
your thinking.
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9.2 Inverting Op-Amp

The circuit shown in Figure 9.2.1 is an inverting op amp connection, with a capacitor C’ connected
between the inverting input and ground. As we saw in lecture, adding a capacitor in this location
can have a significant effect on the stability of the op amp connection. This problem explores such
an effect.

Figure 9.2.1: Inverting Op-Amp Circuit

(a) For this connection, draw a block diagram representing the circuit.

(b) Let the components take the values R; = Ry = 10 kQ, C = 10 uF, and a(s) = 2710%/s.
Calculate the transfer function V,/V;. What are the closed-loop damping ratio and natural
frequency?
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9.3 Opamp Transfer Function

Design an opamp circuit that realizes the following input-output transfer function

Vo(s) 100 10735+ 1
Vi(s)  s(1074s+1)°

Clearly show your thinking. You can design this circuit using only resistors, capacitors, and op
amps. Assume that the opamps follow the ideal infinite gain model. Explain your thinking.
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9.4 Op-Amp Differentiator 1

The circuit in Figure 9.4.1 acts approximately as a differentiator.

R
AAAY R

~
a

3

Figure 9.4.1: Op-Amp Differentiator

The second amplifier just acts as an inverter to cancel out the inverter associated with the first
stage. For the values Ry = Ry = 100 k2, R = 10 k€2, and C = 20 pF, and assuming the op-amp is
modeled as ideal with infinite gain,

(a) Calculate the pole and zero locations.
(b) Calculate the magnitude and phase of the transfer function V,(jw)/Vi(jw) as a function of w.

(c) Use MATLAB to plot the step response of this circuit. Does it act as a differentiator? How
is the response non-ideal?

(d) Use MATLAB to generate the Bode plot for this transfer function. Indicate the breakpoint
frequency on the Bode plot. How is this related to the pole location?

93



9.5 Op-Amp Proportional plus Integral Controller
The circuit in Figure 9.5.1 can be used as a proportional plus integral controller.
R C

f |

—W—i|

o

; \
O /

Figure 9.5.1: Op-Amp PI Circuit

For the values R; = 10 kQ2, Ry = 100 k€2, and C = 10 pF, and assuming the op-amp is modeled as
ideal with infinite gain,

(a) Calculate the pole and zero locations.
(b) Calculate the magnitude and phase of the transfer function V,(jw)/Vi(jw) as a function of w.

(¢c) Use MATLAB to plot the step response of this circuit. Does it act as a proportional plus
integral (PI) filter? How so?

(d) Use MATLAB to generate the Bode plot for this transfer function. Indicate the breakpoint
frequency on the Bode plot. How is this related to the zero location?
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9.6 Op-Amp Circuit Design 1

Design an op-amp circuit that realizes the following input-output relationship
Vo = dv1 + 3vg — 10v3

where v, v9, and v3 are three independent output voltages. Use the minimum number of op-amps
that you find possible, and assume that the op-amps follow the ideal infinite gain model. Explain
your thinking.
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9.7 Op-Amp Block Diagram

In the op-amp circuit shown in Figure 9.7.1, the op-amp has a transfer function a(s) from the
differential input to the output voltage.

R3
——— MWWWW—
Ry
é a(s) >1—o+

Figure 9.7.1: Op-Amp Circuit

(a) Draw a block diagram representing the circuit. Your block diagram should show the vari-
ables Vi, V5, vy, and v_. Be sure to show how the block diagram was derived.

(b) Let a(s) = g/s. What is the transfer function from input V;,, to output V,, in terms of the
given system parameters?
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9.8 Op-Amp Circuit Design 2

Design an opamp circuit that realizes the following input-output transfer function

Vo(s) 10735 + 1

Vi(s) 1005(10*45 +1) (1)

Clearly show your thinking. You can design this circuit using only resistors, capacitors, and op
amps. Assume that the opamps follow the ideal infinite gain model. Explain your thinking.
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9.9 Op-Amp Differentiator 2

The circuit in Figure 9.9.1 is the circuit from Problem 9.4.
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Figure 9.9.1: Op-Amp Differentiator

The second amplifier just acts as an inverter to cancel out the inverter associated with the first
stage. For the values Ry = Ry = 100 k2, R = 10 k€2, and C = 20 pF, and assuming the op-amp is
modeled as ideal with infinite gain,

(a) Draw a block diagram for the circuit of Figure 9.9.1 in which the op amp is modeled as having
dynamics. That is, the op-amp output voltage is Ve = A(s)(v4 — v_).

(b) Solve for the input-output transfer function for this circuit configuration in the case where
A(s) = g/s and g = 27107, and using the numerical values of the parameters given above.

(c) Plot the poles and zeros of the transfer function from part (b). What dynamics can you
estimate will dominate the step response? Make a sketch of the step response that would
result from these dominant dynamics.

(d) Enter the exact transfer function into MATLAB, and thereby plot the exact step response.
How does this differ from the response calculated in Problem 9.47 How are the dominant
dynamics of part (c) evident in this step response?
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9.10 RC Op-Amp Frequency Response

(a) For the circuit shown below calculate the transfer function V,/V;, under the assumption that
the op amp has infinite differential gain as shown.

o

R

0.

Figure 9.10.1: RC Op-Amp Circuit

(b) Now let the resistor Ry = 10 [k2]. Choose the other components such that the input/output
transfer function Bode plot has the asymptotic magnitude shown in Figure 9.10.2. Explain
your calculations. With the indicated slopes, it is possible to determine the value of A as
shown on the plot. What must this value be?

VO
v,

AN

(jw)‘

>

200 2000 5000

Figure 9.10.2: Asymptotic Magnitude of Bode plot
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10 Differential Equations

10.1 Differential Equations 1
Here we consider a system described by the differential equation
500y + 1000y = 0.
(a) Plot the system pole on the complex plane.

(b) Suppose that y(—3) = 10. Write an expression for y(t) valid for all time. Show your reasoning.
Sketch this response.

(c) At what time does the response fall below a value of 10767
(d) Use Matlab to plot the response in the range —4 <t < 1.

(e) Design a mechanical system which will have the differential equation given above. Clearly
indicate the physical variable that y represents, as well as the numerical values of the me-
chanical system parameters. Note that there are many possible systems which will have the
same differential equation.
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10.2 Differential Equations 2

Here we consider a system described by the differential equation

(a)

§j + 10y + 10000y = 0.

What are the values of the natural frequency w,, the damping ratio ¢, and the damped natural
frequency wqy? Plot the system poles on the complex plane.

Suppose that y(0.1) = -3, and that ¢(0.1) = 0. Write an expression for y(¢) valid for all time.
Show your reasoning. Sketch this response.

Use Matlab to plot this response in the range —0.5 <t < 1. Indicate on your plot that the
auxilary conditions are met.

At what time is the value of the response guaranteed to be below 1073? Do not calculate the
exact time value when this occurs, but provide a bound using the exponential envelope of the
waveform.

Design a mechanical system which will have the differential equation given above. Clearly in-
dicate the physical variable that y represents, as well as the numerical values of the mechanical
system parameters.

101



10.3 Differential Equations 3
Here we consider a system described by the differential equation
i + 200y 4+ 10000y = 0.

(a) What are the values of the natural frequency w,, the damping ratio ¢, and the damped natural
frequency wqy? Plot the system poles on the complex plane.

(b) Suppose that y(0) = 1, and that y(0) = 1. Write an expression for y(¢) valid for all time.
Show your reasoning. Sketch this response.

(c) Use Matlab to plot this response over an interesting range of time values. Indicate on your
plot that the auxilary conditions are met.
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10.4 Euler’s Theorem 1

(a) Use Euler’s theorem to demonstrate the following equivalence
cedt 4 c*e It = Acoswt + Bsinwt

where ¢ = a+j is a complex number and A and B are real. What is the resulting relationship
between ¢ and A and B?

(b) Given A =17, B =2, and w = 100, what is the corresponding value of ¢?

(c) Use Matlab to plot three cycles of the vaveform defined in part b), and hand in the resulting
plot.
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10.5 Euler’s Theorem 2

(a) Use Euler’s theorem to demonstrate the following equivalence
Acoswt + Bsinwt = M cos(wt + ¢)

where A, B, M, and ¢ are real. What is the resulting relationship between A,B and M, ¢?

(b) What is the relationship between M, ¢, and c as defined in Problem 10.47 How are these
related to the amplitude of the waveform you plotted in Problem 10.47
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10.6 Force Steps

Assume that we apply a unit step in force separately to a mass m, a dashpot ¢, and a spring k.
The mass moves in inertial space. The spring and dashpot have one end connected to inertial space
(reference velocity = 0), and the force is applied to the other end. Solve for and plot the resulting
velocity and position of the mass, and the velocity and position of the free ends of the spring and
damper under this step in force.

Recall that the unit step function wug(t) is defined as ug(t) = 0; t < 0 and ug(t) = 1; t > 0. We
will also find it useful to introduce the unit impulse function §(¢) which can be defined via

wg(t) = /_ ; 5(r) dr

This means that we can also view the unit impulse as the derivative of the unit step:

_ dug(t)
o dt

a(t)
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10.7 Input for Zero Output

A system with an input u and an output y is described by

d?u du

What is the most general input u(t) applied for all ¢ which yields y(¢) = 07 Show your reasoning,
and verify by direct substitution into (1).
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10.8 Zero Input Response

For each of the systems shown in Figure 10.8.1, suppose that the indicated input is set equal to
zero. That is, we will solve for the zero input response(ZIR). Don’t use Laplace techniques to find
the requested solution.

T, input 0, output

S S S S S S S S S S

(i): Rotational system

X, output
F, input
K, K,
VN TV

— —|
\l__ ﬂ
C O 0O C,
S S S S S S S SSS S SSSSS SS S S

(ii): Translational system

Figure 10.8.1: System Diagrams

(a) For the rotational system, solve for () with the initial conditions 8(0) = 6y and 6(0) = wo.
Write expressions for the system time constants.

(b) For the translational system, solve for x(t) with the initial conditions x(0) = xg and #(0) = vy,
under the assumption that the system is under-damped. Write expressions for the system
natural frequency, damped natural frequency and damping ratio.
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10.9

For each of the systems shown in Figure 10.9.1, suppose that the initial state is equal to zero, and
that the input is active. That is, solve for the zero state response(ZSR). Specifically assume that
the input is a step, i.e.,

Zero Step Response 1

T, input 0, output

S S S S S S S S S S S

(i): Rotational system

X, output
F, input
K, K,
% % BV e AVAVe
= —|
I —]
C, O O C,

S S S S S S S S S S S

(ii): Translational system

Figure 10.9.1: System Diagrams

(i) 7(t) = us(t); 6(0) = 6(0) = 0.

(ii) F(t) = us(t); x(0)

Now solve for the resulting output variable as a function of time. Again, in the case of the trans-

i(0) = 0.

lational system, you may assume that it is under-damped.
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10.10 Zero Step Response 2

Now assume the following numerical parameters for the systems in Problem 10.9
(i) J = 0.1 kg-m?; C1 = 1073 N-m-s/rad; Cy = 3 x 1073 N-m-s/rad.
(ii) M = 10kg; K1 = 10°N/m; K2 = 8 x 10°N/m; C; = Cy = 300N-s/m.

(a) For these parameters, write expressions for 6(¢) and x(t) for the zero state response of Problem
10.9, and make hand-sketches of these responses.

(b) Use Matlab to plot the responses of Part a.
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10.11 Nonlinear String System

Figure 10.11.1 shows a mass M supported by the constant force string, which has constant tension
force no matter how much it is stretched. The mass is attached to the center point of the string.
L =0.5m. T=100 N. For each of three cases (i) M; = 10 kg, (ii) M2 = 14.5 kg and (iii) M3 = 17.7
kg.
(a) Find the equilibrium point X.
(b) Derive a linearized model about the equilibrium point.
(c) Solve for roots and plot them on the complex place.
(d) Plot the zero input response from zero initial velocity and the initial position is lem above
the equilibrium point, i.e. X(0) = X — 0.01m.

7 oL

gravity

Figure 10.11.1: Nonlinear String System
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10.12 Homogenous and Particular Solutions

For this problem, we use the rotational system of Lab 2, seen in Figures 10.12.1 and 10.12.2. Refer
to Prelab 2 for more details. In the prelab, you are asked to calculate the moment of inertia for the
shaft with and without the flywheel, and to use the video shown on the course web page to extract
an estimate of the damping coefficient ¢ resulting from the honey in the cup at the bottom of the
shaft. Note that in the video the flywheel is attached to the shaft, and so for this problem you will
use the inertia value with the flywheel present. Use the following values in this problem:

K =1072Nm , I = 0.000317kg — m? and ¢ = 0.0011N-m-sec/rad

Flywheel
Airbearings
Shaft
@ @ o @ @
. @ @ @ 'y
Cup with ©c o o o e
. . @ @ @ @
viscous fluid © © o© o o
g @ @ @
@ @ @ @ @
@ @ @ @
@ @ @ @ o
g @ @ @
@ @ @ @ @
@ L] @ @ @
o @ @ @ @ o
@ @ @ @ @ @
@ @ @ @ @ @
@ @ @ @ @ @

Figure 10.12.1: Rotational System

i ot

C

A\

Figure 10.12.2: Lumped System Model

(a) Assume that the Lab 2 system is driven by an input torque T, acting on the rotating shaft,
and has a resulting angular velocity w. Write a differential equation which describes the
system with the given torque input.
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(b)

Now assume that the torque is a step of magnitude K, i.e., Tj;, = Kus(t), and that the shaft
has an initial angular velocity w(0) = wp. Find the particular and homogeneous solutions and
combine these to write an expression for the total solution. Given the input magnitude K,
for what initial velocity will the solution reach final value in zero time, i.e., there will be no
transient?

Accurately sketch the solutions for K = 1072 Nm, and for each of the following initial angular
velocities: wg = 0 rad/sec; wp = 40 rad/sec.

Now we change the torque source to a sinusoidal input T, = us(t) K cos Qt . Again the system
has an initial angular velocity w(0) = wp. Note that the step function us(¢) which multiplies
the cosine function “turns on” the input at ¢ = 0.The homogeneous solution will have the
same form as in part b), so you will not need to repeat this calculation. We ask you to find
the particular solution in two ways. The first is by using only trigonometric functions, and
no complex variable representations. The second approach is by writing the input as the real
part of a complex exponential.

(i) Solve for the particular solution wy(t) to the cosinusoidal drive without making use of
complex notation. You'll need to work through some trigonometric identities to work
out the solution.

(ii) Solve for the particular solution wy(t) to the cosinusoidal drive by using complex nota-
tion. That is, we recognize that the input can be expressed as T}, = Re{us(t)Ke/*}.
Then because the system is linear, we can first solve for the particular solution for a
complex-valued input T, = us(t)Ke*¥, taking the real part of the solution at the end
to find the particular solution for the original real-valued input. The solution should be
the same as you found in part i). As you’ll see, the math is simpler via this path than
for the solution taken in i) by using trigonometric identities. As the system order grows
larger than this first-order example, this simplification becomes more significant.

Assume that the initial shaft velocity is zero, i.e., wg = 0. For the particular solution to the
sinusoidal drive that you found above, what homogeneous solution is required to satisfy this
initial condition? Use Matlab to plot the total solution for K = 1072, and for the following
two values of input frequency: ©Q = 0.5 rad/sec; Q = 20 rad/sec. How do these two solutions
differ in appearance? Specifically, how significant is the homogeneous solution in these two?
Also, what effect does the system have on the output sinusoidal magnitude and phase relative
to the input?
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11 Frequency Response

11.1 Circuit Bode Plots
For each of the circuits shown in Figure 11.1.1
(a) Determine the associated transfer function.

(b) Accurately sketch the associated Bode plots (magnitude and phase).

Ry = | oo ;L-)

A o5k »
B R= 100k o0y el [t
" LR

Figure 11.1.1: Circuits for analysis
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11.2 Sketch Bode Plots
Using the appropriate graph paper, sketch the Bode plots for the following transfer functions:

(@) 65 =255

__5s+1
T 52435+1

5410
(¢) G(8) =13 12)(s2+ 10+ 100)

(b) G(s)
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11.3 LC Circuit Frequency Response

| i| )

L, C—=——vy L \%

Figure 11.3.1: LC Circuit

(a) Derive a differential equation which describes the circuit behavior in terms of the input I4(¢)
and taking the output as V,(¢). What are the values of w,,, wq, o, and ¢ for this circuit? Plot
the poles/zero on the complex plane.

(b) Calculate and make a carefully labeled graph of the response to a unit step current input
I5(t) = us(t), from non-zero initial conditions v.(0) = 0 [V] and i1,(0) = —1 [A].

(c) Now let the input the to circuit be a sinusoid Is(t) = sinwt. In steady-state, the output will
have the form V,(t) = M sin(wt + ¢). Calculate expressions for M and ¢ as a function of w.

(d) Make plots by hand of M (w) and ¢(w). For the plots, use logarithmic axes for w, log axes for
M, and linear axes for ¢. That is, the magnitude is displayed on a log-log plot, and the phase
is displayed on a semi-log plot. You should find that magnitude response has an infinite peak
at w = 1/v/LC. Thus this circuit can be used as a band-select filter, predominantly passing
a single frequency. Such a filter is useful for instance in a radio tuner to select a particular
station.
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11.4 LRC Circuit Frequency Response

(a)

| i ) i) .

_|_
]S CT) C — VC L VL R VR

Figure 11.4.1: LRC Circuit

Derive a differential equation which describes the circuit behavior in terms of the input I,(t)
and taking the output as V.(¢). What are the values of wy,, wg, o, and ¢ for this circuit? Plot
the poles/zero on the complex plane.

Now let the circuit parameters have the values L = 5 [mH], C' = 0.02 [pF], and R = 2.5 [k€2].
Calculate and make a carefully labeled graph of the response to a unit step current input
I5(t) = us(t), from zero initial conditions v.(0) = 0 [V] and i1,(0) = 0 [A].

Now let the input the to circuit be a sinusoid Is(t) = sinwt. In steady-state, the output will
have the form V,(t) = M sin(wt + ¢). Calculate expressions for M and ¢ as a function of w.

Make plots by hand of M (w) and ¢(w). For the plots, use logarithmic axes for w, log axes for
M, and linear axes for ¢. That is, the magnitude is displayed on a log-log plot, and the phase
is displayed on a semi-log plot. You should find that magnitude response has a finite peak.
What is the peak frequency? How is the peak magnitude related to the circuit parameters?
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11.5 Pole-Zero Plots

For the pole-zero plots shown in Figure 11.5.1:

(a) Determine the associated transfer function, under the assumption that the magnitude of the
Bode plot passes through 1 at w = 1.

(b) Accurately sketch the associated Bode plots (magnitude and phase), under the assumption
from (a).

D (i3 B P
5 ) > i i
1o Refay i /K CR3 3
O~ - -+ 100
i
:
(
—‘?o PRI

|
\\
|
O- — —%—(0o

-1000 _ |00

-0t =108 =100 -10 kefa

Figure 11.5.1: Pole Zero Plots
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12

Signals, Transforms, and Transfer Functions

12.1 First Order Zeros

This problem considers the effect of zeros on the step response of a first-order system. Specifi-
cally,consider a system with input u and output y described by the differential equation

TYy+y=au-+u

Note that this system has a pole at s = —1/7 and a zero at s = —1/a.

(a)

Write an analytical solution for the response of this system to a unit step, assuming zero
initial conditions. Use impulse matching to work through the transient at t = 0, and use the
approach of particular and homogeneous solutions to solve the problem. Do not use Laplace
transform techniques.

We now want to study the step response for a number of values of the parameter a. Let 7 =
0.1 sec,and sketch the step response for each the following values: ¢ = 0.05,0.09,0.11,1, -1, —.1.
You should be able to sketch the response by hand, without any need for computational as-
sistance. Along with the step response, include a pole-zero plot showing the locations of the
pole and zero on thes-plane.

Collocated poles and zeros in some sense cancel each other. Argue that if we let a = 7 =
0.1 sec, then the system reverts a simple gain of 1 from input to output, that is, from a
condition of initial rest, the output at all times equals the input. What is the step response
for this choice of parameters? Show that your response in part b) above approaches this
response in the limit ¢ = 7. Can you see this asymptotic behavior in the step responses
you’ve plotted in part b)?

Another way to think about zeros is that they allow properly chosen exponential inputs with
no corresponding output. Specifically, assume that the input takes the formu(t) = e*1*. Show
that by the proper choice of s1, the driven output is identically zero. How is this value of sq
related to the zero location?

Solve for the step response from a zero initial condition via Laplace techniques. This should
yield the same result as you found in part (a).
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12.2 Laplace Practice

A signal w(t) is defined as
w(t) = us(t) —us(t —T)

where T is a fixed time in seconds and us(t) is the unit step. Compute the Laplace transform W (s)

of w(t). Show your work.
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12.3 Step-Zero

This problem studies the effect of a real-axis zero on the step response of a second-order system.
Specifically, consider the transfer function

_ s/aC+1
H(s) = s24+2(s+1°

Note that we have normalized by choosing w,, = 1. This is the same as allowing a non-unity value
of wy, and making all plots with respect to wy,t. For this transfer function:

(a)

Plot on the s-plane the poles and zero as a function of « for the values o = 0.1, 1, 10,and
for ¢ = 0.01, 0.1,0.7. Make a separate plot for each value of {, showing the effect of o on
the zero location. Clearly label the pole and zero locations on the real and imaginary axes.
Note that you cannot use a linearly scaled pole/zero plot if you want to show the pole and
zero locations with adequate resolution.

Use Laplace techniques to derive an analytical expression for the response of this system y/(t)
to a unit step u(t) = ug(t) from initial condition y(0) = ¢(0) = 0. Carefully show all steps.
Be sure to include an expression which gives the output transform Y (s) in terms of the
input transform U(s). Expand this expression in terms of given entries in a table of Laplace
Transforms, performing inversion from the Laplace Transform to a function of time.

Use Matlab to plot the response function you have derived versus time and for the values of «
and ( listed in part a). Include separate plots for each value of ¢, which overlay the variation
with a. How does the zero location affect the step response? Can you see that the term s/a(
contributes a derivative effect in the step response? Explain.
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12.4 Laplace to Time
For each Laplace Transform Y'(s), find function y(¢):

(a)

121



12.5 Time to Laplace
For each of the functions y(t), find the Laplace Transform Y'(s):
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12.6 Laplace Transform

A signal has a Laplace transform
a

s(s+a)

X(s)=b+

where a, b > 0, and with a region of convergence of |s| > 0. Find z(t), t > 0.
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12.7 Signal in Time and Frequency Domain

A signal z(t) is given by
z(t) = (e7" — 6_1)(us(t) —us(t — 1))

(a) Sketch this signal as a function of time.

(b) Calculate X (s). Clearly show the steps in your calculation.
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12.8 Transfer Function and Time Constants

(a) Calculate the transfer function v,(s)/v;(s) for the circuit shown in Figure 12.8.1

C
I
I

o

ANNN o +

Figure 12.8.1: Electrical Circuit

Write this transfer function in the form

K7'18+ 1
T98 + 1

Write expressions for K, 71, and 75. Use Laplace initial and final value theorems to calculate
v,(07) and v(c0). Plot the pole and zero of this system on the s-plane. What happens when
R101 = RQCQ?

Let v;(t) = us(t), a unit step. Assuming initial rest conditions, calculate an expression for the
step response v,(t). Make sketches of v,(t) for the following three sets of parameter values:

(i) R1 = 1kQ, RQ = 9/€Q, Cl = 1,uF, CQ = 9MF
(ii) R1 = 1]{79, R2 = 9]479, Cl = 9,uF, CQ = 1MF
(iii) R1 = QkQ, R2 = 1]€Q, Cl = 9,uF, CQ = 1/J,F

Also plot the pole/zero diagram for each set of parameters.
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12.9 Fourier Series Input

A common periodic signal is a triangle wave similar to that shown below. It can be thought of as a
series of ramps repeating at a frequency of w,. The purpose of this problem is to see how different
dynamic systems, each with a different transfer function G(s), will react to that signal. To do this,
we can make use of the Fourier series, that states that any periodic function f(¢) can be described
by an infinite series:

1 > .
ft) = 5o + z_:l [an, cos (nw,t) + by, sin (nwyt))]
where:

2 t1+T

an = — f(t)cos (nwot) dt
T t1
2 t1+T

by = — f(t)sin (nwot) dt
T t1

where w, is the fundamental frequency of the waveform.

(a) Using references you might have from 18.01/2/3, determine the appropriate Fourier Series for
the triangle wave shown below

(b) For each of the transfer functions below, sketch (not using MATLAB) the Bode diagram.
Gi(s) =2 with K = 10, 7 = 20.

K .
Gals) =)y With K =1, m =5, and 72 = 10.

Gs(s) ZMSW with ¢ = 0.5 and w, = 50.

2 2 z zZn 2 .
Gals) :rgrlssiécww S with K = 1, 7 = 001, ¢ = 1.0, w, = 100, ¢ = 0.05, and
w,n = 10. "

(c) Using the diagram only, write the steady-state output y(¢) that would result if the triangle
wave u(t) of Figure 12.9.1 were applied to the input of each transfer function. For this
equation, consider only the first 5 terms of the series in your answer.

(d) Using MATLAB, plot 2 full cycles of the following:
(i) u(t)

(ii) u(t) with only 3 term in the series included
(iii) y(t) for G1 AND G2 based on the series solutions from part C)
(e) Now consider that we would like to have the output of the transfer function, y(t), be a ”pure”
sine wave of frequency 3 * w,. (In other words we want to ”tune in” the frequency 3 * w, and

"tune out” all the others.) Propose a transfer function that will come close to this and then
check how it does using the above procedure.
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Figure 12.9.1: Triangle wave u(t) with 7' = 0.628 sec.
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12.10 Spring Mass System

Consider the simple spring mass system shown in Figure 12.10.1 subjected to a force F(t) that is
a “pulse” as shown in Figure 12.10.2.

k
(TR |

F(t)

ANNNNA\N\

[
b L—

777777777

Figure 12.10.1: Spring Mass System

2 10 time

Figure 12.10.2: Force Pulse

Ifm=1;k=1and b =1:

(a) Show how you would model the F(t) using Laplace transforms. (i.e. find F(s).)

(b) Using Laplace Transforms, find the solution of x(t) in response to F(t) for 0 <t < 20 sec.
(
(d

)
)
c) Using MATLAB, plot x(t).
) Describe why the response look as it does.
)

(e) How would the response change if the pulse were 2 seconds wide instead of 8?7 Just describe
qualitatively and make a sketch of what you’d expect. Do not recompute the response.
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12.11 Transfer Function
Given the transfer function

a(s) X(s) 5%+ 110s% 4+ 1100s + 1000 1)
S) = =
U(s) s*+2s3 45252 +51s+50

(a) Find the poles and zeros (you can use the MATLAB roots() command for this).
(b) Plot these poles on a s-plane.

(c) Based on the location of these poles, describe the expected response to a step input. Please
explain your reasoning.

(d) Using the MATLAB step command, create a plot of z vs. ¢ to see if your prediction was OK,
and compare.
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13 Controls

13.1 Rooftop Antenna

(The following problem is adapted from Roberge, J.K., Operational Amplifiers, Wiley and Sons,
1975, problem P2.9.) A negative-feedback system used to rotate a rooftop antenna is shown in
Figure 13.1.1(a). The total inertia of the output member (antenna, motor armature, and poten-
tiometer wiper) is 2kg-m?. The motor can be modeled as a resistor in series with a speed-dependent
voltage generator as shown in Figure 13.1.1(b).

Antenna
Amplifier
Motor |

+ voltage Vi Motor

6. 10 (housing fixed)

1 -
Input 9%_- 0, Qutput shaft angle
applied Y
to poten—
tiori:loeter Potentiometer coupled

to antenna and motor

shaft.

Error signal =
10 volts/radian (8, —6,)

(a)

+ r—————

+

C) 10 volts/radian/sec X motor speed

(b)

Antenna rotator System. (@) System configuration. (b) Model for motor.

Figure 13.1.1: Antenna Diagram

The torque provided by the motor that accelerates the total output-member inertia is 10 Nm per
ampere of motor current I,. The polarity of the motor dependent generator is such that it tends
to reduce the value of I, as the motor speed increases. The scale factor is such that I, becomes
zero for a motor shaft velocity equal to V,,,/10 rad/sec.

(Note: There are a number of repeated analyses in this problem. You will want to use Matlab to
automate these. The problem shows some of the key tradeoffs associated with feedback control,

so please do think carefully about what you observe as the controller gain is changed through the
values 10, 100, and 1000.)

(a) Draw a block diagram that relates 6, to 6;. You may include as many intermediate variables
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(2)

as you wish, but be sure to include V;,, and I, in your block diagram. Calculate the transfer
function 6,/6;.

Also include in your block diagram a torque disturbance Ty applied to the antenna shaft. For
instance, this torque disturbance might represent the effect of wind on the antenna. Calculate
the transfer function 6,/T,; which represents the response to such a disturbance.

Plot the system poles in the s-plane. Calculate the response in 6, to a 1 rad step input 6;.
Plot this response showing relevant time scales.

Generate the Bode plot for 6,/6;.
Calculate the unit step response and Bode plots for the disturbance transfer function 6,/Ty.

Calculate the transfer function of the negative of the loop transmission for this feedback loop.
Plot a Bode plot for this transfer function. What are the crossover frequency and phase
margin for this loop? (These terms have been discussed in lecture.)

Now change the gain of the differential amplifier in the loop from 10 to 100. (This will increase
the loop transmission magnitude by a factor of 10.) Repeat parts (b), (c), (d), and (e) with
this new value of loop gain. Comment on the effect of this larger loop gain on the system
closed-loop dynamics exhibited in the speed and damping of the step response, Bode plots,
command following ability, and the ability to reject a disturbance torque. How do the poles
move as the gain is increased?

Repeat the analysis of part (f) for an amplifier gain of 1000.
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13.2 Lead Controller

We now extend the laboratory system to consider position control, and the design of a lead con-
troller. The system transfer functions used in the lab all refer to the motor output shaft angle 6,,.
We will define the potentiometer shaft angle as 6,. The potentiometer is geared down from the mo-
tor by 6:1. That is, nqg = 6n,, and thus 60, = 0,,. Further, the potentiometer outputs V,o; = £10 V
for a potentiometer shaft rotation of 0, = £7 rad.

(a)

(b)

Show that the relationships above imply that Vjor = Kpotbp, where Ko = 10/7 V /rad. Note
that we have defined K, as depending linearly upon 0,.

Modify the block diagram of Fig. 2 of the prelab to include the motor angle 6,,, the po-
tentiometer angle 6,, and the potentiometer gain K. Use this modified block diagram to
calculate the transfer function V). /Vin. (Recall that Vj, is the amplifier input voltage as
shown in the prelab.) Sketch the poles of this transfer function as well as its Bode plot.

Now assume that the motor position controller is a lead controller of the form

Vin(s) 1075 +1

E(s) Ts+1

Here E(s) = R(s) — Vpot(s), where R(s) is a position reference voltage, and E(s) is thus
the position error. The controller is embedded in the position feedback loop as shown in
Figure 13.2.1.

—>

(0ca«( | Va®
Reay  + €91 K 't:-u

Figure 13.2.1: Block Diagram

Choose the controller parameters K and 7 to achieve a loop crossover frequency w., =
100 rad/sec, and phase margin ¢ > 45°. Explain how you developed a design satisfying
these design values. Include a Bode plot of the negative of the loop transmission which
shows that you have achieved these design values. Also include a plot of the closed-loop pole
locations.
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13.3 Third Order

Consider the mechanical drive of Problem 14.1 with the load free to move. The model parameters
have the following values:

L otor = De-5 kg-m?

Brotor = 1le-4 N-m-s/r

Beoupler = 2€-5 N-m-s/r

Keoupler = 1.24e-2 N-m/r

Iload = 5e-5 kg—m2

Bload = le-4 N—m—s/r

This is a system with fairly special symmetry. Note that Iotor = ljoad = I,and that Bp,otor =
Bjowq = B. For this special case, develop a model to predict the angular velocity of the load in
response to an applied motor torqueZ;,.

(a)

Use the variables:

Af, relative angular displacement of motor with respect to load,
wpm, motor angular velocity, and
wy, load angular velocity,

as the state variables for this model in a state-determined system. Construct the state
equations for this model.

Consider a change of variables to the following three variables:

Wm + Wy

A(g, Aw = wyy, — wy, and Wavg = 5

Express the variables wy, and w; in terms of the variablesAw, and wgqyyg-

Re-write the state-determined system using Af,Aw, and wgyy as state variables. Show that
the dynamic behavior of the system may be viewed as a combination of a first-order system
with state variable wq,y and a second-order system with state variables Af, and Aw. Note
that both sub-systems are excited by the motor torque T}, but are otherwise independent of
one another.

Evaluate the first-order behavioral parameter: the decay time-constantr. Estimate the
steady-state speed wgs when T, = 6.0e-3 N-m.

Evaluate the second-order behavioral parameters: the undamped natural frequency w,, and
the damping ratio (.
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13.4 Error Constants

We have not formally treated the subject of error and error constants, and it becomes
important when doing loop shaping with compensators. To consider it here, we will
construct a classical table of error as a function of Ko, for different input types and
controller types.,

Consider first a canonical control system:

R(s) E(s) Y'gs)

KG(s)

Where G(s) is the loop transfer function and K is the DC loop gain.

a) Derive the error transfer function E(s)/Y(s)

Now consider three types of input for R(s)

Step R(s)=1/s (also referred to as an position input)
Ramp R(s) = 1/s? (referred to as a velocity input)
Parabola R(s) = 1/§° (referred to as an acceleration input)

b) For each of these find an expression for E(s) given R(s) and the loop transfer function
G(s)

Now we consider 3 “types”™ of systems

Type 0 G(s) has no integrators: G(0) = constant = K
Type 1 G(s) has one integrator (i.e. a single pole at the origin)
Type 2 G(s) has two integrations (i.e. a double pole at the origin)

¢) Based on a) and b) and the definition of “type”, fill in the following table:

Steady State errors
Type 0 Type 1 Type 2

Step Input

Ramp

Parabola

Figure 13.4.1:
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13.5 System Type

R() E® I kas) L

Where G(s) is the loop transfer function and K is the DC loop gain.

Using the same controller form as above, you are given a transfer function

400
G(s) 3
s(s~ 10s 400)

By the above definitions, this is a type 1 system, and should have zero error to a step (or
“displacement”) input. However, the velocity error (that resulting from a ramp input)
will not be zero. Indeed our goal is to achieve a velocity error of < 2%.

For this we can explore two different approaches.

a) First plot a bode diagram of G(s)

b) From that diagram, what will be the velocity error if the closed-loop system has a
phase margin of 50°? (That is, after you have found a loop gain to achieve the phase

margin)

¢) Since the error is too large, a former 2.003 student tells you simply to increase the
system type from 1 to 2 and all your problems will be over: just look at the error table!

Good advice or not? - Please explain by looking at the resulting open loop bode
diagram.

Now look at the alternative of using a lag compensator.
d) Given that we want a velocity error < 2%, design a lag compensator that will achieve
that result without changing the phase margin at the crossover frequency you found in

part b). Show the final Bode plot to confirm the result

e) Now plot the resulting step response of the system designed in part d) How does it
compare to the expected values?

f) Looking at the closed-loop system response to a ramp input, confirm that you have
achieve a steady-state velocity error of 1%

Figure 13.5.1:

135



13.6 Unity Feedback

Consider the feedback system of Figure 13.6.1 in block diagram form where G(s) = 1/s.

R(S)>O » K. —» G(s) Y(»s)
T_

Figure 13.6.1: System with unity feedback

Determine the closed-loop transfer function 7T'(s) = Y'(s)/R(s) for this system.

Find the gain K. that will result in a closed-loop step response with a settling time of 1
millisecond.

On a single Bode magnitude plot, show the following:

- G(s)

— Ty(s) for K =1
— Ty(s) for K =10
— T3(s) for K =100

Be sure to label each plot clearly.

If we define bandwidth as the range of frequencies over which the magnitude is > 0.5, what
are the corresponding bandwidths of the three T'(s) plots in part (c)? Recall that we said a
true model of an op amp is: G(s) = K/s where K = 106

Given this information, what is the expected step response of a unity-gain op-amp?

What is the corresponding bandwidth of that op-amp?
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13.7 P and PI Controllers

In the lab this week, you are designing P and PI controllers for the motor velocity. This problem
refers to the designs you’ve developed for the lab. Please use the results from your Prelab 9
calculations to work this problem.

(a)

For the proportional velocity loop, write an expression for the transfer function of the negative
of the loop transmission. Plot the Bode plot for this transfer function. What are the crossover
frequency and phase margin for this loop? What is the closed-loop pole location? How does
this compare with the crossover frequency?

For the proportional-integral velocity loop, write an expression for the transfer function of
the negative of the loop transmission. Plot the Bode plot for this transfer function. What
are the crossover frequency and phase margin for this loop? Also plot the closed-loop poles.

For the proportional-integral velocity loop, the controller has the form

1
K75+ '
S

In the prelab, you have calculated values of K and 7 to locate the poles with ( = 0.5 and
wp, = 30. In part b) above, you have looked at this design from a loop transmission perspec-
tive. Now we want to consider the design as it is affected by the loop phase margin.

In this section, modify the PI controller so that you achieve a crossover frequency of 200
rad/sec, with a phase margin of 15 degrees. What values of K and 7 result? Be sure to
explain how you arrived at these parameter values. Plot the closed-loop poles that result.
What are the values of ¢ and w,, associated with these new root locations? How do these root
locations compare with the values in part b)? What root parameter seems to be associated
with the crossover frequency, and what parameter seems to be associated with the phase
margin?
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14 Motors and Transformers

14.1 Locked Load

The sketch (Fig. 14.1.1) depicts a common mechanical drive configuration discussed in class. To
identify parameters of the motor and coupler it is often useful to conduct a test of the locked-load
dynamic response. The load is immobilized; a step change in motor torque is applied; and the
resulting motion of the motor is observed.

flexible

g
7

b\
S &

bearings

motor load

L

Figure 14.1.1: Mechanical Drive

(a) Assuming that all model elements have linear constitutive equations, develop a model to
predict the angular position of the motor in response to an applied motor torque 7},. Express
this model as a state-determined system.

(b) Calculate

(i) the damped natural period, and

(ii) the decrement ratio for the oscillatory response, when the model parameters have the
following values:
Irotor = 5e-5 kg-m?
Brotor = le-4 N-m-s/r
Beoupler = 2e-5 N-m-s/r
Kecoupter = 1.24e-2 N-m/r
T,, = 4e-3 N-m abruptly applied constant torque
w(0) = 0 initial angular velocity
6(0) = 0 initial displacement

(c) A proportional velocity feedback controller is added to the uncontrolled system described in
(b) above. The motor angular speed is sensed and used in the control algorithm

T =G (7“1 - wsensed) (1)
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where r1 is a reference speed parameter, and GG; is a gain parameter. In what units should
G1 be expressed? Analyze the closed-loop system and construct a state-determined system
which describes its dynamic behavior. Calculate the controller gain, G, required to yield a
critically-damped locked-load response.

A proportional position feedback controller is added to the uncontrolled system described in
(b) above. The motor angular position is sensed and used in the control algorithm

Tm = G2(T2 - Hsensed) (2)

where 73 is a reference position parameter, and (G5 is a gain parameter.In what units should G»
be expressed? Analyze the closed-loop system and construct a state-determined system which
describes its dynamic behavior. Derive algebraic expressions which show how the following
closed-loop behavioral parameters depend on the feedback gain, Go:

(i) The locked-load undamped natural frequency wo.

(ii) The locked-load damping ratio (.
The usual implementation of the control algorithms (1) and (2) is with electronic signal pro-
cessing and amplification. It is however theoretically possible to implement these algorithms
mechanically by interpreting the control algorithms as constitutive equations for elements
connected between the motor rotor and a reference rotor which is driven with the desired
motion. Can you identify the type of mechanical element which is represented by:

(i) The algorithm (1)?

(ii) The algorithm (2)?
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14.2 Motoring with a Capacitor

This problem concerns the motor connection shown in Figure 14.2.1. In this system, we assume
that the motor torque is related linearly to current 7,,, = Ki,,, and thus that the motor voltage is
given by v, = Kwy,. We further assume that the motor coil has zero resistance R = 0 and zero
inductance L = 0. The capacitor C' is connected to the motor terminals as shown. The motor rotor

has a moment of inertia J.

Assume that the motor is driven with a torque source, i.e., that 7, is specified as an external input
independent of the shaft speed. The shaft of the torque source is rigidly connected to the motor

output shaft as shown in the figure. The torque source is massless.

Note that we have defined the reference direction for motor speed w;, to be the same as that for
the source speed w;,. Further note that with these definitions the motor torque is applied to the
rotor in the same direction as the reference for w,.

CJ_V
T

Motor,
with rotor
Inertia J

(a) Draw a free body diagram for the motor rotor showing the torques acting on it.
Newton’s second law for this free body. Note that continuity requires that w;, = wp,.

(b) How are the motor voltage and current related in light of the capacitor connection?

Torque
Source

TS S

Figure 14.2.1: Motor Diagram

Write

(c) Use the information gathered above to write a differential equation for this system with 7,
as the input and the resulting speed w;, as the output. Be sure to show the steps you used
to develop this differential equation. The electrical variables should be eliminated in your

differential equation.

(d) What is the equivalent mechanical model seen by the input torque source? Why?

(e) Let the torque take a step from 0 to A Nm at ¢ = 0 with zero initial rotor velocity. What is
the resulting velocity w;, as a function of time?
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14.3 Leadscrew with Translating Stage

The system shown in Figure 14.3.1 has a translational stage of mass M which moves on friction-
less bearings. The stage is coupled to a lead-screw via the nut shown; the lead screw has a pitch
of 1072 m/revolution, and is fixed in the x-direction by the bearings shown, but is free to rotate
about its axis. The lead screw has a moment of inertia J about this axis. The mass of the nut is
included in M. The stage is connected to translational spring Ko and damper co. The lead screw
is connected to rotational spring K and rotational damper c;.

Write the transfer function X(s)/F(s) where F is an input force driving the stage, and z is the
stage position.

e
FITHTL /////Z;Ld_—’}—%
g e

| Pt = 072y

Rot/-—dAﬂ\ﬁ-ihQ.‘J_

Figure 14.3.1: Leadscrew
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14.4 Mass Pulley System

This problem concerns the mechanical system shown below.

Figure 14.4.1: Pulley System

As shown in the figure, the system has a force input F' which acts on the pulley carrier. The
position of the carrier is x2. The pulley has a radius R, moment of inertia J, and mass Ms. The
carrier is included in Ms. The angular rotation of the pulley is 6, as shown.

A mass M7 hangs on a string which is wrapped around the pulley as shown, and anchored to ground.
The position of M is 1. Note also that gravity acts on the system in the downward direction. We
assume that the motions of the system are such that the string remains under positive tension.

(a) What is the relationship between z5 and #7 Show your reasoning.
(b) What is the relationship between xs and z;? Show your reasoning.

(¢c) Now we ask you to develop a dynamical relationship between the applied force F, the gravity
load(s), and the resulting motion zo. That is, write a differential equation that describes the
motion of the system with F' and ¢ as inputs, and with only xo as the dependent variable.
The variables 1 and 6 should not appear in your equation. Clearly show your reasoning in
developing this model. Be sure to include relevant free-body diagrams, and other figures that
explain the steps in your development.
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14.5 DC Motors

Consider the DC motor shown below. It is connected to a rudimentary circuit with only a single
resistor, which follow Ohm’s Law : e = Ri where R is the circuit resistance.

Figure 14.5.1: DC Motor with resistor

(a) Given the motor constant K, and the circuit as shown find the relationship between 7" and
Q as seen at the motor shaft. Be careful with signs and look at your answer critically to be
sure you got it right.

Figure 14.5.2: DC Motors connected together

(b) Now consider the system shown in Figure 14.5.2, where two motors are connected together
as shown. Assuming negligible mechanical friction and inertia in the motors, find the overall
transformer relationship 60 /0y and T1/T» as a function of K,,,, K, and R.

(¢) What would be a purely mechanical equivalent of this?
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14.6 Gear Train
For the system shown below with k& = 10 [Nm/rad], J = 1 [Nm s?/rad] and b = 1.25 [Nms/rad]:

e, b=0
§ %{; ,
{
ro,” W e i \/

Figure 14.6.1: System Diagram

7

(a) Find the basic dynamic properties ¢ and w,, as seen at 6s.

(b) Now reflect these properties back to the input shaft. What are the basic properties ¢ and wy,
as seen at 0.

(c) Sketch the response of §; and 62 to a unit step in 7} in the same plot.

(d) What effect does the gear train have on the characteristic dynamics of this system? Please
explain your answer.
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14.7 Non-Ideal Transformer

For the system shown in the figure below, we cannot ignore the dynamic properties of the trans-
former and must try to account for them in our model.

)
NI

L
7Y

Bearings

Figure 14.7.1: Diagram of Non-Ideal Transformer

Assuming that ki is very large, the load inertia is large but of the same order of magnitude as Jy
and Jo, and that the bearings exert a viscous drag on the shaft.

(a) Write the equation of motion for each important mass in this system.
(b) Express each of those equations in terms of appropriate input/output transfer functions.

(c) Using a block diagram, show how these transfer functions combine to give us the overall
transfer function G(s) = 02/T1.

(d) Now using block diagram algebra, derive the overall transfer function for this system explicitly.
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14.8 Equivalent Mass and Inertia

(a) Derive an expression for the equivalent mass at the point of application of the force in Fig-
ure 14.8.1.

o |

m

V;'

/S s

Figure 14.8.1: Mass on cantilever.

(b) Derive an expression for the equivalent mass at the point of application of the force in Fig-
ure 14.8.2. Assume that each wheel has a mass, m , and a rotational inertia of J . Assume
there is no energy loss due to bearings and that the wheels do not slip.

&V

Figure 14.8.2: Cart of mass M and wheels each of inertia J.

(c¢) Derive an expression for the equivalent rotational inertia in Figure 14.8.3. Assume that the
two pulleys have negligible inertia, there are no losses due to bearings and that the flywheel
has inertia, J .

T,o

~

r1

Figure 14.8.3: Pulley System
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14.9 Inertia in Geartrain

This problem considers the system shown in Figure 14.9.1 in which two rotational inertias J; and
Jo are connected by a gear train.

R SRV

Figure 14.9.1: Rotational inertias connected through a gear train.

The rotational speed of J; is wi and the rotational speed of Jy is wy. An input source of torque 71
is applied to Jp in the direction of wy. As shown in Figure 14.9.1, the gear train has a ratio of
N :1; that is, wo = Nw;.

(a) Assume that the input torque source has a constant value of 7 = 79. What value of N will
maximize the acceleration of the load ws?

(b) For this acceleration-optimum gear ratio, what is the equivalent inertia of Jy as seen by Jj
looking through the gear train? That is, what is the reflected inertia of Js on the J; side?
How does this compare with J;7

(¢) The power input to the system is P, = mjw;. For the optimum gear ratio calculated above,
make a plot of Py, (t) assuming that the load starts at rest at ¢t = 0.
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14.10 Motor Driving Inertia Through Gear Train

This problem focuses on the motor connected to a load as shown in Figure 14.10.1. The motor is
driven by an input voltage V in series with a coil resistance R. The motor is assumed ideal, with
no energy storage or losses inside the motor. The motor is connected to a load inertia J > 0 and
rotational damper b > 0. The motor shaft and load rotate at angular velocity w. The motor applies
a torque to the load 7 = K1 in the direction of w; correspondingly, the back emf is e = Kw.

Figure 14.10.1: Motor driving a rotational inertia and damper.

(a) Write a differential equation describing the system in terms of the input voltage V (¢) and the
output speed w(t). Write an equivalent differential equation with input V'(¢) and output i(t).

(b) Assume that the system is initially at rest, and that at ¢ = 0 the input voltage takes a step
V(t) = Vhus(t). Solve for the resulting transient in i(¢) and w(t), and make a plot of these
two quantities as a function of time.

(c) What are the steady-state values of i and w? In steady-state, write an expression for the
power being dissipated on the mechanical side in the load damper b, and on the electrical side
in the resistor R. How much power is being supplied in steady-state by the voltage source? Is
this in balance with the dissipation? In this steady-state, how much kinetic energy is stored
in the load inertia J?

(d) Make a plot of steady-state load power dissipation as a function of load damping b for b > 0.
What value of b results in maximum power dissipation in the load? How does this compare
with the electrical equivalent damping term K?/R? For this maximum power value of b, how
much power is being dissipated in the resistor R?

(e) Finally, suppose we allow negative values of the load damping. Note that a negative damper
will supply power to the load. For what range of b < 0 will the system be stable? For what
range of b < 0 will the system be unstable?
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15 MATLAB and Simulink

15.1 Matlab Spirograph

Your instructor has written a small Matlab m-file called spirograph.m which he claims makes
spirograph plots. This file is listed below, and is available for download from the course web site.
Most of you have probably played with a simple spirograph made from a sheet of plastic. In such
a device, an inner gear of some radius rolls inside an internal gear of larger radius. A pencil is
inserted in the inner gear in one of a number of possible locations. As the inner gear rolls, the pencil
thus traces out a trajectory on a piece of paper lying under the spirograph. The spirograph has a
number of choices for the sizes of the inner and outer gears, which result in interesting variations
in the generated patterns.

Unfortunately, the instructor was too lazy to add much in the way of comments when he wrote the
file. Your job is to look through this file to understand the underlying geometry and computations.
Specifically, we ask you to:

(a) Develop a diagram which explains the geometry which is being computed. Be sure this
diagram includes all three of the radii rg, o, and r3, as well as the angles 6; and 03.

(b) Draw a diagram of the gear system, showing how this relates to the geometry above.

(c) Explain the operation of the program and the function of each line of code, by annotating a
listing of the m-file.

(d) Run the m-file in Matlab by choosing some values for the parameters in the edit window,
saving the file, then typing the name spirograph at the Matlab command line. Find some
interesting values for the choice of radii and include the resulting plots. Can you explain the
essential features of the plots on the basis of the chosen radii?

(e) Rewrite the file as a Matlab function which can be called with the three radii as arguments.
Include a listing of your function. To find out more about Matlab m-files and functions,
review the material on Matlab in Ch. 1 of the text. You can also use the on-line Matlab help
system.

spirograph.m
Download
% spirograph

% DL Trumper 9/13/01
% revised 9/17/01 to fix minus sign error in theta3

r0 = 2;

r2 = .84;

r3 = .7;

thetal = [0:pi/1000:100%pi];

theta3 = -thetal*((r0/r2) - 1);

position = (r0-r2)*exp(j*thetal) + r3*exp(j*theta3);
figure(1)

plot(position)

axis equal
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15.2 MATLAB Plotting

Use MATLAB to plot the following signals. Choose the appropriate time range and sampling
points.

(a) 10sin 100t

(b) e~ cos 100t

)
)
(c) Re{e’'}; s=—1+10i
(d) 5e~ 10t
(e) el
(f) 8100t _ 51000t

150



15.3 Simulink Introduction

Fun and games with SIMULINK

The purpose of this short but sweeeeet assignment is to learn about the block diagram language within
MATLAB know as SIMULINK. SIMULINK lets you create block diagrams of dynamic systems, invoke
feedback control designs and then “run” the system to see the predicted performance.

To get started, simply type “Simulink” in the MATLAB command window. The GUI will then include a
menu of various block options, along with a model window in which you build the system. For example,

the simple velocity servo we have discussed in class would look like this in SIMULINK:
] To Workspace

Scope

Transfer Fcn

C

Clock To Workspace1

And if I set K=5 and a = 1 in the command window, the simulation (using default simulation parameters)
becomes:

Lagyv 1 vl &

Figure 15.3.1:
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For this assignment I encourage you to look at the various blocks in SIMULNIK and to run some of the
DEMOS.

In addition, please look at the following:

Consider the problem we have done in class: The PI control of the velocity servo. However, here we
address the problem of noise in the velocity measurement. This is typically done with a tachometer (really
a generator) and leads to high frequency noise from the brushes in the generator. As a result, we often
place a “low pass filter” in the feedback loop. Thus:

Kf
H(s)=—
T8+ 1

Let’s look at this effect by using both analysis and SIMULINK simulation:

a) First create the model of the PI controller for the velocity servo:

Vv

Pl Controller

b) Calculate analytically the values for K. and z (for the PI controller) that will give a critically damped
response with a settling time of 0.5 second. (Assume a=Kp=1)

¢) Now implement those gains in SIMULINK and see if it agrees with expectations. If there is any
discrepancy, please explain it.

d) Now add the feedback filter H(s) to the SIMULINK diagram. Assume that K,= 1 and that the filter time
constant (7= 0.5 sec). Without changing K. or z, run the simulation again, and plot the result. What
happened and why?

¢) Now go ahead and vary the gain K, until you get critically damped response again as seen by the
simulation response. (Try to keep track of how many simulations you have to do until you get the “right”
answer.) What is the settling time for this case?

Figure 15.3.2:
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15.4 Wackygraph

Your

instructor has written a small Matlab m-file called wackygraph.m which he claims makes

interesting plots. This file is listed below, and is available for download from the course web site.

% wackygraph

% DL

Trumper 9/9/02

r0 = 10;

r2 = 1;

N = 10;

gl = 40;

g2 = 0.2%r0;

thetal = [0:pi/1000:100%pi];
theta3 = -glxthetal;

rl = r0 + g2xsin(N*thetal);

position = (rO+rl).*exp(j*thetal) + r2xexp(j*thetad);
figure(1)
plot(position)

axis

equal

Unfortunately, the instructor was too lazy to add much in the way of comments when he wrote the
file. Your job is to look through this file to understand the underlying geometry and computations.
Specifically, we ask you to:

(a)

(b)

Develop a diagram which explains the geometry which is being computed. Be sure this
diagram includes all three of the radii rq, r1, and ro, as well as the angles 6, and f3. What
are the effects of the parameters g1, g2, and N?

Write expressions for the real part of the position variable, and the imaginary part of the
position variable, i.e., Re{position} and Im{position}, respectively.

Explain the operation of the program and the function of each line of code, by annotating
a listing of the m-file. Note the use of the .* operator which does element by element
multiplication. Why did the program use this. What happens if the regular * operator is
used?

Run the m-file in Matlab by chosing some values for the parameters in the edit window,
saving the file, then typing the name wackygraph at the Matlab command line. Find some
interesting values for the choice of parameters and include the resulting plots. Can you explain
the essential features of the plots on the basis of the chosen parameters?

Rewrite the file as a Matlab function which can be called with the three radii and three
parameters as arguments (6 total arguments). Include a listing of your function. To find out
more about Matlab m-files and functions you can use the on-line Matlab help system.
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16

Case Studies

16.1 CD Player 1

In a typical CD player the disc is mounted directly on the shaft of an electric motor. The rotor of
the motor has a moment of inertia I, and experiences a frictional retarding torque which can be
modeled by a linear damper with damping coefficient B,,.

(a)

(b)

The mass of a compact disc is 0.028 kg, and its diameter is 0.120meters. The diameter of the
hole in the center is 0.015 meters. Calculate the moment of inertia I; of the CD.

Assume that the electric motor, when it is powered, produces a constant torque T, inde-
pendently of the rotational speed w,,. It is observed that,after an initial starting transient,
the steady-state rotor speed wg; is the same, whether a CD is mounted or not. The start-up
transients are, however, different. With no disc mounted, the rotor spindle-speed reaches
95% ofwgs in 0.30 seconds, but when a disc is mounted it takes 2.0 seconds toreach that same
speed. Assuming that this behavior can described by a simple linear model, estimate the
value of the damping coefficient B,

(i) when there is no disc mounted, and

(ii) when a CD is mounted.
Estimate the moment of inertia of the motor rotor I,.

Construct a state-determined representation of your linear model for the system with the CD
mounted. Take T;, to be the input and w,, to be the output.
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16.2 CD Player 2

A common design for a speed controller uses simple proportional velocity feedback. The actual
speed of the disc is sensed from information written onto the disc. The motor torque 75, is then
generated according to the following control algorithm

Tm = G(T - wsensed)

where r is a constant reference speed, and G is a constant gain.

(a)

(b)

()

What are the dimensions of the gain parameter G?7 What would be the units for G in the SI
system of units?

Consider that this controller is applied to the CD player modeled in Problem 16.1 (d). Con-
struct a state-determined representation of a linear model for the controlled system with r as
the input and w,, as the output.

Compare the inputs required to achieve a steady-state disc rotation speed of 4.0 revolutions
per second for the uncontrolled open-loop system of Probleml and for the controlled closed-
loop system of the present Problem:

(i) What is the magnitude of the constant, suddenly applied, motor torqueT,, required to
reach the desired steady-state speed in the uncontrolled system.

(ii) Obtain a formula (involving the gain parameter G) for the magnitude of the constant,
suddenly applied, reference speed r required to reach the desired steady-state speed in
the controlled system.

Design the controller; i.e., choose the value of G, such that the time to reach 95% of the steady-
state speed for the controlled system is 1/5 of thecorresponding time for the uncontrolled
system.

Write a MATLAB script which can integrate the equation (or equations) ofPart (b) and plot
the time history of the motor torque 7,, during the startingtransient of the controlled sys-
tem. Compare the magnitude of the mazimum motortorque in the controlled case with the
magnitude of the constant torquefound in (c{i}) for the uncontrolled case.
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16.3 CD Player 3

In a CD player the disc with moment of inertia I; is mounted directly on the shaft of an electric
motor, whose rotor has a moment of inertia I,.. The unit experiences a frictional retarding torque
that can be modeled by a linear damper with damping coefficient B,,. The parameter values for
the system are estimated to have the following values:

I; = 5e-5 kg-m?

9e-6 kg-m?
B,, = 9e-5 N-m/rad/sec

~
|

Formulate the state-determined equation of motion for rotation with the angular velocityw,, as the
output and the motor torque T;, as the input.

(a) Consider the steady-state sinusoidal oscillation of w,, in response to an input torque of the
form T, = T, sin Qt. Calculate the response amplitude and phase angle for three frequencies:

Q = lrad/sec
Q Srad/sec
Q = 15rad/sec

for each of the following cases:

(i) No disc mounted on the motor spindle

(ii) A disc is mounted on the spindle
(b) Evaluate the break frequency for each of the following cases:

(i) No disc mounted on the motor spindle
(ii) A disc is mounted on the spindle
(c) Make an accurate, labeled, sketch of the Bode plots for amplitude ratio and phase angle for
each of the following cases:
(i) No disc mounted on the motor spindle
(ii) A disc is mounted on the spindle
(d) If the input torques are applied to the rotor initially at rest, estimate how long it takes to reach
the steady state (for most practical purposes, steady state may be assumed to be reached at
the end of 4 decay time-constants, when 98% of the transienthas decayed). Do this for each
of the three values of €, for each of the followingcases:
(i) No disc mounted on the motor spindle

(ii) A disc is mounted on the spindle
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16.4 Pinewood Derby 1
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Figure 16.4.1: Pinewood Derby

Referring to the Pinewood Derby (Fig. 16.4.1), answer the following questions:
(a) In ST units, how much energy is available to move the race car?

(b) A typical Derby car is 6 inches long. If there were no friction of any kind,what would be the
maximum speed (in SI units) a race car could attain if all its weight were concentrated at the
front end of the car?

(c) What would be the maximum speed if all its weight were concentrated at the rear end of the
car?

(d) In case (c) how long does it take the car to reach the bottom of the inclined section of track?
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16.5 Pinewood Derby 2

Consider adding a viscous friction retarding force ‘bv’ to the previous model. With such a retarding
force which increases with velocity, the speed of the car, even on an inclined track of infinite length,
is limited by the speed at which the retarding force just balances the accelerating force. If this
limiting speed is twice the velocity obtained in part (c) of Problem 16.4, what is the value (in SI
units) of the viscous friction parameter ‘b’?
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16.6 Pinewood Derby 3

The two MATLAB scripts which follow permit you to integrate the equation of motion for a racecar
on a long incline with angle ‘alpha’, subjected to a viscous friction force. Study the programs and
experiment with them , using the Pinewood Derby parameters and the friction parameter ‘b’
obtained in Problem 16.5.

(a) Plot a graph of the racecar speed vs. time for a car starting at rest, over the time period
obtained in Problem 16.5, part (d).

(b) With a long incline the speed of the car is asymptotic to the limiting speed described in
Problem 16.5. Use the scripts to determine how long it takes for the speed to reach 99.9% of
the limiting speed.

car.m

Download

car.m

== =

This program calculates the velocity of a car rolling down an incline
under the influence of viscous friction

The differential equation used to model the car is:

% m dv/dt = m g sin(alpha) - b v

This equation is stored in a separate m-file ’car_visc’ called by this
program (a tedious MATLAB detail).

== =

== ==

==

Declare global parameters (a MATLAB detail)
global g alpha b m

% Input parameter values.

g= 9.81

m = input (’Enter the mass of the car in SI units: ’)

alpha = input(’Enter the angle of the incline in degrees: ’)

b = input (’Enter the value of the friction coefficient "b" in SI units: ’);

% Input initial conditions
vO = input (’Enter the initial velocity in SI units: ’);

% Input integration time.
tspan = input(’Enter time interval of integration in seconds: ’);

% Call a numerical integration algorithm
[t,v] = ode4b5(’carvisc’, tspan, vO0);

% Plot the results.

plot(t,v)

xlabel(’Time [seconds]’
ylabel(’Speed, [meters/second]’
title(’Speed of car on incline’
grid

% Print out speed at final instant.

N = max(size(v))
Finalspeed = v(N)

carvisc.m

Download
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% carvisc.m

% This function, which is called by the program ’car.m’, contains the

% equation of motion of a car on an incline subjected to viscous friction
% Introduce V_dot, the time derivative of v.

function V_dot = carvisc(t,v)

% Declare global parameters (a MATLAB detail).

global g alpha b m

% The mathematical model of the car provides an equation for v_dot.

V_dot = g * sin(alpha * pi/180) - (b/m) * v;

% That’s all there is to it!
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16.7 Pinewood Derby 4

In Problem 16.4 a Pinewood Derby race car was analyzed under the assumption that its motion
was opposed by linear viscous friction with a constitutive relation

fviscous =bv

(a) Formulate a revised model in which the viscous friction element is replaced by a model of air
resistance (sometimes called form drag) with a constitutive equation

farag = ACqu|v| = ACqv%sgn(v)

where A is the frontal area of the car and Cj is a drag coefficient that depends on the car’s
geometry; i.e., on its form.

(b) What are the dimensions, in SI units, of the drag coefficient C; in the above constitutive
relation?

(c) Derive a mathematical expression for the time-history of the speed of the car, on a horizontal
track, if it starts at ¢ = 0 with initial velocity v,.
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16.8 Pinewood Derby 5

Formulate a differential equation for the velocity of a race car in a model in which the car of mass
m descends a very long inclined track with angle (alpha), under the influence of gravity and a
formdrag, which has the constitutive equation described in Problem 12.8.

(a) Show that this model predicts a terminal velocity vss on an infinitely long track.Derive a
formula for vss in terms of the parameters m, (alpha), g, A, and Cy.

(b) If, for the same parameter values considered in Assignment 1 (m = 0.1418 kg, (alpha) =
10.81degrees), the terminal velocity is the same as it was for viscous friction (vss = 8.60 m/s),
what is (are) the parameter value(s) in the form-drag model?

(¢) Study the MATLAB scripts ‘car2.m’ and ‘car_form.m’ which can be used to explore the
model described in this Problem. Determine the time T it takes for the car starting at rest
to accelerate to 99.9% of the terminal velocity.

(d) Compare the result of 2(c) with the corresponding result in 4(b) of Problem 16.7. Which
friction model has a quicker approach to the terminal velocity? Give a physical and/or
graphical explanation for this result.
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16.9 Engine Block Vibration 1

Consider uniaxial vibration of an engine block that weighs 200 pounds and is supported on mounts
that have an effective stiffness of 18,000 pounds per inch. and an effective linear damping coefficient
of 2 pounds per inch per second, and is subjected to an oscillating force of the form

f(t) = foasinQt

where the amplitude f, equals 2 pounds. Derive an equation of motion for the displacement y(t),
of the engine block from its equilibrium position.

(a) Write an expression for the complex amplitude A of the steady-state displacement response.

(b) Obtain:
(i) the low-frequency asymptote for the complex amplitude (a);
(ii) the high-frequency asymptote for the complex amplitude (a);
(

(iii) the break frequency Qp,eqr Where the magnitudes of (i)and (ii) are equal.

(c) Evaluate the input frequency ., at which the engine displacement amplitude has the

greatest magnitude.

(d) Evaluate the ratio |A(Qpear)/A(0)| where A(0) is the limit of A(Q2) as Q@ — 0.

(e) Use MATLAB to make Bode plots for:

(i) the magnitude of the ratio A(Q2)/A(0);
(ii) the phase of the complex amplitude A((2).

Use a logarithmic scale for frequency €2 which extends at least one decade below, and one decade
above, the break frequency. Express the magnitude scale in decibels; i.e., plot 10 log;,(magnitude)?.
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16.10 Engine Block Vibration 2

Reconsider Problem 16.9 for the same engine block and mounts, but instead of the input force
with constant amplitude f, = 2 pounds, consider the amplitude of the input force f(t) = f,sindt
to increase with the square of the frequency, as it does when the force is a reaction to the force
required to accelerate a mass m = w/g which oscillates at frequency Qwith displacement amplitude

r. Take f, = (w/g)rQ2?, where (w/g)r = (1.93/386)(1) = 0.005 pound-sec?.
(a) Write an expression for the complex amplitude A of the steady-state displacement response.
(b) Obtain:
(i) the low-frequency asymptote for the complex amplitude (a);

(ii) the high-frequency asymptote for the complex amplitude (a);

(iii) the break frequency Qp.eqr Where the magnitudes of (i) and (ii) are equal.

(c) Evaluate the input frequency pcqr at which the engine displacement amplitude has the

greatest magnitude.
(d) Evaluate the ratio |A(Qpear)/A(00)| where A(co)is the limit of A(£2) as 2 — oo.
(e) Use MATLAB to make Bode plots for:

(i) the magnitude of the ratio A(£2)/A(c0);
(ii) the phase of the complex amplitude A(S2).

Use a logarithmic scale for frequency €2 which extends at least one decade below, and one decade
above, the break frequency. Express the magnitude scale in decibels; i.e., plot 10 log;,(magnitude)?.
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16.11 Engine Block Vibration 3

Reconsider Problem 16.9, but now with emphasis on the start-up transient. Cast the equations of
motion in the standard form for state-determined systems:

%x = Ax+ Bu

y = Cx+ Du
with the force f(t¢) as input and the displacement y(¢) as the output. Consider that the engine is at

rest in its equilibrium position untilt = 0. Take the force f(¢) to be an abruptly initiated sinusoidal

force of the form
0, t<0

=4
fasinQt, t>0

with f, = 2 pounds.

(a) Write a MATLAB script to integrate the state equations from the given initial condition. The
script should have the capability of accepting an arbitrary value of the forcing frequency 2.

(b) The MATLAB solution for x is a two-column matrix consisting of the functions y(t) and
v(t) = dy/dt(t) evaluated at the many intermediate t-values listed in the one-column t-
matrix. Write some additional script to make MATLAB construct three one-column matrices
of the following power quantities evaluated at the same set of intermediatet-values:

(i) Pin(t) = f(t) *x v(t), the power transmitted to the vibratory system by the input force
f(@).
(ii) Puiss(t) = frric(t) * v(t) = bv*(t), the power dissipated by the damping element.

(iii) Pstored(t) = Pin(t) — Pgiss(t), the power transmitted to the storage elements where it is
continually shifted back and forth from kinetic energy of the engine block to potential
energy of the suspension springs.

(¢) Have MATLAB make the following four plots:
Engine block displacement y(t) vs. t;
Power input Py, (t) vs. t;
Power dissipated Pg;ss(t) vs. t;

Power stored Psioreq(t) vs. t;

for each of three input frequencies:
(1) Q= 1/3Qb7'eak;

(11) Q= Qbre(zk;

(iii) Q = 3Upreak-

In order to see both the transient response and the steady state response in the plots, the time
span in the plots should be at least ten times longer than the system decay time-constant.

165



16.12 Plate On Springs 1

m JYk

A

Figure 16.12.1: Steel Plate on Springs

In class a model of the vertical motion of a steel plate mounted on four springs (Fig. 16.12.1)
analyzed. Consider the limiting case where all friction is absent. Derive an equation for the dis-
placement history of the plate when it starts at t = 0 from its equilibrium position with the initial
velocity v,.
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16.13 Plate On Springs 2

Consider the experiment demonstrated in class, in which a textbook is dropped on the spring-
supported plate. Again, for simplicity, consider the limiting case where all friction is absent. Take
the mass of the textbook to be one half the mass of the plate, and assume that during the motion
the textbook remains in contact with the plate. There are two cases to be considered. In Case 1
there is a “zero height drop”in which the book is released from rest when just in contact with the
plate. In Case II the drop is from a non-zero height such that the book strikes the motionless plate
with a downward velocity of v,. In both cases the motion begins at t = 0, at the instant when the
book contacts the plate.

(a) What is the ratio of the frequency of oscillation in Case I to the frequency of free oscillation
of the unloaded plate?

(b) What is the ratio of the frequency of oscillation in Case II to the frequency of free oscillation
of the unloaded plate?

(¢) Locate the equilibrium position of the (book + plate) system with respect to the equilibrium
position of the unloaded plate .

(d) Determine the initial conditions for y; and vy for Case I.
(e) Determine the initial conditions for y; and vy for Case II.

(f) For each case write a mathematical expression for the vertical motion of the book and plate
for t > 0.
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16.14 Mousetrap Dynamics 1

This problem makes use of the mouse traps which were handed out in class. The problem is inten-
tionally open-ended; we haven’t told you what methods to use to find the requested information.
Think physically about the problem, and develop the simplest methods which will allow you to
answer the questions which we pose with reasonable accuracy. In your answers, we expect you to
provide a good description of the experiments you conducted and the assumptions made in devel-
oping answers. Relevant and clear sketches, figures, and experimental data clearly presented will
greatly help in telling us what you did. We will come back to this problem over the course of the
next few weeks, so please retain copies of your data and calculations for later reference. We will
not provide solutions for this problem, so it is up to you to develop a solid understanding now so
that you will be able to effectively answer later modeling questions.

You are welcome to work in groups of your own creation for solving the experimental parts of this
problem. However, it is up to you to be sure whatever collaboration you undertake is effective
for increasing your own learning. The mousetraps are yours to keep, so feel free to drill holes, tie
on strings, etc., if that will facilitate your experiments. Just be sure that your trap can remain
functional. If you are working in a group, you can take one of your traps completely apart if that
helps. We recommend putting some super glue on the two staples in the base where these enter the
base in order to glue them into the base. Otherwise the staples have a tendency to pull out in about
20-30 triggers of the trap. Safety note: Parts of the trap attain significant velocities when
the trap is triggered.Thus, you must wear the provided safety glasses at all times when
you are conducting experiments on the trap! Your vision is a precious commodity!
Please return the safety glasses to us when requested at the close of this experiment.

To have a common vocabulary, we will use the following terminology: The trap is built on a wood
piece we will call the base. We will refer to the main pivoting wire portion of the trap as the bail.
The bail is driven by the main spring wrapped around its pivot point. When cocked, the bail is
retained by a wire that we will call the trigger bar.The bait is placed on a piece of metal we will call
the trigger plate. When cocked, the trigger bar is captured by the trigger plate, and then released
when the trigger plate is touched with sufficient force.Please answer the following questions. Think
carefully about how to develop these answers in a accurate,efficient manner. Use fundamentals to
guide your thinking!

(a) Define the cross-bar as the portion of the wire bail at the largest radius from the pivot, i.e.,
the portion of the wire that hits a pencil when the trap is triggered. What is the force
acting on the crossbar when the trap is cocked, i.e., how much force is required to keep the
trap in the cocked position? What element supplies this force to the cross-bar? How is
this force transferred to the base?About what fraction of the force is carried by the trigger
plate? Include a diagram to explain your thinking.Devise a means to measure this hold-open
force to an accuracy on the order of a fraction of a Newton. Tell us how you made your
measurements, and why they should be valid. What provides the weight calibration? Include
relevant diagrams and experimental data.

(b) When the trap is in the closed position (i.e., in its resting state), there is still a torque acting
on the bail. For example, when the cross-bar is resting on a pencil, a force is exerted on the
pencil,forcing it against the base. We will call this the resting-state force. Devise a means to
measure this resting-state force to an accuracy on the order of a fraction of a Newton. Tell us
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how you made your measurements, and why they should be valid. What provides the weight
calibration? Include relevant diagrams and experimental data.

Use the force measurements you made above to develop a model for the spring torque as a
function of opening angle, under the assumption that the force, and thus the torque, varies
linearly with opening angle. As a convention, assume that the resting-state angle isO radians,
and thus that the hold-open angle (i.e., when the trap is cocked) is 7 radians. Express your
torque model in units of Nm/rad. What is the angle at which zero torque is exerted (it’s not
0 rad,since there is still a significant torque at this angle)? Make a sketch of the torque as a
function of angle.

On the course web site there are several high-speed videos which show the trap being triggered.
The video labeled mtrapl shows a pencil triggering the trap. The frame rate of this video is
1000frames/sec. On the basis of your observation of the video, about how long does it take
for the trap to close after it is triggered? What is approximately the highest velocity in m/sec
attained by any part of the trap? About how fast is the cross-bar going in m/sec when it hits
the base after being triggered?Explain how you developed these estimates. To give a sense of
scale, an arrow shot from a modern bow goes about 100 m/sec, and a bullet from a rifle goes
about 1000 m/sec.
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16.15 Mousetrap Dynamics 2

This problem further considers the mousetrap system. Now we develop a model which will predict
the closing time of the trap.

(a)

(b)

From the geometry of the bail, and using the density of steel of about 8 x 103/m?, calculate
the moment of inertia of the bail about the pivot point, in units of kg-m?.

Last week you measured the force of the bail in the open and closed positions, and thereby
developed a model of the torque acting on the bail as a function of angle. For the rest of
this week’s problem, we will assume that the torque does not vary as a function of angle, but
rather has a constant value equal to the open position torque. This will allow us to simplify
the analytical calculation of the trap closing time. What is the value of this constant torque
in N-m?

Use the simplified constant spring torque model developed above as part of an analysis which
will predict the time required for the trap to close when triggered. Clearly describe your
thinking in developing this model. Please provide plots of the angular velocity and position
as a function of time as well as the magnitude of the velocity of the cross-bar as a function of
time. What is the velocity of the cross-bar when it reaches the closed position (§ = 0)? How
long does it take the trap to close from when it is triggered?

Compare your predicted transition time and velocity with data that you extract from the
high-speed video which we have placed on the web. Tell us how you made this comparison.
How might your model need to be modified in order to match the measured data on the
video?
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16.16 Mousetrap Dynamics 3

This problem revisits the continuing saga of mousetrap dynamics. In our last exciting installment,
you calculated the time to close under the assumption that the torque is constant with angle. This
allowed a fairly simple analysis to predict the closing time with reasonable accuracy. This week,
we will allow the torque on the bail to vary linearly with angle. With this linear variation, and
assuming no damping, the mousetrap is really a second-order oscillator, with a pair of poles on
the imaginary axis during the time that the bail is closing. Nonlinearity manifests itself in a very
strong fashion when the bail hits the wood part of the trap. However, the closing motion can be
well-predicted by this linear model. Specifically, we ask you to:

(a) Recall your earlier results to write a model for the spring torque as a function of angle in the
form

T:K(9+90).

Here 7 is the torque in Nm applied to the bail from an external source, K is the spring
constant in Nm/rad, € is the rotational angle of the mousetrap, and § = —6) is the angle at
which the torque applied to the bail is zero.

(b) Use this spring model along with the value of moment of inertia that you computed last week
to write an undamped second-order differential equation describing the mousetrap motion in
the form

Ji = K(0+6)).

In the open position, we have defined # = 7. From this initial condition, solve for the motion
assuming that the bail is released at ¢ = 0. Be clear as to how you handle the 6y term.

How long does it take for the bail to reach the closed position § = 0?7 You may assume for
the purposes of this analysis that the motion comes to an instantaneous stop when the angle
reaches 0. Solve for and write an expression for the force required to arrest this motion in
zero time.

(c) Use Matlab to make a plot of #(¢) during the closing event based upon your solution above.
Also plot on the same axes the function 6(¢) based upon last week’s analysis in which the
torque was constant as a function of angle. How do these two solutions differ? Why?

(d) Use the high-speed video of the mousetrap to develop a measure of 6(t) for all the frames
during the closing event. Overlay this experimental data on your plot from part ¢). How
does this data differ from the analytical results? Why? How might you refine your analysis
to better model the event? You do not need to carry out this analysis, just tell us what
additional elements or analysis might be added.
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16.17 Mousetrap Dynamics 4

Trigger your mousetrap with a wood pencil, and notice the dent that appears in the pencil. In this
last installment of the mousetrap problem, we ask you to develop a calculation which will predict
the force experienced by the pencil, and the approximate time-scale in which this force is applied.

(a)

(b)

Take a look at the high-speed video on the web of the mousetrap being triggered with a
pencil. On the basis of the 1000 frame per second rate of the video, what can you say about
an upper bound on the time in which the pencil is dented?

Observe and estimate the depth of the dent in the pencil. In the simplest of models, we
might assume that this dent is made at constant force. Under this assumption, you can
readily calculate the force and duration of the denting process. You will need to rely on
the values of angular velocity and moment of inertia that you developed earlier. Show your
assumptions and calculations, and make a graph of your estimated force as a function of time.
How does this estimate compare with the upper bound that you established in part a)?

During the denting process, what is the instantaneous power flow as a function of time?
That is, what is the time rate of energy transfer from the kinetic energy of the bail to the
mechanical deformation of the pencil? Express this result in watts. Also, convert this power
to units of horsepower. How does this power flow compare to typical devices such as light
bulbs, lawn mower engines, etc.?
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16.18 Hydraulic Elevator Design

For buildings of moderate height, passenger elevators are frequently driven by hydraulic actuators.
Such elevators also include some form of spring/damper assembly in the bottom of the elevator
shaft to catch the elevator in the event of a failure in the hydraulic drive or in the elevator control
system. This problem studies an idealized model of the design of this crash stop. Specifically,
suppose we model the elevator as a lumped mass m = 2000 kg. This mass (the car) rides in a
vertical shaft, driven from the bottom by a hydraulic cylinder. At the bottom of the shaft are a
spring and damper which form the crash stop. Define motion in the vertical direction as . Assume
that at t = 0, with the bottom of the elevator at a height of 10 m above the crash stop, and with
the elevator at zero velocity, a valve fails in the hydraulic cylinder. The elevator begins falling
under the influence of gravity. During the fall, the oil remaining in the cylinder sprays out of the
failed valve, and acts as a damper with a damping coefficient ¢ = 2000 Ns/m.

(a)

Develop a model to predict the motion of the elevator during the fall. Make plots of the
elevator position and velocity as a function of time during the fall. What is the total force
exerted on a passenger during the fall? For this purpose, we model the passenger as a rigid
mass of 100 kg (already included in the total m = 2000 kg).

After falling 10 m, the bottom of the elevator contacts the crash stop. Your job is to design the
crash stop so that the elevator comes to rest in a manner which is safe for the passengers and
which also doesn’t use up too much space in the building.Develop a model for the behavior
of the elevator system after it hits the crash stop. In your model, assume that the damping ¢
from the oil cylinder is present throughout the motion. You may also assume that the crash
stop mass is insignificant.Use this model to choose the values of the crash spring k, and
damper ¢, to meet the following specifications:

(i) The maximum acceleration d?z/dt? on the car must be less than 20 m/s? at all times.
(ii) The maximum deflection of the crash stop is to be minimized.

(iii) The settling time will be defined as the time from initial contact with the crash stop
until the time that the elevator velocity remains below 0.1 m/sec. The settling time
should be made small.

Develop a model and analyses which allow you to meet the specifications above. Clearly show
the key steps, assumptions, and results. Note that this is a typical design problem in that
there is no one right answer, only degrees of goodness in satisfying the specifications. Tell us
how you attempted to solve this problem. Be sure to include plots of the car position and
velocity as a function of time, the deflection of the crash stop, and the force exerted on a
100 kg passenger. Also show on your plots the peak acceleration of the car and the time at
which it occurs, the maximum deflection of the crash stop and the associated time, and the
time at which the car velocity meets the settling specification.
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16.19 Servo Position Control

The model shown below and developed in the class notes is typical of an idealized
position servo that might be used in a machine tool, robot, or VLSI mask positioning
system. The basic system is a simple inertia with bearing friction and a disturbance
torque Tq applied to the shaft:

ST

Tm Q
[ / Motor
Inertia .

The inertia would model the robot arm mass, the table mass for a mask positioning
system or the motor / leadscrew / carriage mass for the machine tool. The disturbance
torque models an external force such as the machining force induced torque, interference
with the robot path, or encountering a compliant surface of some type.

For this system we can derive a model of the form:

Bearings with Damping b

dQ
STy =K 1-b2+Tg= J

This motor model, and the fact that the shaft position @is the integral of 2(i.e. &= % 0

leads to the following process block diagram similar to that developed in class:

Tq

L e N o e[l e
i Is+b |_s_|

Assuming the values J = 10 Nm-secZ, b= 8 Nm-sec, K= 1 Nm/amp; and for now 7y = 0:

a) Draw a complete control system block diagram to regulate € to a reference value 6,.

b) Design a proportional controller (G.= K)) such that the closed-loop overshoot is zero
and settling time is a minimum. This can be done using algebra only by looking at the
closed-loop transfer function and characteristic equation.

c) What is the expected 5% settling time to a step change in the command position 6,?

d) Using MATLAB, plot the step response of your system and compare it to what was
expected. Please comment on similarities and any differences.

Figure 16.19.1:
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16.20 Servo Frequency Compensation

This problem is a continuation of Problem 16.19.

To improve the response it is common to feedback the velocity £2as well as the positior
6. This is equivalent to adding the block

< K st1 %)
1

in the feedback path of the controller

However, to obviate measuring velocity, we often use a so-called “lead-lag™ controller of
the form:

K (s+a) U(s) i
" (s+b)  E(s)

Error E(s) Ke(s+a) U(s)
’ ’

Lead-lag Controller

G.(s)

which is easily implemented with an op amp circuit with appropriate feedback and
forward path impedances.

a) With this lead-lag block substituted for the controller block, derive the new closed-
loop transfer function, but don’t do any further algebra
b) By starting with a bode diagram of the open — loop system, design the compensator to
achieve the following specification for the system:

- settling time = 0.8 sec.

- minimum damping ratio = 0.5

¢) For your specific design, plot the resulting closed — loop step response using
MATLAB and comment on how well it conforms to your predictions. Please explain any
divergence from what you expect.

d) How does the response of part ¢) compare to that you would expect from using

the velocity feedback block show above? (You should not need to do a complete design
but rather just look at the possible closed-loop transfer function for this case.)

Figure 16.20.1:
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16.21 Servo Torque Disturbance
This problem is a continuation of Problems 16.19 and 16.20.
Now we encounter a true disturbance: the application of some “unknown” and

undesirable torque on the motor shaft. Our design goal will be to completely reject this
disturbance, and to do so we must make use of more complex controller forms.

For the moment keep K), at the value used in Problem 1b), but now assume 6, = 0 and Ty
1S a unit step.

. . .0 .
a) What is the disturbance transfer function r for this system?
d

b) Sketch the expected response to the step in 7,7 based on this transfer function..

c) What will be the steady-state error to this disturbance?

Now, to completely eliminate this error, we’ll try an integral controller of the form
Gc= Kp/s.

With this new controller:

d) Explain why this controller form will not yield an acceptable control system by
reference to the bode plot for this new system.

As a remedy to this problem, we could replace the integral controller with a proportional
integral (PI) controller of the form:

Ge(s) = K, +K,s

that can be re-written as:

GC(S) = M

Figure 16.21.1:
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16.22 Plate On Springs Damped 1
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Figure 16.22.1: Plate On Springs With Damper

Consider the vertical oscillations of a 5-pound steel plate supported on springs, as demonstrated
in class (Fig. 16.22.1). Begin by formulating a simple linear model for the motion of the plate in
response to an applied force f(¢). Your job is to use the MATLAB scriptsMassSprgDmprl, 2 &
3 based on closed form analytical solutions, of the type developed in class, to obtain twelve plots
of the time history of response for twelve different sets of model parameters. In every case the
plate is at rest in its equilibrium position, when, att = 0 a constant force of 5 pounds is suddenly
applied in the direction of positive displacement. In each case you must select the model stiffness
and damping parameters to achieve the specified behavioral parameter values.

(a) In each of the first four plots the undamped natural frequency is 5 Hz(cycles/second), and
the damping ratios have the following values: (i) ¢ = 0.1; (ii)¢ = 0.5; (iii) ¢ = 1.0; (iv)
¢ = 1.5. You must choose the model parameters to insert in the MATLAB scripts to get
the time histories of response corresponding to these combinations of w, and (. The script
"MassSprgDmprl.m’ must be used for Cases(i) and (ii). The script "MassSprgDmpr2.m’ must
be used for Case (iii), and the script "MassSprgDmpr3.m’ must be used for Case (iv). For
Cases (i), (ii), and (iii) take the total duration of the time history to be equal to 5 times the
decay time constant. In Case(iv) take the total duration of the time history to be 5 times the
longest time constant.
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Figure 16.22.2: Figure 1
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Figure 16.22.3: Figure 2

(b) In each of the next four plots, the damped natural frequency is 5 Hz, and the damping ratios
have the following values: (i) ¢ = 0.1; (ii)¢ = 0.3; (iii) ¢ = 0.5; (iv) ¢ = 0.7. Again choose
model parameters to get the time histories of response corresponding to these combinations
of wy and (.Here all cases can be run with 'MassSprgDmprl.m’. In each case take the total
duration of the time history to be equal to 5 times the decay time constant.
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Figure 16.22.4: Figure 3
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Figure 16.22.5: Figure 4

(c¢) In the final four plots the decay time constant is fixed at 7 = 0.10seconds, and the damping
ratios have the following values: (i) ¢ = 0.3; (ii)¢ = 0.5; (iii) ¢ = 0.7; (iv) ¢ = 0.9. Choose
model parameters to get the time histories of response corresponding to these combinations
of decay time constant and (. In each case take the total duration of the time history to be
equal to 5 times the decay time constant.
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Figure 16.22.6: Figure 5
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16.23 Plate On Springs Damped 2

Make a careful sketch of the complex plane showing the location of the eigenvalues, A corresponding
to the twelve parameter sets used to produce the time histories in Problem 16.22.
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16.24 Plate On Springs Damped 3

Reconsider the spring-supported plate of Problem 16.22, but now take the motion to be caused by
a 2-pound rubber ball which strikes the plate and bounces away. Assume that the plate is at rest in
its equilibrium position, when it is struck by the ball at ¢ = 0. Assume the ball is falling vertically
with a velocity of 10 feet/second and rebounds with an upward velocity of 3 feet/second, and that
it does not impact the plate again.

(a) Determine the initial velocity of the plate, immediately after the impact.

(b) Select the model stiffness and damping parameters so that the damped natural frequency is
5 Hz, and the damping ratio ¢ is 0.3.

(c) Insert the model parameters in 'MassSprgDmprl.m’ and plot the displacement response of
the plate for an interval equal to 5 times the decay time constant.

(d) What is the relationship between the time history in Problem 16.23 Part (¢) and the time
history in the plot for b(ii) in Problem 16.227
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16.25 Plate On Springs Damped 4

A rigid plate supported on four identical springs, like the system in Problem 16.22, has unknown
model parameters, m, k, and b. A dynamic test is performed in which a constant force of 1.0
Newton is suddenly applied at ¢ = 0. The measured displacement response is displayed in Fig.
16.25.1

x10™ Time History of Displacement Response

9 T T T T T T T T T

Displacement [meters]

0 ! ! ! ! ! ! ! ! !
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [seconds]

Figure 16.25.1: Response to 1.0 Newton Step-Force

Your job is to use the data revealed in this Figure to estimate:
(a) The effective stiffness k of the four springs;
(b) The effective mass m of the plate;

(¢) The effective damping coefficient b of the system.
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16.26 Plate On Springs Damped 5

Each, of two identical plate-on-springs assemblies, like those of problem 16.22,is accurately rep-
resented by a model with m = 2.0 kg, £ = 2000 N/m, and b = 20N/m/s. Consider the system
obtained by placing the two individual units face-to-face, with the first plate resting on a firm
table with its springs extending upward, and the second plate reversed, so that its springs extend
downwards and are connected to the springs of the first plate. Your job is to derive a differential
equation for free vertical motion of the second plate, and:

(a) Evaluate the undamped natural frequency w, for the model of the combined system;
(b) Evaluate the damping ratio ¢ for the model of the combined system;

(c¢) Evaluate the decay time constant 7 for the model of the combined system.
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16.27 Plate On Springs Damped 6

The steel plate on springs shown in Problem 16.22 has been modeled by the differential equation

d*y | dy

Remodel this as a state-determined system with the force f(¢) as the input and the vertical position
and velocity of the plate as the outputs.

(a) The effective stiffness of the springs is known to be 3000 N/m. Choose the mass parameter
m and the damping parameter b such that the steady state deflection of the plate under its
own weight is A = 7 millimeters and the damping ratio is¢ = 0.5.

(b) Write a MATLAB script to integrate the state equations for the case where,at ¢ = 0, an
abruptly applied force equal to the weight of the plate is applied in the upward direction.

(¢) Write a MATLAB script to produce plots of the first two seconds of transient response in (b).
Produce plots of the following forms:

(i) position vs. time
(ii) velocity vs. time

(iii) velocity vs. position
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16.28 Shipping Crate 1

Sensitive machinery and instruments are typically packed with shock-absorbing material for ship-
ping. Fig. 16.28.1 shows a plan view sketch of a 500-pound engine in a shipping crate with packing
material at each end. In reality packing material is provided on all sides, but to keep things simple
we only consider the end-to-end horizontal translation of the engine with respect to the crate. As-
sume that the packing material at each end can be adequately modeled as a linear elastic element
with stiffness & combined with a linear friction element with damping parameter b.

Crate

33:937// T

.
7

\ Packing Material /

Figure 16.28.1: Engine in Shipping Crate

(a) Derive a differential equation for the end-to-end motion of the engine with respect to a
stationary crate.

(b) Specify the values of k and b required to provide a damped natural frequency of 1 Hz and a
damping ratio of 0.707.
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16.29 Shipping Crate 2

Reconsider the 500-pound engine with shock-absorbing packaging in a shipping crate of Problem
16.28. Take the packing material at each end to have an effective stiffness k of 100 pounds/inch,
and an effective damping parameter b of 150 pounds/inch/second. Now suppose the crate is placed
on a flat-bed truck so that the end-to-end orientation of the crate is parallel to the direction of
motion of the truck. The crate is secured to the truck so that there is no relative motion of the
crate with respect to the truck. However, because of the shock-absorbing packaging, the engine
may move with respect to the crate when the truck accelerates and decelerates.

(a) Formulate a mathematical model to describe the longitudinal motion of the engine with respect
to the crate in response to longitudinal motion of truck.

(b) Derive a single ordinary differential equation relating the (input) absolute velocity of the
truck vgryer(t) to the the (output) relative velocity of the engine to the crate vepgine(t).

(c) Derive a state-determined system in which vy, (t) is the input andvengine(t) is the output.
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17 Quiz Problems

17.1 Fun with Block Diagrams

(a) Reduce the block diagram in Figure 17.1.1 to derive the transfer function for the system.
Find the value of K that will result in a critically damped response.

X(s) Y(s)

+ K >

s(s+20)

Figure 17.1.1: Block diagram for part (a)

t(s)

Vour(s) and V‘O/;‘(S) for the block diagram shown in Figure 17.1.2.

Vi(s)
(Hint: you can always label individual positions along the block diagram with variable names
and write out and solve the relevant algebraic equations.)

(b) Derive the transfer functions

— S+3 > > \/

VA + ~ TN 6S+1
L A 145+8 out

Figure 17.1.2: Block diagram for part (b)

(c) Write the complete differential equation for Vo, (t) in terms of Vi (t) and Va(t).
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17.2 Complex Translation

This problem concerns the translational mechanical system shown in Figure 17.2.1

X9 T
Lin Co ko ky
_‘—fm\— (VAN N Fa
XX XXXX &
M,
(@) (@)

Figure 17.2.1: Translational Mechanical System

The system is driven by two inputs, a force input Fj,, and a position input z;,. The damper ¢;
shown acts between the masses M7 and Ms. The mass M; rolls on the ground surface without
friction.

(a) Draw free body diagrams for the two masses, clearly labeling the forces and associated ref-
erence directions which act on the mass. The functional dependence of these forces on the
system variables should be indicated.

(b) Use the free body diagrams developed above to write the governing system differential equa-
tions in the form:

Myia =
Moo =

where you supply the right hand side of the equations. You do not need to further reduce
the form of the system equations.
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17.3 Cylinder Step Response

Figure 17.3.1: System Model

You have been given the system illustrated in Figure 17.3.1. The system consist of a cylinder with
a mass m with a radius » = 0.5 m which spins about an axel. The cylinder rolls without slip on the
ground. Attached to the axel housing are a damper ¢, a spring k = 200 N/m, and a force source f.
You measure the following response z(t) to a step input of the force source.

Step Response
0.8 T ‘

Amplitude
o o o ©
w ~ (S (o2}
T T T T
Il Il Il

o
N
T
Il

0.1 J

0 | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (sec)

Figure 17.3.2: Step Response

(a) Using the provided parameters and the step response, determine the damping constant ¢ and
the equivalent mass m.4, where m,, is mass equivalent of the combined inertia and mass.

(b) If the cylinder has a m = 3 kg, determine the inertia of the cylinder.
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17.4 JKC Frequency Response 1

o(t)

(Y

Figure 17.4.1: Rotational System Model

Bode Diagram

Magnitude (dB)

Phase (deg)

180 L ‘ : S S S S S » ]

Frequency (rad/sec)

Figure 17.4.2: Bode Plot

You perform a frequency analysis of the system shown in Figure 17.4.1 and obtain the bode plot
shown in Figure 17.4.2. The inertia J = 15 N/m?.

(a) Using the data in the bode plot determine, ¢ and w,, for this system.
(b) Using J and the values determined in part (a), determine ¢ and & for the system.

(c) Determine an expression for the system output 6(t) when ¢(¢) = sin (wt) and w = 1.1, 10,
and 20 rad/s.
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17.5 Mass Spring Damper Dynamics

A second-order system is driven with a position source x;,.

Figure 17.5.1: Mass Spring Damper System

The mass position is x(t). There is no gravity acting in this problem.

(a) Write the governing differential equation for this system with an input x;,, and an output x.
Clearly show the steps in your solution.

(b) Now let the parameters take the values M = 0.1 kg, £ = 10 N/m, and ¢ = 0.2 Ns/m. What
are the values of ¢ and w,,?

(c) Assume the system is in a condition of initial rest. The input position is given to be a unit
step, xin(t) = us(t) m. Solve for the mass position z(t) as a function of time. Clearly show
the steps in your solution.

(d) Make a carefully labeled and dimensioned sketch of z(t).
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17.6 Op-Amp Analysis

\Y4

Figure 17.6.1: Op-Amp Circuit, Ry = 1MQ, Ry = 100kQ, C1 = 1uF', Cy = InF

(a) Derive the Transfer function H(s) relating V, to V; (assume the Op-Amp acts as an infinite
gain).

(b) Derive the expressions for the magnitude and phase as a function of frequency.
(c) Make a bode plot of the system indicating the major points.

(d) Determine the pole and zero locations(s) and plot them on the s-plane.
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17.7 RLC Circuit Analysis

(a)
(b)

()

(f)

Vi C=— %

Figure 17.7.1: RLC Circuit

Vout (3)
? Vin(s)

Write the transfer function , for the circuit shown above.

Given C = 1 x 1079 F, find the values of R and L such that ¢ = 0.707 and the undamped
natural frequency is 5 kHz. (Don’t forget to convert to rad/sec!!!)

Using the same values of L and C from part(b), find the locations of any system pole(s)
and zero(s) given R = 100082. Sketch the unit step response, clearly indicating the time and
magnitude scaling. (Hint: use a dominant pole approximation.) Use the IVT and FVT to
show that your response starts and ends at the appropriate values.

Sketch the log Magnitude vs log frequency, and linear phase vs log frequency (Bode plot) for
this system based on your calculated poles from part 3. Show that your plot approaches the
correct values of magnitude both as w — 0 and w — oc.

Again using C' = 1 x 107 F and R = 10009, now let L = 0 H. (i.e. Remove the inductor
from the circuit) Calculate the location of the pole and compare this to the dominant pole
found in part 2.

Write the transfer function, “/ﬁ_“t((ss)), for the two circuits shown below.

() G g I

Figure 17.7.2: RLC Circuit
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17.8 Sailing for Engineers

A sailing ship of mass m is initially at rest, i.e. v(0) = 0. At time ¢ = 0, a strong wind arises of
magnitude V, = 10 m/s.

Vo

Figure 17.8.1: Sailboat Diagram

Assume that the force of the wind on the sails in the direction of travel is given by F,(t) =
B[V, —v(t)]. Assume that the viscous drag of the water on the ship is given by Fy(t) = Bgv(t)

(a) Formulate a differential equation that describes the ship’s velocity v(t).

)
(b) Solve the differential equation from (a) and write an expression for the ship’s velocity v(t).
(c) Sketch the response v(t).

)

(d) Write an expression for the steady-state velocity vss in terms of system parameters.
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17.9 Second Order Step Response

The following plot represents the step response of a second order system, starting from zero initial
conditions.

25

05 .l

Figure 17.9.1: Step Response Plot

(a) From the plot, find the 10%-90% rising time t,, the peak time ¢,, the 1% settling time t5 and
the overshoot M,,.

(b) Estimate the natural frequency wy, and the damping coefficient (.

(c) Write down the ODE corresponding to the plot.
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17.10 Spring Damper Dynamics

This problem studies the spring-damper arrangement shown in Figure 17.10.1. The spring and
damper are joined by a massless link, which has a vertical position xz. A force F' acts on this link.

F

Figure 17.10.1: Spring Damper System

(a) Make a sketch of the pole location in the s-plane.

(b) The input force has the following form, valid for all time
F(t) =10+ 35(t — 1),
where §(¢) is the unit impulse. Note that the driving impulse (¢ — 1) is delayed by 1 second.

Be sure you see that this input is for all time, not just after ¢t = 0.

Calculate the link position x as a function of time, and give an expression for this position
valid for all time. Clearly show your thinking and the steps in your calculation. Your result
should be in terms of the parameters of the system, as we have not given numerical values
for these parameters.

(c) Make a carefully labeled and dimensioned sketch of z(t). Again, this sketch should be dimen-
sioned in terms of the system parameters.
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17.11 Derive Blocks for Op-amp Circuit

Consider the Op-amp circuit shown below.

Figure 17.11.1: Op-Amp Circuit.

(a) An incomplete block diagram for this circuit is shown on the next page. Develop expressions
for each of the transfer functions in the blocks of this block diagram, and fill them in on the
block diagram. Carefully note the system variables already shown on the block diagram, and
fill in the transfer functions appropriately.

(b) Set V; to 1 [V]. What are the steady state values of V,, and V,?
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Figure 17.11.2:
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17.12 Automobile Fender Spring/Damper System

A fender is mounted on an automobile though dampers (to absorb collision energy) and springs
(so that the fender can recover after low-speed collisions). During a crash-test, the automobile is
moving at 2 m/s when its fender strikes a concrete barrier. The vehicle mass, m, is 1,000 kg. (In
comparison, the fender itself is essentially massless.) The springs that mount the fender have a
stiffness, k, of 1,000,000 N/m.

K

n VYV

—= | barrier
C

Q 0O

Figure 17.12.1:

(a) Write a differential equation for the deflection of the springs when the fender is in contact
with the barrier. (We define y = 0 at the point of first contact.)

(b) If the damping coefficient, ¢, is 30,000 N-s/m, what is the damping ratio of the mass-spring-
damper system when the fender is in contact with the barrier?

(c) Is there any value of the damping coefficient, ¢, that would yield no rebound of the vehicle
from the barrier? If so, what it is? If not, why not?
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17.13 Cu Flywheel with Eddy Current Damper

The figure below shows a stylized picture of the copper flywheel, eddy current damper, and mass
used in Laboratory 2.

(a)

(b)

M
A,

Figure 17.13.1: Stylized version of Lab 2 setup.

Sketch two free body diagrams for the flywheel and hanging weight respectively, detailing
all the forces or torques acting on these elements. In developing these free body diagrams,
express the tension in the string as T'. Note that T' # mg in general.

Write the equations of motion for each of your free body diagrams. Eliminate 7" and x
to combine these into one first-order differential equation in terms of the flywheel angular
velocity w. To eliminate x, note that © = wR;.

Write the characteristic equation for the system in terms of the given system parameters.
What is an expression for the time constant?

At t = 0, with the system initially at rest, the mass is released and begins to accelerate
downward. Make a plot of the resulting flywheel angular velocity w(t). What is the final
angular velocity as t — oo?
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17.14 Current Driven RC Circuit

This problem considers the circuit shown below

]C + [r l +
Is O - ‘/c R

Figure 17.14.1: RC circuit driven by current source.

(a) Note that the circuit is driven with a current source I4(t). Write a differential equation for
this circuit in terms of the capacitor voltage V,(t), and with input I5(¢). Clearly show the
steps in your development.

(b) Show that with the values R =1 kQ, and C' = 1 uF, the differential equation becomes
1073V () + Vi(t) = 1073 14(t)

We assume that the input current takes the form of a 0.1 A step I5(¢) = 0.1us(t) [A], and that
the system is initially at rest. Write an expression for the resulting output V.(¢) for ¢ > 0,
and make a properly-dimensioned plot of this response.
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17.15 Driven Mass Spring System

Consider the mechanical system shown below.

3
NNV AN AN

Figure 17.15.1: 3.0in

(a) Write the governing differential equation in terms of F' and x.

(b) The input is a unit step F(t) = us(t). Calculate z(t) for ¢ > 0, assuming initial rest. Write
an expression for x(t), and make a properly dimensioned sketch of x(t).
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17.16 Flywheel Driven by Hanging Mass

Consider the mechanical system shown below.

Figure 17.16.1:

In this system, a flywheel of inertia J [kgm?] is constrained to rotate about the indicated axis. A
torsional spring k& [Nm/rad] is attached to the flywheel. A weight of mass m hangs on a massless
string which is wrapped around a hub of radius R on the flywheel. The force of gravity mg acts on
the weight in the downward direction. In the absence of any torque on the spring, the weight sits
at the position z = 0, and x increases as the weight moves down from this position. There is no
damping in the system.

(a) Write a differential equation describing the dynamics of this system in terms of the motion of
the weight x, with input force mg. The variable 6 should be eliminated from this equation.

(b) Assume that the weight is initially supported at the position x = 0 by a shelf. At ¢ = 0 this
shelf is removed. Write an expression for the resulting motion z(t) for ¢ > 0, and make a
dimensioned graph of this motion as a function of time.
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17.17 Homogeneous Second Order DE

Consider the homogeneous differential equation

dQQ dy 2
— + 2= 1+1 =0.
72 + o + (14 1007%)y =0

This has poles at s; = —1 4 5107 and sp = —1 — j10m.

(a) What are the values of the damped natural frequency wgy, the natural frequency w,, the
attenuation o, and the damping ratio (?

(b) The homogeneous solution is of the form

y(t) = c1e®t 4 coe®?t.

For the initial values of y(0) = y(0) = 1, what are the numerical values of ¢; and ¢3?
(c¢) The solution can be written in the form
y(t) = Me 7 cos(wqt + ).
What are the numerical values of M and ¢?

(d) Make a reasonably accurate plot of y(t), indicating key values on the time and magnitude
axes.
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17.18 Match Pole/Zero Plots with Step Response

Six pole/zero plots labeled A-F are provided below. The following page has eight step response
plots labeled 1-8. Match each of the six pole/zero to its corresponding step response. Your solution
should include a list of A through F with the corresponding number directly next to it. Note the
time and amplitude scales are not necessarily the same in each figure. No partial credit will be
given.
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Figure 17.18.1:
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17.19 Opamp Block Transfer Functions

This problem considers the op amp circuit shown below

Figure 17.19.1: Op amp circuit.

(a) The circuit can be represented by the block diagram given on the next page. You are to fill
in each of the blocks with the correct transfer function on that page, and return the page still
attached to the quiz. Show the relevant calculations in your quiz book.

(b) Suppose that the input is V; = 1 V, and that this has been applied for a long time. What is
the value of V,7 Explain your reasoning.
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17.20 Piston with 2nd Order Translation

‘—| Hydraulic Piston

[ =) ~
N

é_vgvvvwwww& T_\YI:K/ PQ

Rollers

Figure 17.20.1: Mass Spring Damper System with Hydraulic Piston

The figure above shows a large stage with mass M (kg) driven by a hydraulic piston. The hydraulic
piston is driven by a pressure source P(t) (N/m?) with a volume flow Q(¢) (m?/s) (the flow resistance
of the piping is ignored). The piston has a force/pressure relationship of F=P*A, and thus Q = Azx.

(a) Find the differential equation for this system in terms of an input P(t) and an output x. Note:
Ignore the roller dynamics.

(b) Given M=5000 kg, K=250,000 N/m , B=75,000 N*s/m , and A=0.1 m? show that the transfer
function from the pressure input P to flow Q (the fluidic admittance) is given by

Q( ) 0.01s
Qg =
P 500052 + 75, 000s + 250, 000

(c) The system has been held in equilibrium with P = 500 kPa = 500,000 N /m? when the pressure
is removed suddenly at t=0. That is, P(t)=Pg(1-us(t)). Find and make a dimensioned plot
of Q(t). Use the transfer function from part b) for this calculation even if you were not able
to derive it.
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17.21 Pole Zero Bode Matching

Six pole/zero plots labeled A-F are shown below. The following page has eight Bode plots labeled 1-8.
Match each of the six pole/zero plots to its corresponding Bode plot. Your solution should consist of
a list of letters A through F with the corresponding Bode plot number directly next to it.
No partial credit will be given.
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17.22 Power Semiconductor Thermal Problem

The thermal system shown below represents large power semiconductor device which is captured
between two plates. The device has a thermal capacitance C;[J/K], and its temperature is T [K].
Thermal resistances R1[K/W] and R2[K/W] connect the device to the upper and lower plates
respectively. These plates are maintained at ambient temperature T4 [K]. Power dissipation in the
device is modeled as heat flow g;,,[IV] into the device. Assume no heat flow occurs through the side
walls of the device.

Powo.r Davi ce
o

49 Tﬂ-

Téf?'/ﬁ""' ;*;/?‘:—-d i

o rn 7

Figure 17.22.1: Schematic of thermal configuration.

(a) Write the governing differential equation in terms of 77 and g;,.

(b) Assume that in steady state, gi, = ¢o, a constant. What is the steady state temperature
Tlss?
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17.23 Submersible Capsule Hoist System

A submersible capsule requires in case of malfunction a rescue hoist system, as shown in Figure
17.23.1. The capsule mass is M, and the hoist cable stiffness is assumed constant and of value K.
The drum has inertia J, and radius r. The drum is driven by a velocity source w(t). The capsule
is subject to a drag force equal to Fj, = bv(t) and to a flotation force Fy,. Note: The system is
designed in a way that the hoist cable will be always in tension, under normal operation.

Figure 17.23.1: Capsule hoist system

a en the capsule is at rest the cable is extended by an amount e. Find e as a function o
When th le is at rest the cable i tended b t e. Find functi f M
and F,.

(b) Find the transfer function V(s)/W(s).

(c) Given M = 10000 [kg] and the bode plot shown on Figure 17.23.2, try to find the values
of J, r, K, and B. Use the correct units for all values, and indicate what value cannot be
determined.
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17.24 Transfer Function from Pole Zero Plot

Consider the following pole-zero plot:

b
410000

|
|
|
10 i
; |

o 3 :
-100 1 4

Figure 17.24.1: System Bode Plot.

The DC gain for the system is 10.
(a) Derive the system’s transfer function.

(b) Sketch the system’s Bode plots.
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17.25 Vaccine Cooler

You're a 2.009 student trying to verify the feasibility of a portable vaccine cooler. The vaccine
chamber of the cooler is in the shape of a cube and is shown below in Figure 17.25.1. The vaccines
within the chamber have mass m and specific heat ¢. The combined effective resistance of all six
walls is given by R. Ty, is the temperature of the vaccines within the cooler, and T, is the
temperature outside the cooler. The heat flow into the vaccine chamber due to the cooling system
is given by ¢i,. The width of each surrounding wall is L.

(a)
(b)

amb[”R
Tvac "q
, — out
qin
-] m C

Figure 17.25.1: Cross-section of a cubical portable vaccine cooler

Derive the ordinary differential equation that describes this system.

You are told that the mass of the vaccines is 1 kg, their specific heat is 4.2 kJ/(kgK), and
the total effective thermal resistance resistance around the vaccine chamber is given by the

following equation:
K
R=40|—| L
ol
If the width of the surrounding walls is 2.5 cm, the ambient temperature is 25 °C, the vaccine
chamber is initially 2 °C, and the cooling system is off, how long will it take for the vaccine

chamber to reach a temperature of 10 °C?

You’ve been swamped with work for 2.003, and your 2.009 team makes an incredible amount
of progress without you. You come back 2 weeks later and find an almost working prototype
cooler. The cooler uses a non-linear on/off controller with a dead band. On a workbench
you see the following plots. What wall thickness did your teammates choose for your cooler?
When the cooling system is turned on, what is the value for ¢;,? Please use appropriate units.
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Control System Off with Cooling System On
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Figure 17.25.2: Prototype Cooler Tests. The top plot shows the cooling system being run continu-
ously. The bottom plot shows the cooling system being run with the non-linear controller.
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17.26 Voltage Driven RRC Circuit

Consider the circuit shown below.

in 1 0

Figure 17.26.1: Voltage divider with capacitor in parallel

(a) Derive the differential equation describing V,(¢) in terms of Vj(t).

(b) The output V,(t) is given by
Vo(t) =1t <=0

Vot) =271 —1:¢>0

This waveform is sketched below

V. (D)

t =-In(1/2)/10=0.0693 sec

Figure 17.26.2: Sketch of V,

What is the input v;(t) for all t? Explain your reasoning, and make a sketch of v;(t).

221



17.27 Linear Mechanical System with Position Input

Consider the mechanical system shown in Figure 17.27.1, where w(¢) is an input position source,
and x(t) is the mass position.

w(t) X(1)

A
-—’\/\r_/\/—mJ\/Y\/—

b= oo b
S/

Figure 17.27.1: Linear mechanical system with two springs, two dampers, and a position source
input, w(t).

//

[ [/

(a) Draw a free body diagram for the mass m, showing forces acting on the mass, as a function
of the displacements w(t) and x(¢) and in terms of the system parameters.

(b) Write a differential equation for the system, in terms of input w(t) and output =(t).

c) Letm = g, k1 = m, kg = m, b = s/m, by = s/m, with w(t) = 1us(f) |m
L 10 kg, k 30N k 10N b 2N b 6N ith 1
(a unit step). Plot the system poles in the s-plane. Solve for z(t), ¢ > 0, from rest initial
conditions.

(d) Plot x(t), using accurate dimensions, and units. Also indicate the overshoot value, with its
associated peak time, as well as the 10-90 % rise time.
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17.28 Tank with Pump Inlet Lower than Outlet

This problem considers the system shown in Figure 17.28.1.

,q
/?MWK
| Pt
Fr o INC)
P
Vv

r 7 s 77
PW
oo

Figure 17.28.1: Diagram of tank configuration.

i

As shown in the figure, a pump acts as a source of flow g, (¢) into the cylinder; that is the pump flow
is a specified constant independent of load pressure. The cylinder is of cross-sectional area A [m?].
At a height h, [m] from the bottom of the cylinder, we connect a fluid resistance R [Pa - sec/m3].
The entire system is exposed to atmospheric pressure Pyy,.

At t = 0, the cylinder is empty (h = 0), and the pump is turned on at constant flow rate ¢, =
1079 m3/sec, and so the cylinder begins to fill up. The fluid height above the bottom of the cylinder
is defined as h(t) [m]. Note that no flow enters the resistance R until h(¢t) > h,. The liquid in the
system is water with p = 10® kg/m3. The height of the fluid is recorded as a function of time, and
the data is plotted as shown below.

223



= =] =] o
- - o = o
N N =) ® [N}
T T T T
I 1 1 I

h(t) [meters]
>
Q

o
I

0.08 -

0.06 -

0.04 -

0 10 20 30 40 50 60 70 80 90 100
t [seconds]

Figure 17.28.2: Fluid height as a function of time.

Note that the fluid height reaches the height of the resistance at ¢ = ¢t; = 30 sec; that is h(t1) =
ho = 0.1 m. For ¢ > 1, the height exponentially approaches a final value of hy = 0.2 m.

(a) Using the data for 0 <t < t;, what is the value of A in [m?].

(b) Using the data for ¢ > t;, what is the value of R in [Pa -sec/m®]? (This can be answered
relatively easily if you think about it correctly.) What is the time constant 7 [sec| associated
with the response for ¢t > ¢;7 (It is acceptable to determine this either graphically or via an
appropriate calculation.)

(c) A long time later at t =ty >> t1, the pump flow is set to zero, g, = 0. Make a dimensioned
sketch of h(t), t > ts.
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17.29 Thermal Power Chip Analysis

A power electronic chip is attached to a substrate and also exposed to air as shown in Figure 17.29.1.
Heat is lost to the air through a thermal resistance Ry [°K /W] and to the board through a thermal
resistance Ry [°K/W]. The air and circuit board are at ambient temperature T4 [°K]. The chip
has a thermal capacitance of C' [J/°K] and is at temperature T, [°K]. Power dissipation in the
chip is modeled as heat flow in, g, [W].

Figure 17.29.1:

(a) Write the governing differential equation for this system in terms of T, and g;y,.

(b) For Ry = 90 °K/W, Ry = 10 °K/W, and C = 1 J/°K, solve for T,(t) and plot T, as a
function of time for ¢;;,, = 10 W from rest initial conditions where T.(0) = T4. Be sure to
label and dimension your time and temperature scales.

(¢) If the maximum allowable steady-state temperature of the chip is 100 °K above ambient,
what is the maximum allowable power the chip can dissipate?
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18 Math Techniques

18.1 Complex Expression Reduction
(a) Reduce the following expressions to a single complex number in rectangular form:
. (24 30) % (4 — 5i0)
. (24 30)/(4 - 5i)
. (=6 +70) % (34 T71)
(=6 +71)/(3+Ti)

NS R

(b) Express all above complex numbers in polar form, then calculate the final result in the polar
formats.
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18.2 Complex Expressions

(a) Reduce the following expressions to a single complex number in rectangular form:
(i) (1+20) = (3 —44)
(i) (14 2¢)/(3 — 4i)
(iii) (—6 + 4i) = (5 + 7i)

(iv) (—6+44)/(5+ Ti)

(b) Express all above complex numbers in polar form, then calculate the final result in the polar
formats.
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18.3 Matrix Operation Practice

Assume X = [123],Y =[980] and Z = [s% s 1], where ' denotes transpose operation. Calculate
the following expressions:

228



19 Recitation Problems

19.1 Recitation 1 Problem

Just how effective are snow banks at stopping a sliding car? We can model the system and study
its dynamic and static behavior.

X

| m

DN
[

@) @)
SIS S S S S S S
<%~

Figure 19.1.1: Sliding Car Model

Consider the model shown in Figure 19.1.1. A mass m, initially at rest, is subject to a constant
applied force F. After the mass has travelled a distance z, it impacts a damper with damping
coefficient b. Assume the surface is frictionless.

(a) Formulate the first order differential equation describing the velocity of the car as a function
of time, before the collision.

(b) What is the velocity at the collision?

(¢) Formulate the first order differential equation describing the system after the collision.

e) What is the peak force? As a function of x,7 What if x, is 07 What if b is co?

f

)
)
(d) What is the time constant for the system? How long will it take to stop the car?
)
) Solve the problem again using energy methods.

(
(
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19.2 Recitation 2 Problem

K L~ 1 Db

S S S

Figure 19.2.1: Automobile Suspension Model

The suspension for an automobile can be modeled by the spring-mass-damper system shown in the
figure with mass m = 500[kg], spring constant k = 4 x 10 [N/m], and damper b = 2 x 103 [Ns/m].

(a) Determine the characteristic equation for the system. What is the form of the homogeneous
response to an initial condition xy = 0 and £y = 17 To an initial condition zog = 1 and
o =07

(b) Find the damping ratio ¢, undamped natural frequency wy, damped natural frequency wy,
attenuation o, and the time constant of the exponential envelope .

Hint:
b k
= and wp =/ —
¢ 2V km m

(c) Is the system undamped, underdamped, critically-damped, overdamped (or just right)?

(d) From the homogeneous response determine if the system is stable, marginally stable, or
unstable. Does this match your physical intuition?

(e) What if the shock absorber is leaky? Discuss what happens to the system as b changes.

(f) What happens when you drive down Massachusetts Avenue and hit a pothole? Think about
the forced response.

g you were designing the suspension for a car, which damping behavior (undamped, under-

If designing th ion f hich d ing behavi d d, und
damped, critically-damped, overdamped) would you choose and why? For a sports car? For
grandma’s Cadillac? For a pickup truck?
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19.3 Recitation 3 Problem

Consider a swinging door, such as you might find at the entrance to the kitchen in a restaurant or
at the front door to a saloon in the Wild West. These types of doors don’t slam; they can overshoot
and oscillate. The schematic representation of the door is shown in the Figure 19.3.1.

k
] 0 ot
0 T(t)

Figure 19.3.1: Swinging door model

The system rotates about a central shaft with angular displacement 6, moment of inertia J, spring
constant k, and damping constant b. When someone pushes on the door, they apply a torque T'.

(a
(b

)
)

Determine the characteristic equation for the system.

Find the damping ratio ¢, undamped natural frequency w,, and damped natural frequency
wq- Remember the standard form:

f(t):%é+£é+0

n Wn
Sketch the response of the system to a step torque of the form
T(t) = Tyus (1)
with initial conditions 6y = 0, 6y = 0. Use wy, = 1 [rad/sec].
Define the maximum value of the angular displacement 6. Add it to the sketch.
Define rise time. Show rise time on the sketch.

Define settling time. Show settling time on the sketch.

How does the above forced response of a second-order system compare to the homogeneous
response?
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19.4 Recitation 4 Problem

Two identical tanks with cross sectional area A are partially filled with a volume V of incom-
pressible fluid of density p. The fluid flows between the two tanks through a short tube with a
small diameter which can be modeled as a lumped resistance, R. The top of tank 2 is open to the
atmosphere (with pressure P,).

Initially, the top of tank 1 is closed and the pressure at the top of tank 1 is set so that the level of
the fluid in the first tank, hy is substantially higher than the level of the fluid in the second tank,
hs. At time t = 0, the top of tank 1 is opened to the atmosphere. 19.4.1 shows the system just
after the top is opened.

(i)

Pa
INAAANAAAAN
Pa
h1 INAANAANAA _f
Asp R Ap h,
< v
Tank 1 Tank 2

Figure 19.4.1: Tank Setup

How many independent variables as a function of time do you need to completely describe
the state of the system?

What do you expect the system to do physically? Before making any calculations, sketch the
height of the fluid in tank 1 and the height of the fluid in tank 2 as functions of time.

Find a relationship between the height of the fluid in tank 1 to the height of the fluid in tank
2.

What is the pressure P; at the bottom of tank 17 What is the pressure P, at the bottom of
tank 27

Find a constitutive relationship for the lumped resistance in the tube.
Find the differential equation in hy for the system.

Sketch the height of the fluid in the tank 1 and tank 2 as a function of time, given initial
conditions h(0) and ha(0). Will this system oscillate?

Does the time constant of the system 7 depend on the amount of fluid? What could you do
to make the system respond twice as quickly?

This system is first-order, but the demonstration we saw in class on Wednesday of water
flowing through a tube was a second-order system. Why are these systems different?
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19.5 Recitation 5 Problem

Figure 19.5.1: Rack and Pinion

A rack and pinion converts rotational motion to translational motion and vice-versa. The tracking
mechanism in the CD player passed around in class contained a rack and pinion.

The figure shows a lumped model where the angular position of the pinion gear is given by 6. The
combined shaft and gear inertia is given by J, the rotational damping on the shaft is given by b,
and the applied torque T'(t) is a function of time. The rack position is x, the mass of the rack is m,
the linear damping acting on the rack is given by by, and the linear spring constant is k;. Assume
that there is adequate room for the rack to roll back and forth.

(a)

(b)

()

(d)

(e)

(f)

What is the relationship between x and 67

For each lumped element in the system find the energy stored or power dissipated. Compare
it to the constitutive relationship. For example, the potential energy stored in the spring is:
PE = 5kix? The constitutive relationship for the spring is: Fj, = k;x

Determine the total kinetic energy, potential energy and power dissipated for the system.
Express them as a function of 8 (Use part (a) to eliminate ).

Use the energy equations to find the second-order differential equation for the system as a
function of 6.

What is the equivalent inertia, equivalent damping coefficient, and equivalent spring constant
for the system? Is the equivalent inertia for the system larger or smaller than J7

Find the damping ratio ¢, undamped natural frequency w, as functions of the system param-
eters. Remember the standard form:

f(t):%é#%éjte

n Wn

If the radius of the gear R is increased, what happens to the damping ratio ¢ and undamped
natural frequency wy?
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(h) Rewrite the equations as a function of z instead of §. What happens to the damping ratio ¢
and undamped natural frequency w,?

(i) Assume the system is underdamped and sketch the response of 6 to a step torque of the form:
T(t) = Tous(t)

with zero initial conditions 6(0) = 0(0) = 0.
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19.6 Recitation 6 Problem

The circuit in the figure consists of a voltage source, a capacitor and three resistors.

Ry
— o +
oy
R, _— C ©
VH @ S Sa—

Figure 19.6.1: RC Circuit

(a) Find the differential equation for this circuit in terms of v,.
(b) Find v, as a function of time, if Vj, is a step input and v,(0) = 0.

(c) What is the equivalent resistance for the circuit?
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19.7 Recitation 7 Problem

Figure 19.7.1: Motor Circuit

Figure 19.7.1 shows an ideal motor connected to a load rotating with angular velocity w. The
motor’s resistance is lumped into the element R. This motor also has non-negligible inductance
given by L. The motor is driven by an input voltage V. The motor applies a torque to the load
T = Ki. The motor’s back emf is e = Kw. The combined motor and load inertia is given by J and
the load is also subject to a rotational damper b.

(a) Find a differential equation for the rotational load in terms of 7" and w.

(b) Find a differential equation for the circuit in terms of e, V and i. Remember that the elemental
equation for an inductor is Vi, = L%.

(c) Combine parts (a) and (b) to find a differential equation for the system in terms of w and Vj,
(Eliminate T" and e). What is the steady state behavior of this system?

(d) When can the inductance L be neglected? What happens as L goes to zero? Does the steady
state behavior of the system change?

(e) With L = 0, think about the torque input T" to the rotational load. If the input voltage V is
a step, would you also expect the torque 1" to be a step?
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19.8 Recitation 8 Problem

AMRRNN
-
|
AN

T 0

Figure 19.8.1: Rotational System

Figure 19.8.1 shows a rotational system whose angular position is 6§ and angular velocity is w = 0.
The load has inertia J and rotates on bearings which are modeled as an ideal rotational damper
with coefficient b. A torque T is applied to the load. The initial velocity is w(0) = wy.

(a) Write the differential equation for the system in terms of 7" and w.

(b) Find the Laplace transform for the differential equation.

(c) If the input torque is a unit step 7'(t) = Tyus(t) (with constant magnitude Tp), what is £(s)?
)

(d) How would you solve for the angular velocity as a function of time w(t)?

(e) What is the transfer function %?
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19.9

Recitation 9 Problem

R

%

Yo 5}%

o 77777 b

Figure 19.9.1: Motor with Rotational Load

Figure 19.9.1 shows a motor connected to a rotational load. The motor’s resistance is given by R
and the motor’s inductance is negligible. The motor is driven by an input voltage v which generates
a current ¢ in the circuit. The combined motor and load inertia is given by J. The angular position
of the load is #. Flexibility in the load is modeled as rotational spring with constant k. Rotational
damping from the motor and the load is lumped into the element b. The system is initially at rest.

The motor applies a torque to the load: ™ = K1

The motor’s back emf is: e = K,,,0

(a)

Find the ordinary differential equation (ODE) for the motor circuit in terms of v, 7 and 6.
Laplace transform this equation and put it in the form:

V(s) = H1(s)T(s) + H2(s)O(s)

Find the ODE for the load in terms of 7 and 6. Find the transfer function:

Combine the results of parts (a) and (b) to find the system transfer function from v to 6:

Hy(s) = %. How would you find the transfer function from v to 77 Determine Hp(s) = 5((‘3

If v(t) is a unit step voltage with magnitude Vj, use the final value theorem to solve for the
steady state value 8(o0). What is the steady state angular velocity 6(co)? What is the steady
state torque 7(00)?

Find the power dissipated by the rotational damper at steady state. Is this surprising? How
would you determine when the power reached its maximum? Where is the power coming
from?

Repeat part (d) for a ramp input. What is the power dissipated by the rotational damper at
steady state for this case?

How would you redesign this system to get better behavior?
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(h) If H(s) can be written in the form

0.7

Hy(s) = —
)= T

sketch the poles and zeros of H(s) in the s-plane. Based on your pole-zero sketch, how would
you expect the system to respond to a step input?

holy crap you are a big pain in the ass what the hell is happening to the red sox they are totally
sucking some major ass and i hate it.
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19.10 Recitation 10 Problem
Construct Bode plots for the frequency response function

2

CUw) = ST T Gl A+ j)5)
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20 Recitation Quizzes

20.1 Recitation 1 Quiz

The snow from last week’s storm on the flat roof of Building 3 has melted all at once, and now
physical plant wants to know how long it will take for all that water to drain. We can model this
as a first order system and calculate the time constant.

IAAAAAAAAY

T Ao

P R q
X

Figure 20.1.1: Fluid Model

Consider the system shown in Figure 20.1.1, which consists of a fluid tank filled to a height A.
Water is draining out of the tank at a rate ¢ through an opening with resistance R. The volume
in the tank, V', is equal to the area A times the height V = Ah. The change in volume is thus:
dv dh
b i
dt dt
From conservation of mass, we know that the change in volume of liquid in the tank is equal to the
outflow (note the sign is negative because the water is flowing out):

av

1=

The pressure p at the bottom of the tank is p = pgh where p is the (incompressible) fluid mass
density and g is acceleration due to gravity. The linear fluid resistance can be written as p = ¢R.

(a) Formulate the first order differential equation describing the height of the water as a function
of time.

(b) What is the time constant for the system?

(c) If the initial height of the water is hg, what will the height of the water be after one time
constant? After 2.3 time constants?

241



20.2 Recitation 2 Quiz
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Figure 20.2.1: Second Order Response

Consider the plot shown above of the homogeneous response of a second-order system:

z=0

2
n

T+ 2CwpT 4+ w

Estimate the undamped natural frequency wy,, the damping ratio ¢, and the initial position z(0).

Is this system undamped, underdamped, critically-damped, or overdamped?

242



20.3 Recitation 3 Quiz

@) Q)

Figure 20.3.1: Cart System

The system shown in the figure has the first-order differential equation:
mo+bv=F

where m is the mass, b is the damping coefficient, = is the displacement of the mass, v = & is the
velocity of the mass, and the force F' is given by a step function:

F(t) = Fyus(t)
with magnitude Fjy constant. Assume zero initial position (zy = 0) and zero initial velocity (vy = 0).
(a) Sketch the velocity of the mass as a function of time.

(b) What is the velocity of the mass at steady state?
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20.4 Recitation 4 Quiz

(L1111 ]]
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7777777

Figure 20.4.1: Pulley System

The mechanical system shown in Figure 20.4.1 consists of a pulley of radius R suspended from the
ceiling by a spring and a damper. A cable runs over the pulley and is attached to ground on the
right and a hanging mass m on the left. The vertical position of the center of the pulley is x, the
vertical position of the mass is y, and the rotational angle of the pulley is 6. Note also that gravity
acts in a downward direction.

Assume that the mass of the pulley, cable and support is negligible, the pulley rotates without
friction, and that there is no slip between the pulley and the cable.

(a) Draw a free body diagram for the pulley.

(b) What is the relationship between z and y?
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20.5 Recitation 5 Quiz

Figure 20.5.1: Rack and Pinion System

A rack and pinion converts rotational motion to translational motion and vice-versa. The tracking
mechanism in the CD player passed around in class contained a rack and pinion.

Figure 20.5.1 shows a lumped model where the angular position of the pinion gear is given by 6.
The combined shaft and gear inertia is given by J, the rotational damping on the shaft is given
by b, and the applied torque T'(¢) is a function of time. The rack position is x, the mass of the
rack is m, the linear damping acting on the rack is given by b;, and the linear spring constant is
k. Assume that there is adequate room for the rack to roll back and forth.

(a) Draw free body diagrams for the rack and for the pinion.
(b) What is the relationship between = and 67

(c¢) Find the second-order differential equation for the system as a function of § (Use part (b) to
eliminate x).
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20.6 Recitation 6 Quiz

Figure 20.6.1: RC Circuit

The circuit in the figure consists of a voltage source connected to two resistors in parallel and a
capacitor. Find the differential equation for this circuit in terms of v,.
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20.7 Recitation 7 Quiz

Figure 20.7.1: RC Circuit

Figure 20.7.1 shows an ideal motor connected to a load rotating at angular velocity w. The motor’s
resistance is lumped into the element R. The motor is driven by an input voltage V. The motor
applies a torque to the load T" = K. The motor’s back emf is e = Kw. The combined motor and
load inertia is given by J and the load is also subject to a rotational damper b.

Without working through the mathematics, select the differential equation which best represents
this system:

(a)

K . K?
RV—JW—<b+R>w

K K?

K . K2\ |

Justify your answer (think of transient and steady state response, the physics of the system, etc.)
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20.8 Recitation 8 Quiz

— AW -
+ ! -+—oooo—
Vin<> € m
- —0000—
Voice
Coil

Figure 20.8.1: Voice Coil Circuit

The voice coil shown above is driven with an input voltage V;,. We are interested in the motion of
the load m, which moves with velocity v = .

Consider the voice coil to be ideal, with lumped resistance R. Neglect the voice coil inductance,
voice coil inertia, and any translational damping. The voice coil equations are:

F=Kji
e=K.v

where the direction of the applied force F' on the mass is the same as z. (Please keep the notation
for the back emf constant K, different than the voice coil constant K.)

Find the differential equation for the system in terms of V;, and v (eliminate e and 7).
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20.9 Recitation 9 Quiz

2(s+2)

H(s) = >4
()= F 7t 12

The transfer function H(s) given above is the ratio of two polynomials. Use partial fraction expan-
sion to rewrite the transfer function as the sum of the ratio of two smaller polynomials.
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20.10 Recitation 10 Quiz Spring 2005

F

b [ K

/117777777

Figure 20.10.1: Mass Spring Damper System
The input force F' to the mass spring damper system shown above is F'(t) = sinwt. The output
position steady state response is x(t) = M sinwt + ¢. Let m =1, b= 1, and k = 1.

Find M and ¢ for w = 1.
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Chapter

Solutions
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1 1st Order Systems

1.1 First Order Time Constant

The solution for this problem is not available.
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1.2 Rise and Settling Times
We are given the first-order transfer function

1

H(s) = Ts+1 (1)

The response to a unit step with zero initial conditions will be y(t) = 1 —e~*7 . To determine the
amount of time it take y to settle to within A of its final value, we want to find the time ¢ such
that y(ts) = 1 — A. Thus, we obtain

A=t/ (2)
ts=—7InA (3)

The 10-90% rise time ¢, may be thought of as the difference between the 90% settling time (A = 0.1)
and the 10% settling time (A = 0.9).

tr = ta—01 — tA=09 (4)

Therefore, we find ¢, = 2.27 . For A = 1076, ¢, = 13.827.
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1.3 First Order System Response
PZ.’ \;1 ‘\’57 = 10M

*) HomusenEors Sorimon:
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m
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2 2nd Order Systems

2.1 Second-Order System Response

PET 2097 +16py + 8000y <0
Ve = A.es®
7‘/(&) - Ase®
Jle) = A ste*

20.}\_/3‘,@/‘(*, 160. XS/{-SWOX/{—‘— O

20:% L 160s + BOOO=0O

sz = = V60 * [(60Y: - 4(20\ (Bo00)
2 (20)

Sz = —4 +319.6

Siee =T sijwd =-S=—4% ane wil=13.4

\//zé'\ = C. e_c}‘.e\ Coslwd. € *‘ﬁ)

V0 = C e cos1a.66p)

O\ = _4C e 19 4 ) -3 6C e oS (19 6640
V=6\= —A4C Cocl(g)-19.6C Sidp)

a) Y=o\ =0 = <. Ceslf)= O => p="/z
\‘/(é*«o\‘& 0 => ~4'CCo},(’7:) 1. SwM\=10

E=-0ha, - —0.€10
yle\= —0.S10. €™ s s(10.6¢+ )

Figure 2.1.1:
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t={0:0.005:51;
u=ones{(1l,1001);

XMIN=0;
XMAX=1.5;
YMIN=-10;
YMAX=10;

figure(l);

C=-0.510;

phi=pi/2*u;
y=C*exp(-4*t).*cos(1l9.6*t+phi);
plot(t,y);

AXIS({ [XMIN XMAX YMIN YMAX]};
title{('y vs. t (Part a}');
xlabel{'tC');

ylabel('y');

figure({2);

C=10.2;

phi=-0.2%*u;
y=C*exp{-4*t).*cos(1l9.6*t+phi);
plot{t,y);

AXIS{[XMIN XMAX YMIN YMAX]);
title('y vs. t (Part b)');
xlabel('t');

viabel ('y');
figure(3);
C=1.229;

phi=-0.62%*u;
y=C*exp(-4*t).*cos(19.6*t+phi) ;
plot(t,y);

AXTIS([XMIN XMAX YMIN YMAX]);
title('y vs. t (Part c)'};
xlabel('t"');

ylabel('y');

Figure 2.1.3:
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y vs. t (Part a)
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Figure 2.1.4:
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10

y vs. t (Part b)

0.5 1 1.5

Figure 2.1.5:
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10

y . t (Part¢)

0 0.5

Figure 2.1.6:
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2.2 Second Order Responses

(a) From the figures in the problem set, it can be estimated that the period T'= 0.1sec and the
time constant 7 = 0.35 sec. wy = 27w/T = 62.8. Since the system is slightly damped, the
estimated damping ratio

1 1
(=—~

= = 0.045 1
Twy, Twg  0.35 X 63 (1)

Further the natural frequency w, = wg//1 — (% = 62.8

(b) A mechanical mass-spring-damper system will give this response. K = Mw?, C = 2¢w, M.
For example, M=1kg, K= 62.82 = 3944 N/m, C= 2 * 0.045 % 62.8 * 1 = 5.6520 N-sec/m.
The initial position xz(0) = 0 mm, v(0) ~ Aw, = 300mm=62.8rad/sec= 18850mm/sec =
18.85m/sec, where A is the initial amplitude of response.

262



2.3 Second Order Derivation

The solution for this problem is not available.
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2.4 Second Order Derivation Continued

The solution for this problem is not available.
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3 Higher Order Systems

3.1 Structure of Higher Order System Solutions

The solution for this problem is not available.
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3.2 Structure of Higher Order System Solutions

Individual components of x(t) Total Response x(t)
1 4
35
08
3
06 25
2
04 15
;
02
05
0 0
0 2 4 6 0 2 4
Time (s) Time (s)
Figure 3.2.1: Sketch Solution for Case I
Individual components of x(t) Total Response x(t)
12 35
1 3
08 25
06
2
04
15
02
0 1
0.2 05
0. 4 0
0 2 4 6 0 2 4
Time (s) Time (s)

Figure 3.2.2: Sketch Solution for Case II
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(a)

Individual components of x(t) Total Response x(t)

15 25
2

1
15
05 1
0 05
0

0.5
0.5

1 1
0 2 4 6 0 2 4 6
Time (s) Time (s)

Figure 3.2.3: Sketch Solution for Case III

Case I
s1=—4,590=-3,83=-—2,and s4 = —1

z(t) = Cre ¥ 4+ Cye™ + Cqe72 4 Cye?
Case 11

51 =—1, 59 =—2, s34 = —2.5+£4.33) — w, =5,

1

z(t) = Cre ™t + Coe™ + C3——nee
1) =G+ G+ O e

e 2% cos(4.33t + ¢3)

Case II1
s12=—-1£995] — w, =10, s34 = —2.5+4.33) — w, =5

1 1
1 v
"VI—012 VI—052

Case A - This is a summation of four 1°¢ order responses. Thus the system does not have
an oscillation. Because all the terms are first order, the system will not overshoot the final
value.

z(t) =C ~1c08(9.95¢ + ¢1) + Co e 25 cos(4.33t + o)

Case B - This is a summation of 2 first order response and a decaying sinusoid. Since the
decay constant of the sinusoid is faster than the slower first order terms, the sinusoid will
appear in the initial response but decay to a simple first order response. Depending on the
magnitude of the sinusoid it is possible for the system to overshoot.

Case C - This is the summation of two decaying sinusoids. Since the time constant of the
decay envelope of the 4.33 r/s sinusoid is faster than the 9.95 r/s sinusoid, the response will
initially be a combination of the two sinusoids decaying to just the 9.95 r/s sinusoid. This
system can overshoot the final value.

To sketch the responses for each of these systems, we need to make a couple of assumptions.
One assumption I made was that all of the coefficients were equal to 1 (Reasonable for this
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case). The 2nd assumption I made was that ¢, = 0. Figures 3.2.1-3.2.3 show the responses
for the three cases. The left plot shows the individual components, while the right plot shows
the total response (z1 +x2...+z,). Normally, we are interested in the system response to a set
of initial conditions or an input force, in which case the ¢, # 0 and ¢; # co.... For reference,
I have included the system response for the initial conditions z(0) = 1, #(0) = £(0) =z (0)
(Note: the number of initial conditions for the system is equal to the order of the system thus
a first order system needs one initial condition, a 2nd order system needs 2 IC, ect.). Figures
3.2.4-3.2.6 show the results.

Linear Simulation Results
1 T

09 1

08 -

0.7 -

0.6 1

Amplitude

041 4

03 1

0.2 -

0.1 1

0 L L L L L
0 1 2 3 4 5 6

Time (sec)

Figure 3.2.4: Solution for Case |

Linear Simulation Results
1 T

09 1

08 1

0.7 1

06 -

05 1

Amplitude

04 8

03 1

02 R

01 R

0 I I I I T
0 1 2 3 4 5 6

Time (sec)

Figure 3.2.5: Solution for Case 11
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Linear Simulation Results

1 T

0.8

0.6

04

Amplitude

0.2

\/ -

02}

—04 L L L I
0 1 2 3 4

Time (sec)

Figure 3.2.6: Solution for Case III

structurehighersol.m

Download

clear all; close all;

A1=[1 10 35 50 24];

A2=[1 8 42 85 50];

A3=[1 7 135 550 2500];

S1=tf(1,A1); S2=tf(1,A2); S3=tf(1,A3);
%stuff to make plots

%Case I

t=[0:0.01:101;

x1=exp (-4*t) ;x2=exp(-3*t) ; x3=exp (-2*t) ;x4=exp(-t);
figure(1)

subplot(1,2,1)
plot(t,x1,t,x2,t,x3,t,x4)
title(’Individual components of x(t)’)
xlabel(’Time (s)’)

axis square;

subplot(1,2,2)

plot (t,x1+x2+x3+x4)

title(’Total Response x(t)’)
xlabel(’Time (s)’)

axis square;

omegan=1;

t=[0:0.01:20];

xt=(t-sin(omegan*t) /omegan)/omegan~2;
figure(4)

plot(t,xt)
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4 Mechanical Systems

4.1 Balloon

Assume hovering balloon has mass m and is subject to a buoyancy force B which tends to lift the
balloon. Consider only vertical motion of the balloon. Let the length of the string between the
balloon and the floor be y. Assume the string has mass/unit length p so that a string mass of py
must move whenever the balloon moves. Both the balloon mass and the string mass experience
gravitational attraction pulling them down. Assume that there is no tension in the string at the
point where the string meets the floor. Finally assume there are damping mechanisms ( air drag and
losses associated with coiling and uncoiling the string on the floor) which can be approximately
modeled by a linear damping force f; = bdy/dt opposing the velocity dy/dyt. These forces are
displayed in the free body diagram in Fig. 4.1.1.

B

N AN

Figure 4.1.1: Free-Body Diagram of Hovering Balloon

To construct a model we consider (i) geometric compatibility requirements, (ii) constitutive equa-
tions, and (iii) force-balance requirements.

(i) The displacement of the balloon is y(t). The velocity and acceleration are

Cdt Cdt dt?

(ii) The constitutive equations are

d
fm = %[(m +py)v]  fa=bv foravity = (m+ py)g
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(iii)

The force-balance requirement is

fm =B - fgravity - fd

An equation of motion for the model is obtained by substituting the constitutive equations into the
force-balance requirement to get

(a)

d dy
—[(m+ py)v] +b—+ (m + py)g = B (1)
dt dt
In a steady state y has a fixed value y, and all time derivatives. When we set the time

derivatives equal to zero in (1) we find that the equation is satisfied if

The variable mass term in (1) makes the equation nonlinear. It can be approximated by
a linear equation if the varying mass of the string, py is replaced by the fixed mass py, of
the string in its equilibrium position. This is a reasonable approximation for studying small
oscillations about the equilibrium position. The dynamics of such oscillations are clarified if
we introduce the displacement z = y — y, of the balloon from its equilibrium position. After
inserting y = y, + z in (1) we find

dv dz
—_— —_— p— B _ =
(m + pyo) 7 +bdt + pgz (m+ pys)g =0

Finally, introducing the total mass M = m + py, and putting v = dy/dt = dz/dt, we obtain

d?z dz
M— 4+ b— =0 2

This is the standard form for free oscillation of a linear second-order system.

Physically, when the balloon rises above its equilibrium position it lifts additional string whose
weight tends to lower the balloon, and when the balloon descends below its equilibrium
position it carries a lighter load of string which tends to drive the balloon upward. The
equivalent stiffness in the equation of motion (2) is k = pg. This is the weight per unit length
of the string. This example illustrates the fact that restoring-force elements do not always
look like springs.

The second-order equation of motion (2) predicts oscillation if the damping is light enough
to produce a critical damping factor ¢ smaller than unity.

A free vibration governed by (2) will eventually decay to zero if there is a positive damping
parameter b.

To obtain the behavioral parameters ( and w, we use the equations

LDR? 2
G ki and wWe = Wd with Wy = o

724+ LDR? V1-¢2 T,
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(e) From the given data we see that the ratio of successive peak amplitudes is 0.2. Thus the LDR
is In(0.2) = -1.609, and the damping ratio is

(16092 N\
¢= <7r2 + (1.609)2) = 0456

(f) From the given data we see that the damped natural period Ty is 3.0 seconds, so that the
damped natural frquency is wy = 27/Ty = 2.094 rad/sec, and

2.094
Wy = ————— = 2.35 rad/sec
1 — (0.456)2

To obtain the model parameters, we begin with the effective stiffness k which is the weight per
unit length of the string. This is given as 0.5 ounces per foot which is 0.03125 pounds/foot in the

English system or

4.448
k =0.03125 - 03048 — 0.456 Newtons/meter

(g) The effective mass M of the balloon plus the equilibrium length of string, is given by

ko 0.456
w2 = (2apyp VB0 ke

in the SI system. In the English system

W W 0.03125

— == (2.35)2 = 0.00566 pound sec?/ft
g . .

from which we find W = 0.1823 pounds or 2.92 ounces. The weight of 3 feet of string is 1.5
ounces so the weight of the balloon is 1.42 ounces. In the SI system, the mass of 3 feet of
string is 3(0.3048)(0.456)/9.81 = 0.0425 kg, so the mass of the balloon is m = 0.0826 - 0.0425
=0.0401 kg.

(h) The effective damping coefficient b = 2{w,M is
b = 2(0.456)(2.35)(0.0826) = 0.1770 N /m /s

in SI units, or
b = 2(0.456)(2.35)(0.00566) = 0.0121 pounds/ft/sec

(i) The effective stiffness was previously obtained as 0.456 Newtons/meter in SI units or 0.03125
pounds/foot in English units.
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4.2 Bungee Jumper

Initially the bungee jumper free-falls under the influence of gravity and air resistance, then when
the slack is taken up in the elastic cord, the cord exerts an increasing retarding force which reduces
her velocity to zero at level A, after which she bobs up and down with decreasing amplitude until
she comes to rest at the equilibrium position at level B. For the purposes of a preliminary estimate
of the conditions up to instant at which level A is reached, neglect the effects of air resistance and
damping in the cord. Under this assumption energy is conserved. In the first jump the equilibrium
position B is 20 feet below the point where the cord begins to stretch. The stiffness of the cord is
then estimated as
k= % = 12—500 = 7.5 pounds/foot
The undamped natural frequency of the mass-spring system consisting of the jumper and cord is

[k k 7.5
o = _—= = — 12
“ m \/W/g \/150/32.2 69 rad/sec

Let the elevation of the upper attachment point of the cord be denoted by h,, the elevation of the
point where the slack is taken up and the cord begins to stretch be denoted by hi, the elevation
of the equilibrium point B be denoted by hp, and the elevation of the point A where the jumper’s
velocity first vanishes be denoted by hg4.

(a) In the first jump, h, — h1 = 100 feet, and h, — hp = 120 feet. The level A can be located by
equating the potential energy lost in the fall to the elastic energy in the cord.

W(ho — ha) = KA(ho — ha) = Sh(h1 —ha)® = Jkl(h — ha) — 100

1

2

This reduces to a quadratic equation for (h, — h4) whose solutions are
(ho — ha) =120 £ 66.3 feet

The physically significant root is (h, — ha) = 186.3 feet. The low point A is 66.3 feet below
the equilibrium level B, or 186.3 feet below the upper attachment point.

(b) The maximum downward acceleration is 32.2 feet/sec? during the initial free fall.
(¢) The maximum upward acceleration occurs at point A and is
maz = (Max displacement from equilibrium)w? = (66.3)(1.269)% = 106.8ft /sec?
which is 3.32 times the acceleration of gravity.

(d) The primary assumption made is that dissipation of energy has been neglected. The cord has
been assumed to behave like a linear spring.

(e) In the second jump the slack length is doubled which cuts the stiffness in half, and doubles
the distance A to 40 feet. The natural frequency is reduced to 0.897 rad/sec. The location of
the new low point A’ is obtained by solving a similar quadratic equation with the new values
of hg — hy = 200 feet, h, — hg = 240 feet, and A = 40 feet. The result is

(ho — har) =240 £ 132.7 feet

The physically significant root is (h, — ha) = 373 feet. The low point A is 132.7 feet below
the equilibrium level B’ or 373 feet below the upper attachment point.
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(f) The level of the equilibrium point B’ is 240 feet below the attachment point.
(g) The maximum downward acceleration is still 32,2 feet/sec
(h) The maximum upward acceleration is
maz = (Max displacement from equilibrium)w? = (132.7)(0.897)% = 106.8ft /sec”

Although the jump involves a longer free fall and a greater extension of the cord the maximum
acceleration does not change!

Bungee Jumps

400 == \ ‘
350 | RN i
N
N
AN
300 f
,,,,, Level B _  _  _ . N .. . ... _._._._._._ ]

250 f
.Sj Level A
S 200}
S
>
@
L LevelB1 _ N
150

100

50

Level Al
o | | |
0 1 2 3

Time [seconds]

Figure 4.2.1: Time Histories of Bungee Jumps

(i) The time histories of the two jumps are shown in Fig. 4.2.1. For plotting purposes the
elevation of the upper attachment point was (arbitrarily) assigned the value 400 feet. The
trajectory of free fall is indicated by the dashed-line parabola. With 100 feet of slack the
jumper’s trajectory departs from the free-fall parabola at A = 300 ft and begins to oscillate
about the final equilibrium level B. With no damping the maximum excursion (and maximum
acceleration) is at Level A. With 200 feet of slack the jumper’s trajectory departs from the
free-fall parabola at h = 200 ft and begins to oscillate about the final equilibrium level B1.
With no damping the maximum excursion (and maximum acceleration) is at Level Al.
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4.3 Elevator Model

Consider a free-body diagram of the elevator of mass m when it is accelerating upward with accel-
eration dv/dt. The equation of motion is

dv
T — =m—
mg=m 7

@ T

Velocity
3 ft/sec
7/ N
N
Z N
|
O 1 sec Time

Figure 4.3.1: Elevator Dynamics

When the elevator is at rest, or traveling at constant velocity (dv/dt = 0), the tension T in the
cable (and the load on the winch) would be simply the weight mg of the elevator and its cargo.
Designing the winch structure on the basis of this load would be static design. Including the
dynamic effect of accelerating the elevator results in T' = mg + mdv/dt. To answer the question
of whether dynamics matters, one must compare the magnitudes of the static load mg and the
dynamic load mg + mdv/dt. The problem statement does not specify the explicit time behavior
of dv/dt. Tt merely states that a total change of velocity of 3 feet/second is accomplished in one
second. The sketch above shows two possible velocity histories. The slope of the velocity history is
the acceleration dv/dt. With the dashed history the acceleration is uniform and has the magnitude

dv  3ft/sec

— = :3048) = 0.914 2
7 Toco (3)(0.3048) = 0.914m/sec

This time history has the smallest maximum acceleration but the sharp corners at the beginning
and end of the one second acceleration are hard on the winch motor and are felt as jerks by

275



the passengers. The time history suggested by the solid curve in the figure produces a smoother
transition at the expense of a larger maximum acceleration. If the system is designed to accelerate
according to the solid curve the maximum acceleration can be 50% to 100% larger than the uniform
acceleration of the dashed history. In the latter case the ratio of the dynamic load to the static

load would be

g+ (dv/d)mar _ 981 +2(0914)
p 9.81

Here, dynamics does indeed matter! The dynamic load is 18.6% larger than the static load.

Engineers often make preliminary design calculations to determine ball-park estimates of size,
weight, and power. In these ‘back-of-the-envelope’ calculations it is common to omit effects with
contributions of the order of five to ten percent. However, these effects must be included in final
design calculations, which have to be defended in safety investigations.
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4.4 Hoisting for Engineers

The solution for this problem is not available.
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4.5 Blocked Springs

Let the effective combined stiffness of the four unblocked springs be k,,, and let the effective com-
bined stiffness of the four blocked springs be k. In both cases the vehicle weight mg is supported
by the springs. Since only half of the spring is active in the blocked case the static deflection
Ay = mg/ky in the blocked case will be half the static deflection A, = mg/k, in the unblocked
case. Since we are given that A, — Ay = 2.5 inches, we deduce that A, = 5.0 inches, and A, = 2.5
inches.

(a) The effective stiffnesses are

9 2
= ? = 500 pounds/inch and ky = 57(;)0 = 1000 pounds/inch

ku
in British units. In SI units

4.448 4.448
ky = 5000.0251)1 = 87,560 Newton/meter and k= 10000'02531 = 175,100 Newton/meter

(b) The undamped natural frequency w, is given by w2 = k/m where m is the mass of the vehicle.
In ST units m = 2500(0.4536) = 1134 kg. The natural frequencies are

87,560 175,100
(Wo)u =1/ 31— 8.787rad/sec and (Wo)p = 1131 = 12.437rad/sec

(¢c) We are given that the unblocked suspension is critically damped (¢, = 1.0). The effective
damping coefficient is

b =2, (wo)um = 2(1.0)(8.787)(1134) = 19,930 Newtons/meter/second

(d) Assuming that the shock absorbers are unchanged by the blocking operation, the damping
coefficient remains b = 19,930 N/m/s and the new value of ¢ for the system with blocked
springs is

b 19,930

- = 0.7071
Sw)om — 2(12.437) (11340 0107

G =

If y is measured vertically upward from the equilibrium position, and v = dy/dt, the constitutive
equations are

dv
a’
with appropriate subscripts © and b for the unblocked and blocked cases, respectively. and the
force-balance requirement is

fm=m fa=bv, and  fi=ky

fm = [(t) = fa— i

where f(t) is the upward driving force applied to the vehicle. These model requirements can be
organized into the following state equations for a state determined system with state variables y
and v.

4 y 0 1 y 0

_ — +

2B sl IS B Bk W0
m m m
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The output equation for the displacement response y(t) is

y&)={1 0}

v

The state equations can be integrated by adapting the scripts ‘pos.m’ and ‘eqpos.m’ for the Plate
on Springs problem of Assignment 5 to apply to the present problem. The adaptation of ‘pos.m’
involved inputting the specific values of m, b, f,, x,, and v, and eliminating unecessary plots. The
adapted version of 'pos.m’ is called ‘blockedspringssol.m’. It is located at the end of this solution.

Time History of Displacement
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Figure 4.5.1: Response of Unblocked Vehicle
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Time History of Displacement
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Figure 4.5.2: Response of Blocked Vehicle
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Time History of Displacement
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Figure 4.5.3: Comparison of Responses

The adaptation of ‘eqpos.m’ involved only the name change to ‘Eqgblockedspringssol.m’.

Using these scripts with the stiffness inputs &k, = 87560 N/m and k, = 175100 N/m, and an
integration time of 1.0 second produced the response curve shown in Fig. 4.5.1 for the unblocked
vehicle, and the response curve shown in Fig. 4.5.2 for the blocked vehicle. The two responses
are compared in Fig. 4.5.3. Note the quicker response to a smaller deflection for the blocked
vehicle.

blockedspringssol.m

Download

% Produces plots of

% (i) position vs. time

% for the response of vehicle, with mass m, stiffness k,

% and damping parameter b, when the vehicle starts from initial conditions
%y =0 and v = 0 under the action of a suddenly applied force

% fa = 1000 pounds ( 4448 Newtons) at t = 0.

clear variables
global m k b fa
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% Input parameters

m = 1134;

k = input(’Enter the stiffness "k" in Newtons/meter ’ );
b = 19930;

fa= 4448;

% Input initial conditions.

yo= 0;

vO0= 0;

tspan = input(’Enter the duration "T" of the desired time history, in seconds ’);
X0 =[y0; v0o1l;

% Integrate equations of motion

[t,X] = ode45(’Egblockedspringssol’, tspan, X0);

% Plot results

plot(t,X(:,1)), title(’Time History of Displacement’),

xlabel(*Time [Seconds]’), ylabel(’Displacement [meters]’), pause

Egblockedspringssol.m

Download

% ’Eqblockedspringssol.m’ Adapted from ’eqpos.m’. Provides equation of motion
% for vehicle with unblocked or blocked springs

% to be integrated by script ’blockedsprings_sol.m’

function Xdot = Egblockedspringssol(t,X)

global m k b fa

Xdot = [0 1 ; -k/m -b/m ]1*X + [ 0 ; fa/m ];
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4.6 Engine Vibration

The solution for this problem is not available.
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4.7 Garage Door

N RSN

Figure 4.7.1: Garage Door support System

To model the pulley system, we assume that the inertia of the pulleys and cable is negligible in
comparison with the mass of the garage door. Furthermore we assume that the cable is flexible
(it bends easily) but stretches very little in comparison with the extension of the spring. Let x
be the horizontal displacement of the pulley attached to the end of the spring, and let y be the
vertical displacement of the door, both measured from the equilibrium position of the door hanging
freely under the influence of gravity. In the equilibrium position, the tension 7T, in the cables must
equal the weight mg of the door. The total force in the spring is 27, which has produced an initial
extension A of the springs, where A = 2T, /k = 2mg/k.

In a small oscillation about the equilibrium position, the displacements x(t) and y(t) oscillate
about zero and the tension in the cable oscillates about the initial tension 7, = mg. When the
cable remains taut, the displacements x and y are linked by the geometric compatibility requirement
y = 2z. This is the crucial insight for this system, and it is not immediately obvious to all. One
way to see it is to imagine that the door and the cables are temporarily frozen in position while the
pulley attached to the spring is displaced a distance x to the left. An empty loop of cable appears,
to the right of the pulley, with a straight length x in the upper cable and a straight length x in the
lower cable. Now with the pulley fixed, gradually lower the door to take up the slack in the empty
loop. It will be necessary to lower the door a distance y = 2x to make the cable taut again.

(a) To formulate a model to analyze the door oscillations we need to assemble the geometric
compatibility requirements, the constitutive equations, and the force balance requirements.
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The geometric compatibility requirement is
y = 2x
The constitutive equations for the door and the spring are

m d%y

fm=5gz and 2T =k(A+w)=2mg+ ke

and the force balance requirement is
f m=mg—T

These relations constitute a mathematical model of the garage door system. They can be
organized into a single differential equation for either x or y by inserting the constitutive
equations for f,, and T in the force balance equation and using the compatibility requirement
to eliminate x in favor of ¥, or vice versa. The result is either

Py k Pz k

m—s + -y =20 or m——s+-2=0

az " 27 a2 " 2
Note that because the origins for the displacements x and y were established at the equilibrium
position, the gravity force has canceled out of the equations of motion.

The undamped natural frequency w, for the preceding equations is given by

2ok kg
°  2m 2W

where W is the weight of the door and g = 386 in/sec? is the acceleration of gravity. The
frequency of oscillation f, in Hz is

Wo 1 [(5)(386)
= — = — —_— = . H
fo=9r =57 2(200) 0.350 Hz

It is assumed that the door only moves vertically in the small oscillation. The inertia of the
pulleys, cable, and spring is neglected. The elasticity of the cable in tension is neglected, and
it is assumed that the tension 7' is uniform throughout the length of the cable.
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4.8 Rotating Damped

A rotor with moment of inertia I and angular velocity w is subjected to an accelerating torque T’
and two retarding friction torques, each modeled linearly as Bw.

(a) The equation of motion is

dw dw 2B 1
(b) The steady-state angular velocity, when T = 10 Newton-meters, and I = 0.001 kg-m?, and
B = 0.005 N-m/r/s is
T 10

== =1000
2B ~ 2(0.005) /s

Wss

(c) Consider the input 7' = T, sin 2t to be the imaginary part of the complex input T,exp(i§2t)
and look for a complex solution of the form w = Aexp(iQ2t). After substitution in (2) we find
that this is indeed a solution , if

1, 1 .
= n 7o = 55— exp(ig)
2B+’LIQ 2B 1+(Q>2

where the phase angle ¢ is fixed by the relation

0
t —_ _ "
an ¢ 5B

The steady-state solution to the input 7' = T, sin {2t is then the imaginary part of the complex
solution Aexp(i€Qt), which is

w= fa 1 sin(Qt + ¢)

The magnitude of the response amplitude is

T, 1
MQ)= = ——
2B
1+ (53)?
and the phase angle is
(;5 = —tan ﬁ

For the case where T, = 10 Newton-meters, the values of M (£2) and ¢(2) for the frequencies
2 = 50 rad/sec, 2 = 5 rad/sec, and © = 0.5 rad/sec are

. _ 10 1 _
(i) M(50) = m—ﬁr((ovgt)l(w))z = 196.1 r/s,

#(50) = tan~1(0.001)(50)/0.01 = 1.373r = 78.7 deg
(ii) M(5) = 2% — L — 894 1/s,

0.01 1+((o4g§éi(5))2

#(5) = tan=1(0.001)(5)/0.01 = 0.463r = 25.6 deg
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__ 10 1 _
(iii) M(0.5) = W—W =999 r/s,

$(0.5) = tan—1(0.001)(0.5)/0.01 = 0.0500r = 2.86 deg

(d) The limiting value of the magnitude of the response amplitude M (€2) when 2 — 0 is A, =
To/2B = 1000 r/s. The ratio M (§2)/A, is 0.1961 when Q = 0.5 rad/sec, 0.894 when © = 0.05
rad/sec, and 0.999 when Q = 0.005 rad/sec.

Magnitude of Response Amplitude
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Figure 4.8.1: Magnitude of Response of Rotating Inertia
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Phase Angle of Response
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Figure 4.8.2: Phase Angle of Response of Rotating Inertia

(e) The low-frequency asymptote for M (2) is A, = T;,/2B, while the high-frequency asymptote
is T, /I€). These asymptotes intersect at the break frequency Qpreqr = 2B/I = 10 rad/sec.

(e) The Bode plots shown in Fig. 4.8.1 and Fig. 4.8.2 were obtaining by running a MATLAB
script similar to that used in Problem 4.21.
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4.9 Car Suspension 1

The differential equation for the system is

mx + ct + kx = cxy + kxog,

(1)

where g stands for the ground waveform input. For step input, the particular solution will be:

zp(t) = 1.
The homogenous solution has the form:
zp(t) = Ae™“rlsin(wgt) + Be™“meos(wyt)

To find the initial velocity, integrate equation 1 from 0~ to 0T,

m(2(07) — #(07)) + c(x(07) —2(07)) + k x 0 = cxo(0T) — 20(07)
ma(07) = cxo(07)

#(0%) = %xo(oﬂ =

Plugging the initial conditions into the full solution

z(t) = Ae™“ntsin(wqt) + Be “nteos(wat) + 1
z(0N)=0=B+1=B=-1
c Cwn )

- c
#(0) = = Awg — C(wpB = A = (mwd o

For m = 500kg, k = 5 x 10*N/m and ¢ = 2 x 103 Ns/m,

[k
wn =14/ — =10
m

C

<_2¢Hﬁ_uz
wg=wnV/1—-C¢2=938
o= (w, = 2;

A=02

x(t) = 0.2¢" % 5in(9.8t) — e *!cos(9.8t) + 1

(2)

(10)

(11)

(12)
(13)
(14)
(15)

The result is plotted in Figure 4.9.1. The passengers will not like this ride because there are too
many oscillations. when ¢ = 2 x v km = 10000, the system will be critically damped, in this case

the complete solution has the form:

z(t) =14 Ae“n! 4 Bte !
2(0Y)=0=A+1=A=—1
i@ﬂz%:—%A+B:B:%—mde
z(t) =1 — e 10 4 10te 10
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In order to find the acceleration for the under-damped case, reformulate equation 16,

z(t) = 0.2e 2 5in(9.8t) — e *cos(9.8t) + 1

= Re{l — 1,026*2t+j(9.8t+0.197)}

#(t) = Re{—1.02(—2 + 9.8j)%e 2+ (9.8+0.197)}
i(t) = 102e *cos(9.8t + 0.6)

The maximum acceleration could happen at t=0+ and t=(m — 0.6)/9.8 = 0.26sec,

Z(t = 0+) = 102co0s(0.6) = 84
#(t =0.26) = —102¢" 2020 = _60

So the maximum acceleration is 84m/sec?.
Similarly, for the critically damped case, differentiating equation 25 twice,

i(t) = —300e™ 1% 4- 1000te 1%
#(0+) = —300

So the passenger will have bigger acceleration in the critically damped case. From the step response,
the 5% settling time is 1.35sec in the under-damped case and 0.4sec in the critically-damped case.

16

T T
—— Underdamped Step Response
- Crtically Damped Step Response

Displacement [m]

Il Il Il Il

Time [sec]

Figure 4.9.1: Step Response
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4.10 Disk Drive

7~

Figure 4.10.1: Free body diagram of disk drive spindle

(a) Figure 4.10.1 shows the free body diagram for the spindle. Note: that all constitutive equa-
tions are included with the diagram.

(b)

Jw = T —Tp

Juw = 7y — bw
D+ b Tm
w+-—-—w = —

J J

(c) When the disk spins down 7, = 0 therefore our equation of motion becomes

d)+§w = 0

We know that the solution for this must take the form w(t) = Ae®* = Ae~*/7. If we substitute
into the equation of motion we get

b
AseSt—FAjeSt =0

s - _°
N J
J J
pr — b —
T b - T
0.001 kg m? Nm s
b = 0.5 s 0.002 rad
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Please note that angular velocity must always be in rad/s (the unit label rad=1) unless
otherwise noted.

o vs time
250

200 E

(7, 157.5)
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0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
time (s)

Figure 4.10.2: Plot w vs time

(d) To determine w(t), we need to determine the final velocity of the disk. When «w = 0 the

characteristic equation become

bw =71y — wf:T—m:25Or/s

b
Since the initial velocity of the system is 0, we know the solution must be of the form
wt) = wpl—e V") =250(1 —e %)

Figure 4.10.2 shows the w(t)
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o vs time
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Figure 4.10.3: Plot w vs time

(e) w(t) for t >ty is
w(t) = wfe_(t_tl)/T = 250¢2(t—1)

Figure 4.10.2 shows the time response of the disk.
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4.11 Crashworthiness

The sketch in Fig. 4.11.1 shows the linear model used to study crashworthiness. The mass m of
the vehicle is (2000 pounds)(0.4536 kg/pound) = 907.2 kg and the vehicle speed at impact v, is (10
mi/hr) (5280 ft/mi)(0.3048 meters/ft) /(3600 secs/hr) = 4.470 meters/sec. When there is no energy
dissipation (b = 0) the displacement of the mass goes through a half-cycle of undamped vibration
of the form

x(t) = Asinw,t

The vehicle then retreats from the barrier with velocity —v,. The amplitude A of the oscillation
is given as 6 inches which is (6 in)(0.0254 meters/in) = 0.1524 meters, but the undamped natural
frquency w, is unknown.

/—>v
0 k
m

OO

Figure 4.11.1: Model of Vehicle Impacting a Barrier

One way to calculate w, is to set the velocity obtained by differentiating z(¢) equal to v, at t = 0.

This leads to
W 4.470

Wo =~ = G{rod = 29.33 rad/sec
Another way to obtain w, is to use conservation of energy,
1 1
KE = 5mrui = ikAQ

to get k, and then use w2 = k/m to evaluate w,.

(a) If the value of w, is already known, then the effective stiffness k is obtained from
k = mw? = (907.2)(29.33)% = 780,400 N/m

If w, is not available, then the stiffness can be obtained directly from conservation of energy.

Vo\ 2 4.470 \ 2
ey _— = ,2 = N
k m<A> 907 (0.1524> 780,500 N/m

(b) During the half-cycle of undamped sinusoidal motion z(t) = Asinw,t the acceleration is
d%x/dt? = — Aw? sinw,t. The peak deceleration occurs at the instant of peak deflection of the
spring and has the magnitude

Decelpeqr, = Aw? = (0,1524)(29.33)? = 131.1 meters /sec’
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The geometric compatibility requirements are satisfied by taking x to represent the displacement
of the mass and the deformation of the spring, and v = dz/dt to represent the velocity of the mass
and the relative velocity across the damper. The constitutive equations are

d
fm = md—: fa="bv and fr = kx

and the force-balance requirement is
f m=—fd— f k

These model requirements can be used to construct the state equations for the state variables x

and v

(e 0 1 ](,

dt | kb v
m m

The desired outputs are (i) the deflection disp = x of the fender, (ii) the deceleration of the vehicle
decel = (k/m)x 4+ (b/m)v), and (iii) the total force on the barrier fyqr = kx + bv. In matrix
notatio

disp 1 0

x
decel p = | k/m b/m

v
fbarr k b

The state equations can be integrated by adapting the scripts ‘pos.m’ and ‘eqpos.m’. The adapta-
tion of ‘pos.m’ involved inputting the specific values of m, k, x,, and v, and letting the program
ask for the desired value of ( instead of the desired value of b. The adapted version of 'pos.m’ is
called ‘crashworthinesssol.m’ and is found at the end of this solution.
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Time History of Displacement
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Figure 4.11.2: Displacement Response for { = 0.5

The script for the equation called for by ‘crashworthinesssol.m’ is called ‘Eqcrashworthinesssol.m’.
It is similar to‘Egblockedspringssol.m’ except that here there is no applied force f,.
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Time History of Deceleration
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Figure 4.11.3: Deceleration Response for ( = 0.5

Typical plots produced by ‘crashworthiness.m’ are shown in Figures 4.11.2-4.11.4, which were ob-
tained for ¢ = 0.5.
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(2)

(i)

Force [Newtons]
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Figure 4.11.4: Barrier Force Response for ¢ = 0.5

The plots obtained are only valid during the interval in which the fender remains in contact
with the barrier. In the undamped case, this period was a half cycle of sinusoidal oscillation.
In the damped cases, the model results are valid only as long as the barrier force is compressive.
If tension is required the fender separates from the barrier. For the case ( = 0.5 we see that
the model predicts tensile barrier force after ¢ = 0.082 seconds. In all four cases there is
separation of the vehicle from the barrier after the impact.

Peak decelerations are proportional to peak barrier forces (this is a consequence of Newton’s
law F' = ma). In the undamped case, the barrier force is delivered by the spring. Its
magnitude is fygrry = mAw?2 = mv,w,. In the damped case, the barrier force is delivered by
both the spring and the damper. At the initial instant of impact, when the fender begins to
move with velocity v,, but hasn’t yet deflected the spring, the entire barrier force is delivered
by the damper. Its magnitude is fpqrrd = bv, which can be made as large as desired by
increasing the parameter b. This initial damping force will be the same as the peak undamped
force if bv, = mwv,w,. This occurs when ¢ = 0.5.

The peak deceleration is greatest in Case (f), ¢ = 1.0.
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(j) By trial and error with 'crashworthinesssol.m’ one finds that ‘decel’ has a fairly flat minimum
value of slightly more than 106 meters/second? over the range 0.25 < ¢ < 0.30.

crashworthinesssol.m

Download

% crashworthinesssol.m MATLAB Script adapted from pos.m which was

% MATLAB script for Problem 3 in 2.003 Assignment 5. Produces plots of
% (i) displacement vs. time

% (ii) deceleration vs. time

(iii) force on barrier vs. time

for the response of vehicle, with mass m= 907.2 kg,

stiffness k = 780500 N/m, and damping ratio zeta,

when the vehicle impacts barrier with initial conditions

% x=0and v =4.470 m/s at t = 0.

clear variables

global m k b

% Input parameters

m = 907.2;

k = 780500;

zeta = input(’Enter the damping ratio, zeta ’);

b = 2%zeta*x29.33%907.2;

% Input initial conditioms.

x0= 0;

v0= 4.470;

tspan = input(’Enter the duration "T" of the desired time history, in seconds ’);
X0 =1[x0; v0o1];

% Integrate equations of motion

[t,X] = ode45(’Eqcrashworthinesssol.m’, tspan, X0);

% Obtain outputs

disp = X(:,1);

decel = (k/m)*X(:,1) + (b/m)*X(:,2);

fbarr = mxdecel;

% Plot results

plot(t,disp), title(’Time History of Displacement’), grid,
xlabel(’Time [Seconds]’), ylabel(’Displacement [meters]’), pause
plot(t,decel), title(’Time History of Deceleration’), grid,
xlabel(°Time [Seconds]’), ylabel(’Deceleration [meters/sec sqdl’),pause
plot(t, fbarr), title(’Time History of Force on Barrier’), grid
xlabel(’Time [Seconds]’), ylabel(’Force [Newtons]’),

Eqcrashworthinesssol.m

Download

% ’Eqcrashworthinesssol.m’ Adapted from ’eqpos.m’. Provides equation of motion
% for vehicle impacting barrier

% to be integrated by script ’crashworthinesssol.m’

function Xdot = Eqcrashworthinesssol(t,X)

global m k b

Xdot = [ 0 1 ; -k/m -b/m ]*X ;
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4.12 Nonlinear Rotational System

The solution for this problem is not available.
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4.13 Developing Differential Equations

We are interested in modeling the rotation system in Figure 4.13.1 and the translational system
in Figure 4.13.2. The free-body diagram for the rotational system is given in Figure 4.13.3. The
free-body diagram for the translation system is given in Figure 4.13.4.

y T, input 4\ 4\ 6, output
C, / C,

S S S S S S S S S S S S S S

Figure 4.13.1: SDOF Rotational System

X, output
—>
F, input
—
/) K, K,
VNN M —V\N\N—

[ O O
S S S S S S S S S S S SS S S

Figure 4.13.2: SDOF Translational System
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Figure 4.13.3: Free-body diagram for the Rotational System

P
—>|

S| |
B B— [ —

;

Figure 4.13.4: Free-body diagram for the Translational System
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Using the free-body diagram, the equation of motion for the rotational system is
JO+ (c1+c)f =7

The rotational system is a first-order system because we can rewrite the governing equation using
the velocity (w = 6)such that there is only a single derivative.

Jw + (01 +02)w =T
The governing equation for the translational system is
Mi + (Cl +02)i + (k}l + kz)ﬂ? =F

This system is second-order.
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4.14 Mass Spring System Frequency Response

(a) The differential equation for this system is
mi + kx =F
Take the Laplace transform and rearrange to obtain the transfer function
X(s)(ms* + k) = F(s)
X(s) 1
F(s) ms>+k
M is simply the magnitude of the transfer function evaluated at s = jw.
X(s)| 1
F(s) |100 — w?|

M =

The phase is

0 0
-1 -1
¢ = tan 1~ tan 100 — o2

=0%w <10 and — 180°,w > 10

(d) The plot is shown in Figure 4.14.1.

Bode Diagram
150 T T T T —— 7

100 -

50 -

Magnitude (dB)

-50 -

100 . . R |

45 ;

-90 | 4

Phase (deg)

-135 - .

180k
10° 10" 10°

Frequency (rad/sec)

Figure 4.14.1: Bode plot

304



4.15 Modeling Practice

The solution for this problem is not available.
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4.16 Small Motion Transfer Function

The solution for this problem is not available.
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4.17 Mass Spring Damper System Frequency Response 1
(a) The differential equation for this system is
mz + bt + kx = F
Take the Laplace transform and rearrange to obtain the transfer function

X(s)(ms® +bs + k) = F(s)
5) 1

(
(s)  ms2+bs+k

X
F
M is simply the magnitude of the transfer function evaluated at s = jw.

1
V(100 — w?)? + w?

s)
)

S

vl

The phase is

0 w
_ -1 -1
ptan Ty g e
— —tan~! _w
100 — w?

(d) The plot is shown in Figure 4.17.1.
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Figure 4.17.1: Bode plot
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4.18 Mass Spring Damper System Frequency Response 2

(a) Begin by writing out two force balance equations, one for each mass. This will yield two
differential equations involving 1, o and F'. These simplified equations are

miZ1 + (bl + bz)i‘l + (k‘1 + k‘Q):El = bodg + koxo + F

Moy + baiy + kowa = boiy + kowy
Next take the Laplace transform of each equation

X1(s) (mas® + (b1 + ba)s + (k1 + k2)) = Xo(s) (bas + ko) + F(s)
XQ(S) (m252 + bys + k‘g) = Xl(s) (bgs + ]432)

To obtain the desired transfer functions, simply substitute one equation into the other. After
a lot of messy algebra, this yeilds

Xi(s) mas? + bas + ko
F(s) — mamas* + (ma(by + ba) + mabe)s® + (mike + ma(k1 + k2) + b1b2)s? + (bika + baky)s + kiko
XQ(S) _ bos + ko

F(s) — mamas* + (ma(by + ba) + mabe)s® + (miks + ma(k1 + k2) + b1ba)s? + (bika + baky)s + k1k2

(b) The bode plots and pole/zero plots are shown in Figures 4.18.1-4.18 4.

Bode Diagram
0 T

Magnitude (dB)

90} ,

Phase (deg)

-135 -

-180 & L . !
10 10 10’ 10 10
Frequency (rad/sec)

Figure 4.18.1: Bode plot for Hj(s)
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Phase (deg)

100 - o]
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oF bl
50
-100+ « O
1 1 1 1 1 J
05 -0.4 0.3 0.2 0.1 0
Real Axis
Figure 4.18.2: Pole/zero plot for Hi(s)
Bode Diagram
0 T

Frequency (rad/sec)

Figure 4.18.3: Bode plot for Ha(s)
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Figure 4.18.4: Pole/zero plot for Hi(s)

For both bode plots, peaks appear at the frequencies of the pole locations, that is, the
imaginary value of each pole. The imaginary value of a pole is simple the undamped natural
frequency, and it makes sense that peaks would occur at damped natural frequencies. mq is
at a relative maximum at about 1.96 [rad/sec|]. Both masses oscillate with a magnitude of
-5.85 [dB]. m; is at a relative minimum at about 100 [rad/sec], oscillating at -120 [dB]. my is
oscillating at -80[dB], which is 100 times the amplitude of m;.
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4.19 Propeller Shaft Vibration

Torsional vibration of coupler shaft between engine and propellor. Moment of inertia of propellor
is estimated as I = mL?/12, where m is the mass of an aluminum rod, 2 inches (0.0508 meters) in
diameter and six feet (1.829 meters) in length. The density of aluminum is 2720 kg/m?, so

m = prr?L = 27207(0.0254)%(1.829) = 10.08 kg

and

2 2
;_mL® _ (1008)(1.820° kgm?

12 12

Figure 4.19.1: Torsional Vibration of Propellor Shaft

(a) The input is the given angular displacement of the engine end of the shaft
Q
0. = Qt + esin;t

Take the output to be the angular displacement 6, and angular velocity w, = df,/dt of
the propellor end of the shaft. Assume that the that the torque Ty f¢ transmitted to the
propellor from the shaft and the torque T%,;. applied to the propellor by the air resistance
can be modelled by the linear relations

Tshaft - K(Hp - 9@) a.nd TfT‘iC = Bep
The torque balance requirement is

dwp

- shaft_Tfric:TI:I dt
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These relations can be combined in the standard form for a state-determined system

d Op 0 1 0, 0| i 0
— = + — (2 + esin —t)
dt | o, ~K/I —B/T | | w, 1] 1 2
or in the form of a single second-order equation
d?0, do, . Q
IW +BE +K0p = K(Qt‘i‘ESlngt)

The input motion consists of a uniform rotation at angular rate €2 plus a sinusoidal oscillation
at frequency 2/2. Because the equation is linear the steady-state responses to these two inputs
can be obtained separately and superposed to obtain the complete solution. For the uniform
rotation, try a response of the form

Op,uniy = Qt + Constant
and find that it satisfies

d%0,, uni by uni
100nis | pOnis | g iy = KO
if the Constant = —BQ)/K. this means that, after an initial transient, uniform engine speed

results in a uniform propellor speed with a constant twist in the shaft just large enough for
the shaft torque to balance the friction torque. For the sinusoidal oscillation, the response
Op,0sc = 1 (t) must satisfy the equation

2y di 0
IW+BE+K¢:K681n§t

A solution is sought in the form
Q
1 =Im{A exp(z;t)}

The complex amplitude A must satisfy the relation

A1 v
€ %—%24-2'%? wg—%Q—f-ijOQ
where K B
w2 = 7 and 2Cw, = T

This result is very similar to the result obtained in Problem 16.9, with the exception that
here the firing frequency /2 plays the role of the driving frequency 2 in Problem 16.9. The
ratio of the complex amplitude at frequency €2/2 to the response when Q — 0 is

_A(Q/2) 1

PTTAO) T s O e

The peak value of |Z] is

1
Z ea -
Ve

and that the peak amplitude is realized when the forcing frequency is

Qpeak = WoV 1- 2C2
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(b) To use the results of Problem 16.9, we need the ratio, |Z|pcqk, of the peak response to the
zero-frequency response and the magnitude of the forcing frequency which produces the peak
response. Here we know that peak response occurs when the engine speed is 2200 rpm. The
corresponding forcing frequency is /2 = 1100 rpm or 115.2 rad/sec. We do not know the
zero-frequency response, but we do know that the ratio of the peak response, at 2200 rpm, to
the response at 500 rpm is 4. We also know from Fig.2 that the response magnitude for low
frequencies, well below the natural frequency, is not much greater than the zero-frequency
response. Therefor we can take the given ratio of 4 as an estimate of the ratio |Z|peqr. With
these estimates, we can use the results of Problem 16.9 to obtain estimates of the behavioral
parameters w, and (.

Qpeak 115.2 1
Wo = = and lpeak =4 = ————
TV 12 Zlpen 20/1- 2

The solution of these equations yields the estimates

¢ =0.1260 and we = 117.1 rad/sec

from which follow
K = Iw? = 2.811(117.1)* = 38,500 N-m/radian

and
B = 2Cw,I =2(0.126)(117.1)(2.811) = 83.0 N-m/rad/sec

as estimates of the model parameters.
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4.20 Safe Packaging

The first two figures for this problem are completely irrelevant to the actual solution, they are only
there to show the thought process you would go through if you were solving this problem on your

OWIL.
f
s

T v

Figure 4.20.1: Free Body Diagram of instrument.

K

(a) From the FDB,

YF = miZ=fg—fu—fo

Where f;, = mag
fk = kx
Jo = b
mi& = mig—bx —kx
. b k
() + —d+—2 = g
mi mi
with rog = s .%"0 =19

(b) For the system to oscillate ¢ must be less than 1.

k
L
m

b
2w, = —
m
¢ = Lo m_ b
2m k 2V km
¢ < 1

(c) Since this is a pretty straight forward 2nd order system we can just add the forced and free
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responses

= ZTfree (t) + xforced(t)

g 1 —Cwnt 3
2| ———e %" sin (fwp /1 — 2+ @) + 1
2 W (ton /1= %+ 9)

Vo —Cwnt 2
—¢ sin (twp\/1 — ¢
wny/1 =2 (feon )
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4.21 Sliding Damped

A mass m is subjected to an accelerating force f and a retarding friction force, modeled linearly as
bv.

(a) The equation of motion is

dv dv b 1
m- +bv f or — mv—l—mf (1)
(b) The steady-state velocity, when f = 10 Newtons, and m = 1000 kg, and b = 100 N/m/s is
Foo10

L=
Uss = 5 100 0.10 m/s

(c) Consider the input f = f,sinQt to be the imaginary part of the complex input fyexp(i€2t)
and look for a complex solution of the form v = Aexp(i€2t). After substitution in (1) we find
that this is indeed a solution , if

Jfa Ja 1

A:%:—i

exp(ig)

where the phase angle ¢ is fixed by the relation

ms2
tan¢ = —T

The steady-state solution to the input f = f, sin 2t is then the imaginary part of the complex
solution Aexp(i€2t), which is

v = Jo 1 sin(Qt + ¢)

a 1
M(Q) = ‘%
14 (12)2
and the phase angle is
_1 m&
QS = —tan T

For the case where f, = 10 Newtons, the values of M () and ¢(Q2) for the frequencies 2 = 0.5
rad/sec, Q = 0.05 rad/sec, and 2 = 0.005 rad/sec are

: _ 10 1 —
1+( 100 )
$(0.5) = tan—1(1000)(0.5)/100 = 1.373r = 78.7 deg
(i) M(0.05) = {2 L = 0.0894 m/s,

1+((100%(00.05))2

$(0.05) = tan~1(1000)(0.05)/100 = 0.463r = 25.6 deg

_ 10 1 _
(iii) M(0.005) = 1700\/1+((10001>(()8~005))2 = 0.0999 m/s,

$(0.005) = tan~!(1000)(0.005)/100 = 0.050r = 2.86 deg
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e lmiting value of the magnitude of the response amplitude when {2 — 018 A, =

d) The limiti lue of th itude of th litude M (€2) when @ — 01is A
fa/b=0.10 m/s. The ratio M(2)/A, is 0.1961 when Q = 0.5 rad/sec, 0.894 when 2 = 0.05
rad/sec, and 0.999 when © = 0.005 rad/sec.

(e) The low-frequency asymptote for M(Q) is A, = f,/b, while the high-frequency asymptote is
fa/mS2. These asymptotes intersect at the break frequency Qpcqr = b/m = 0.10 rad/sec.

Magnitude of Response Amplitude
10° T

Magnitude of Response Amplitude [meters/second]
=)
T
1

10‘ 1 1 1
10° 10° 10" 10 10
Frequency [radians/second]

Figure 4.21.1: Magnitude of Response of Sliding Mass
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Phase Angle of Response
0 T

A 2
S S
T T
| |

&
S
T
|

Phase angle [degrees]

-90 | | |
10° 10° 10" 10
Frequency [radians/second]

10

Figure 4.21.2: Phase Angle of Response of Sliding Mass

(f) The Bode plots shown in Fig. 4.21.1 and Fig. 4.21.2 were obtained by running the MATLAB
script ‘slidingsol.m’

slidingsol.m

Download

%Script for plotting Bode plots for Problem Sliding Damped

Om = logspace(-3, 1, 200);

unity = ones(1,length(0m));

M =0.1 ./ sqrt( unity + ( 10 .* Om)."2);

loglog(Om, M), title(’Magnitude of Response Amplitude’),
xlabel (’Frequency [radians/second]’),

ylabel(’Magnitude of Response Amplitude [meters/second] ’),
pause

phi = -57.3%atan(10 * Om);

semilogx(Om, phi), title(’Phase Angle of Response’),
xlabel (’Frequency [radians/second]’),

ylabel (’Phase angle [degrees]’)
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4.22 Toy Flywheel

T
Te K

Figure 4.22.1: Cross-Sectional and Top view

a) Figure 4.22.1 shows the free body diagram for this system. Summing the torques
ST = Jo=T,—Tc

T, = rFg
F, = k(zs—x)
. = cté

so JO4+ ¢ = rk(zs—x)

Jé+0f9+rkx = rkxs
Recall that r0 = x= 0= z
,

so | i + i+ rkx = rkay(t)

This may be rewritten as
r’k r2k

i ter =0
T A B

(b) For this part we note the following relationships

%)
S

2Cwy, =

<

7,2

o

2
Wn

~

For the string not to go slack the system must not overshoot xg, this means that { > 1. For
¢ > 1 to be true

c > 2VrikJ
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(c) For the string to go slack the system must be allowed to overshoot or ¢ < 1. In the case of
(<1

o) = 1- 11_@&% cos (wqt — 1)

wg = wpV1-—2¢C2
_ -1 ¢
1 = tan (ﬂ)

This equation can be expressed in terms of the system variables by substituting for w, and
¢ from 3. Figure 4.22.2 shows the time response for this system where t* indicates the time
after which the response is not valid.

Valid for t<t*

Figure 4.22.2: Time Response

(d) When ¢; = 0, the expression for z(t) becomes
x(t) = xo(1 — coswpt)

As we saw in part 3, t* is the time at which the response passes zy. In this case, it takes a
quarter cycle to get to xg, thus

. 127
4w,

Figure 4.22.3 shows the response for this system.
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t*=0.25"2"/on

Figure 4.22.3: Step Response

322



4.23 Truck Shocks

The basic assumption here is that the back of the truck can be modeled as a plate of mass M
supported by an equivalent spring of stiffness £ and damping parameter b, onto which hops Uncle
Massive, of mass m, which applies a step-function of force to the system, while changing the total
mass of the system to M + m. Under these assumptions the theory developed in class can be used
to estimate the effective mass M of the back of the truck from the observed frequency of oscillation
and static deflection.

(a)

The statement that the oscillation contained more than five clearly defined cycles is a tip-off
that the system is lightly damped, which suggests that damping might be neglected in making
a preliminary estimate. The static deflection A under a load of w = mg tells us that the
equivalent stiffness k can be estimated from w = kA, or

w 250 pounds

=

A~ 1oma 200 pounds/inch

The observed oscillation frequency of 2 Hz can be taken as the undamped natural frequency,
wo/2m, of the system with mass M + m and stiffness k. The truck mass M can be estimated
by using the relation

2 k
w, =
M+m
in combination with the preceding expression for k to obtain
mg
M=—— 1
Aw? m (1)

In the British system of units, mass is subordinate to force, and M is replaced by W/g where
W is the equivalent weight of the back of the truck. To use British units, Eq.(1) is multiplied
through by g = 386 in/sec? to get

wg (250)(386)

W = —w=-——--— 250 =361 d
Au? w (1)(47)2 5 pounds

Alternatively the given data can be converted to SI units (A = 0.0254 m, and m = 113.4
kg),and Eq.(1) used to obtain M = 163.8 kg whose weight, Mg = (163.8)(9.81) = 1607
Newtons, is equivalent to the British weight of 361 pounds.

It is assumed that the truck oscillation is a primarily vertical motion of the effective mass
of the rear end of the truck plus Uncle Massive on an effective vertical spring (the rear tires
plus suspension). It is also assumed that the observed damped natural frequency is a good
approximation for the undamped natural frequency required in the formulas above.
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4.24 Car Suspension 2

(a),(b) The differential equation for the system is
mz + bt + kx = F, (1)
The particular solution will be:
zp(t) = F/k. (2)
The homogenous solution has the form:

zp(t) = Ae™“nt cos(wgt) + Be St sin(wyt) (3)

Plugging the initial conditions into the full solution
x(t) = Ae™n! cos(wgt) + Be ' sin(wqt) + F/k (4)
0=A+F/k (5)
A=—F/k (6)
i(t) = e “r! (= Awgsinwgt — ACwy, coswqt) + (Bwg cos wat — Blwy, sinwgt)) (7)
0 = —Alwy + Bwy (8)
e )

Wd

For m = 500kg, k = 5 x 10*N/m and b = 2 x 103 Ns/m,

W = \/5 =10 (10)

C

B=—

¢ = i 0.2 (11)

wg =wp/1—(2=98 (12)
0= (wyp = 2; (13)
A=-001 (14)
B=204-10"° (15)

z(t) = —0.01e %! cos(9.8t) — .00204e % sin(9.8t) + .01 (16)

The result is plotted in Figure 4.24.1.

(c) The passengers will not like this ride because there are too many oscillations. when b =
2 -V km = 10000, the system will be critically damped, in this case the complete solution has

the form:
w(t) = Ae™r! + Bte™“"' + F/k (17)
2(0) = A+ F/k (18)
A=—F/k (19)
A=-0.01 (20)
#(0) = —wp A + —wp Bte ! + Be~rt (21)
0=-w, A+ B (22)
B =w,A (23)
B=-01 (24)
o(t) = —0.01e7"* — 0.1te™“" 4 0.01 (25)
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In order to find the acceleration for the under-damped case, differentiate equation 16 twice
with respect to time,

z(t) = —0.01e7% cos(9.8t) — .00204e ! sin(9.8t) + .01 (26)
i(t) = .10208¢ ! sin 9.8t (27)
#(t) = e cos 9.8t — 20416 % 5in 9.8t (28)

The maximum acceleration will happen at ¢t = 0™

B(t=04) =1 (29)

So the maximum acceleration is 1m/sec?.

Similarly, for the critically damped case, differentiating equation 25 twice,

z(t) = —0.0le”“nt — 0.1te “"" 4 0.01 (31)
i(t) = (1 —10t)e 1% (32)
i(0+) =1 (33)

So the accelerations will be the same.

From the step response, the 5% settling time is 1.35 sec in the under-damped case and 0.47
sec in the critically-damped case.

0.016 T T
—— Underdamped Response
- Critically Damped Response

T

0.014

0.012 b

0.011

£0.008

T
|

0.006 - i

0.004f |- g

T
|

0.002} |

Figure 4.24.1: Step Response
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carsuspension2sol.m
Download

clear all
close all

k=5%10"4
b=2%10"3
m=500
F=500

wn=sqrt (k/m)

zeta=b/ (2*sqrt (k*m))
wd=wn* (1-zeta"2)".5
sigma = zeta*wn

A=-F/k
B=A*sigma/wd

t=[0:.01:3];

hold on

x= A*exp(-sigmaxt) .*cos(wd*t)+ Bxexp(-sigmaxt).*sin(wd*t)+F/k;
plot(t,x)

xlabel(’t’)
ylabel (°x(t)’)

cd= -.01.xexp(-10.*t)-.1.*t.*exp(-10%t)+.01

plot(t,cd,’.”)
legend(’Underdamped Response’,’Critically Damped Response’)
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4.25 Kid-Skid
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Figure 4.25.1:
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4.26 Rolling Machine
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4.27 Sunday Bike Ride
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4.28 Compound Mass Spring Damper System 1

(a) The free body diagram for the mass m is shown in Figure 4.28.1 and the free body diagrams
for nodes nq and ngy are shown in Figure 4.28.2.

k2('x_n1) F1 bz(x'nz)

I
, e

v

Figure 4.28.1: Free body diagram for mass m

kn, { J " b/‘lz! J ",

k(x-n) f b,(i-n.) f

Figure 4.28.2: Free body diagrams for nodes n; and no

(b) We begin by writing the force balance equation for node n1, keeping in mind that the “effective

335



mass” for this node is 0.

kg(x — m) — klnl = mnlﬁl
kox — (kg + kl)nl =0
kox = (kQ + kl)nl
ko
= 1
ko + /ﬁw = (1)

We do the same for node no

bQ(.f — 7'”L2) — blhg = mn2’ﬁ2
bot — (bz + bl)ﬁg =0
bgi' = (bg + bl)ﬁz
by ..
= 2
by + blx "2 ( )

Now we write out the force balance equation for the mass m.

F1 — F2 — kz(ﬂ? — ’I’Ll) — bQ(IE — TLQ) — k‘g:E — ng = mx
Fy — Fy — (ko + k3)x — (by + b3)@ + kany + bang = ma (3)

We have equations for the positions n;(t) and na(t), so we substitute equations (1) and (2)
into (3)

. ko 2 . .
Fi — Fy — (k k — (b b k b =
1 2 (2—|- 3)1’ (2+ 3)$+ 2k2+k1x+ 2b2+b1$ mx
m:)c'—i—(b + b3 — bg >x+<k + k3 — k% >:1;—F—F
2 3 b1 + bs 2 3 ki + ko ! 2
3} ba(b1 + b2) b3 > . <k2(k1 + ko) k3 >
(22 by T = F - F
me ( b1 + bo 3 b1 + by k1 + ko 3 k1 + ko v ! 2

. b1b2 . klkg
b k =N -F
mx+<bl+bz+ 3)$+<k1+k2+ 3>CC 1 2

’I?’LZ'I:‘—Fbequ‘—erqZI) =F — (4)

where ok -
1~2 102

= k db., =
G Ttk 8 D = T

Equation (4) is our final 2"? order differential equation, but it was a lot of algebra to get to.
There is a simpler way to derive the equation if you first simplify the Free Body Diagrams.
Looking back to the original problem diagram, we can simplify the two springs above the mass
into one equivalent spring. Remember that the effective spring constant for springs in parallel
is their summation, and the effective spring constant for springs in series is the reciprocal of
of the summation of their inverses, simplified to be their product over their summation:

k1ko
k1 + ko

+ b3

()

kpm‘allel = k1 + ko and kgepjes =

This equivalent model is also valid for damping coefficients. We use equation (5) to redraw
the free body diagram as shown below in Figure 4.28.3.
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k k, bb, .
A R

A

v

Figure 4.28.3: Force balance for mass m with equivalent constants

We now use this diagram to write out the force balance equation:

k1ko . b1bo
k1 + ko b1 + by

b1b kik
mé?+< 122 +b3>5ﬂ+< 12 +/€3>$:F1—F2

- F —

i+k3$+b3i’:mi}

b1 + bs ki + ko
ME + begd + keqr = F1 — F (6)

Equations (4) and (6) are identical, but equation (6) is much easier to derive.

Notice that the differential equation in (6) is almost in a standard form. We can devide
equation (6) through by the effective spring constant of the system to arrive at the standard
form in equation (7), where f(t) is some set of forces.

be —
LU PP St ]
keq keq keq
1. 2C.
_— e = t
w%x—k wna:+:z: f(t) (7)

By comparing these equations, we can come up with expressions for w, and (, and plug in
the appropiate system values for the numberical answers.

[ ke
Wy =1/ —2 =100 [rad/sec]
m

be
(= ——=—_ =005
2\/kegm
wqg = wp/1 = (2 =99.875 [rad/sec]
The poles for underdamped second order systems are located at s = —(w,, + wy. The s-plane

plot of this system is shown in Figure 4.28.4.
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Figure 4.28.4: S-plane plot of system poles

(d) The general form for the solution z(t) of equation (6) is
z(t) = Ae 7 coswgt + Be ' sinwgt
where o = (w,. We find A by plugging in the initial condition x(0) = 10~2:

Ae 7% coswg0 + Be Y sinwy0 = 1072

A=10""
B is found by plugging in the intial condition #(0) = 0:

Ae™ 7 coswgt + Be 7 sinwgt = z(t)

e_"t((—Awd sinwgt — Ao coswgt) + (Bwg coswgt — Bo sin wdt)) = z(t)

—Ao+ Bwg =0
=49 22
wd wd

Use these results to plot z(t) in matlab. The plot is shown in Figure 4.28.5.
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msdsol.m
Download

%Script for part D
keq=10000

beq=10

m=1

wn=100

zeta=.05

wd=wn* (1-zeta~2)".5
sigma = zeta*wn
A=10"(-2)
B=A*sigma/wd

t=[0:.001:1.5];

x= Axexp(-sigmaxt) .*cos(wd*t)+ Bxexp(-sigmaxt) .*sin(wd*t);

plot(t,x)
xlabel(’t?)
ylabel (°x(t)’)

x(t)

0.01

0.008

0.006

0.004

0.002

-0.002
-0.004
-0.006
-0.008

-0.01
0

Figure 4.28.5: Plot of x(t) when x(0) = 1072, (0)

0.5
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4.29 Compound Mass Spring Damper System 2

Begin by taking equation (4) from the solution of Problem 4.28 as the force balance in this problem:
ML + beg® + kegr = F1 — I

where ik biby

k1+k2+k3andbeq_b 5

The problem states that Fi = 10 [N], F» = 0 [N], and 2(0) = #(0) = 0. Rewrite the force balance
to be

keq = + b3

M + beg + keqr = 10

The solution to a driven second order differential equation will be the sum of the particular solution
and the homogeneous solution. Start by finding the particular solution. Guess that x,(t) will have
the form z,(t) = C, &,(t) = 0.

My + beqTp + kegrp = 10
O+0+k‘eqxp: 10

10
Eeq

ﬂjp:

We know the homogeneous solution of this equation from the solution of Problem 4.28:

= Ae ! coswgt + Be ! sin wgt

The total solution is the sum of the particular and homogeneous solutions.

10
z(t) = Ae” 7 coswyt + Be 7' sinwgt + k—

€q

we find the constants A and B by plugging in the initial conditions z(0) = 0 and #(0) = 0:

10
Ae 7% coswg0 + Be 7Y sinwy0 + = 0
eq
10
A+-—=0
keq
10
keq

and

10
Ae™ 7 coswgt + Be 7 sinwgt + — = z(t)

keq
e‘”t((—Awd sinwgt — Ao coswgt) + (Bwg coswgt — Bo sin wdt)) = ()
—Ao + Bwg =0
Ao 100
T wa keqwa
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A sketch of this solution is found in Figure 4.29.1

x10°

1.8

141+

1.2

x(t) [m]

0.8

I

0.6 1

0.4

0.2

0 | | | | | |

0 0.2 0.4 0.6 0.8 1 1.2
t[s]

Figure 4.29.1: Plot of z(¢) when z(0) = 0, £(0) = 0, F; = 10 [N]
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4.30 Wind Induced Building Vibrations

F () <€) " (6)
eec
= cosY
m DVAGLAM

k) b .<(¢)

EFauvarions oF MoOTmion/ . w X(t) + b‘X(ﬂ + k. x<lt)= Fee)

LY, c\ Fcam THE GeAPY WE SEE THAT WHEN THE WiNVD
Coce e SUDDENLY STORS THE BUILDING HAS
A DECAYING OSCILLATION.

><(€) ‘

_,fwm‘t _&¢ ><( t=to) = "‘04' S
€ =¢

! f // <(t=t)=O
b / o Feom THE GeARH
/\/ \/A\/\:;’x j AL W\ WE. o An Sbg AT

THE PERAIOD OF sl ATION
P & T b ser.

ST ¢

"ﬁo (‘601'1'\

o 52 sec. So W"(:T-\= O-17He
L0sec wd= 1. 088 vad/sec.
~ Wi (E—&0)

N (o) = o - Q;W

Cos (wd & - ¢o) *—ﬁ)
=g

T ()

—714/54&0’50) —
< (€= to) =7{°’ 171 & - 47‘%"

><(€t= ot |

<. %-é’wy‘(r\

T _
Sclt= bo+T)=-0.3F => @7"/ = —04% /(-0.24)
AT

2T <1 z24
gl = Iw (1.324) = ©.280

Figure 4.30.1:

342



Jun= 0280 o O.280 =5 fuwn=0.0467 rod/sec.
T 6 Wa = _____Qj_é.:z

}
Wd= wa. [1 =47 = 0.0467 [1= %%

/
WJ.7:0.04’67\ = 4% = 1\053;:,0‘04-57/‘;—:?"
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'~ = [
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4 -
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Figure 4.30.2:
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5 Electrical Systems

5.1 Camera Flash Circuit

The solution for this problem is not available.
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5.2 Batteries and Capacitors

(a) The short circuit current I is dependent of the battery internal resistance as follows:

1.5V
=7,
1.5V
R, = -
b 5.7A
R, = 0269
(b) The power P dissipated will be as follows:
P = VI,
P = (15V)(5.74)
P = 855W

The power is being dissipated at the battery internal resistance, heating up the battery as a
consequence.

(c) In one time constant 7 = R;C the capacitor voltage should drop to 37 percent. So

= 10min
T = 600sec
600 sec
B = 0x100F
R, = 5x10°Q
(d) Circuit diagram as follows:
Ry
1.5V V=V, +:— R,

Figure 5.2.1: Circuit diagram of battery charging capacitor

(e) Making the analysis using two loop currents we have the following:
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no=
Ve
IQ - E
d
L—1I, = C%

Replacing I; and I» we have the following:

dve
(Rsz)Cdfvt + (Ro + R)ve — (LEV)R, = 0

156

dv.
dt

+5%10%, —7.5%10° = 0

(f) Homogenous solution v, = Aes! and % = Ase’t, replacing

156Asest + 5% 1054t = 0
s = —32210%

Particular solution v. = Ae®" + B and dé’tc = Ase®', with boundary condition v.(t = 0) = 0,

replacing

A = -B
B = 15V
A = —15V

So ve = 1.5(1 — e~ 32:1¥10%)
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Capcitor voltage vs. time when charged by AA Battery
15 T T T T T T

ve (V)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

time (sec) 107

Figure 5.2.2: Charging capacitor

The system pole is located at s = —32.1 % 103, as shown on figure 5.2.3
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0.6
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o

Pole-Zero Map
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Real Axis

Figure 5.2.3: Pole location

(g) For the discharging capacitor we have the following

—dv,
I =
dt ¢
Ve
I = —
Ry
ve = Aett)
dv, _
2T Ages(t—ti)
o se
A’ = _R,CAse*t1)
s — —1
- RC
_ -1
® T 600

349




ve (V)

Capacitor voltage vs. time when disconnected, with initial charge of 1.5 V
15 T T T T

0.5F b

0 500 1000 1500 2000 2500
(t-t1)(sec)

Figure 5.2.4: Discharging capacitor

The system pole is located at s = —1.67 * 1073, as shown on figure 5.2.5

Imaginary Axis

Pole-Zero Map

0.8

0.6 1

0.2

_08 - u

-1 ! ! ! ! !
-1.8 -16 -14 -1.2 -1 -08 -06 -04 -0.2 0

Real Axis %1072

Figure 5.2.5: Pole location
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5.3 Loaded Motor

The solution for this problem is not available.
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6 Fluid Systems

6.1

Rotational Fluid System

Q)

Figure 6.1.1: Freebody diagram of Inertia and Schematic of system.

The free body diagram for the inertia is shown in Figure 6.1.1 along with a schematic of the
dynamic elements in this problem. As can be seen, the inertia has two torques acting on it:
T1 generated by the damper ¢; between the input and the inertia and 75 generated by the
damper ¢y between the inertia and ground. The schematic drawing is helpful but not required
in the solution.

Using the FBD from part a, we can write the following relationship:

ST =J0 =T, + T

This is where the schematic becomes helpful. By inspection, we can work out the following
relationships

T = ci(fh — Qo)
T2 = —CQQQ

Substituting for 77 and T yields the following

JQQ = 01(91 — QQ) — o)y = JQQ + (Cl + CQ)QQ =1
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(¢) The input to the system has been defined as Q;(t) = us(t) thus the differential equation for

this system become
JQQ + (01 + CQ)QQ = clus(t)

This differential equation (DE) matches that for a first order forced response. We know the
solution to this DE is of the form

Qa(t) = Qp(t) + Qp(t) where

C1 . .
Q,(t) = Q= Particul lut
»(t) Sl (Particular solution)
Qn(t) = Ae *' (Homogeneous solution)
s — _atoe
B J
Using initial conditions
MW(0) = 0=A+ L =5 4= ¢
c1+ e C1+C2
Q) = 1 (1- e 77)
1+ c2
We determined earlier that
C1
Do =
88 e+ o

Looking carefully at out schematic of the system, we know that the torque from the shaft
acting on the inertia is T7. Since, the torques on either side of the damper need to be equal,
we know the torque acting on the shaft is equal and opposite to T7. Since the system is in
steady state, we know that the velocity of the shaft is constant which means that the sum of
torques acting on the shaft equal 0.

ETshaft =0=Tp -T1 = Tin="T1
We know that

71 = c( —Q)
Ql = us(t): 1

C1
Qs = Qe =
2 Ss 1+ ¢
Thus Ty = (1 __a ) L
c1+ce 1+ c2
More generally 17 = ace O
1+ ¢

353



6.2 Fluid Leak

The solution for this problem is not available.
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6.3 Where’d the water go?

(a) Use the parameters R = 1.5-10% [Pa sec/m?], and L = 7-10° [Pa sec?/m?]. Begin by sketching
the equivalent circuit diagram as shown below.

P,(1) +<> (Gl — ‘qn

Figure 6.3.1: Shower equivalent circuit

qn is the water flow through the shower nozzle. We need a differential equation in terms of
the nozzle flow. Note that the capacitance in this circuit can be neglected as it is effectively
short-circuited by the shower nozzle. Write out the loop equation for this circuit:

P (t) = Pr+ Py,
Use the constitutive relationships for the fluidic resistor and fluid inertance:

Pr = qrR
dqr,

p, = YL
L dt

note that qr = qr. = ¢,. Substitute these equations back into the loop equation:

P(t) =qrR + L——
(t) = qrR + i

1 L qu
—P,(t) = et 2 24
gl =tz

the solution to this standard first order differential equation takes the form
*t/T L
qn(t) = Ae + B where 7 = =
Our initial condition is that Ps(0) = 3-10° [Pa]. Plugging this into our differential equation
gives

_3-10°
© 15109
also, the final condition must be that ¢,oo = 0. Plugging this into the solution to the
differential equation gives A = 2-10~% and B = 0. The final solution is:

qn(0) =2-10"* [m®/sec]

The flow will fall to below 1% of its inital value after 57. This is approximately .023 [s]. The
sketch of the shower flow transient is shown in Figure 6.3.2.
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Figure 6.3.2: Shower flow transient

Because the shower nozzle is modeled as a switch, there is no pressure drop across the nozzle
and therefore the pressure at the nozzle is atmospheric pressure, and this remains constant.
The sketch of this plot is shown Figure 6.3.3.

P _[Pa]
N
T

n

1 1 1 |
0 0.005 0.01 0.015 0.02 0.025 0.03
time [s]

Figure 6.3.3: Shower pressure transient

(b)-(d) Don’t worry, nothing to answer here.
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showersol.m

Download

%Shower Solution showersol.m
R= 1.5e9

L=7e6

P_0=3eb

tau=L/R

q_0=P_0/R

t=[0:.0001:.035];

q=q_0 * exp(-t/tau)

figure(1)

plot(t,q)

xlabel (’time [s]’)
ylabel(’q_n [m~3/sec]l’)

figure(2)
xlabel(’time [s]’)
ylabel(°P_n [Pal’)

line([0 0],[-1 51)
line([-.000 .030], [0 01)
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7 Thermal Systems

7.1 Thermal Block Question

See Professor Trumper’s Notes: Chapter 1 for some information on modeling thermal systems. A
diagram depicting the idealized block outside of the oven is shown in Figure 7.1.1.

RS

e~ T A
block

S~ =385 J/(kg°C) /\;\9

N m=0.1 kg A

A

Figure 7.1.1: Diagram of copper block out of oven.

The ambient temperature surrounding the block is given as 7,5, the internal temperature of the

block is given as Tpoer, and the heat flow from the block to the environment is given as q. The

specific heat of copper (c¢) is given as 385 kgioc’ and the mass of the block is 0.1 kg.

The energy associated with the change of the block’s temperature is given by
CAThiock (1)

where C' is the thermal capacitance of the block given by mc. The energy associated with heat
transfer for a period of time At is given by

qAt. (2)

In this idealized model, the heat loss is balanced exactly by the change in temperature of the block.
Thus, the instantaneous energy/heat balance is given by

medIpioer = —qdt. (3)

The negative sign in front of the q is due to the fact that the heat is flowing out of the block. If
you were to form a control volume around the block, heat flowing in would have a positive sign.
According to the way the picture is drawn, the heat flow, ¢, is flowing outwards. In addition,
the heat flow, ¢, will be modeled as linearly proportional to the difference between the block
temperature and ambient temperature as

q= TblockR Tamb (4)

where R is the thermal resistance between the block and the environment. By substitution we have

medTyiocr, = qdt (5)

Tblock - Tamb
-t 6
- (6)
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Therefore, the governing equation is

dTbiock
dt
where the time constant, 7, for the system is given by RC'.

RC + Tblock = Tamb (7)

1000

900

800

700

600

Thiock)

500

400

300

200

0 500 1000 1500 2000 2500 3000
time (s)

Figure 7.1.2: The block temperature (Tp.cx) is plotted against time (¢). The ambient temperature
is given by Tymp-

Going back to Figure 7.1.2 we can calculate the time constant by estimating the amount of time
required for the block to decay by 63% of the difference between the initial block temperature and
the ambient temperature. This occurs at approximately 559 K after a time interval of 600 seconds.
Therefore, the time constant for the system is 600 seconds. With 7 = RC and C=38.5 %, the

thermal resistance, R, equals 15.6 ;76;
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7.2 The Hot Copper Block 1

(a) First, draw a diagram which shows heat flow through the system. It is useful to think about
heat flowing from heat capacitances to other heat capacitances through thermal resistances.
This model is shown in Figure 7.2.1.

Tb wa Tw Rwa Ta
Cp C,
A | 1T —

wa qwa

Figure 7.2.1: Thermal model

We need to use the constitutive relationships for thermal elements to write out the governing

equations. Remember that

T
o _
a4

where C' is thermal capacitance, % refers to the time derivative of the temperature of the
capacitance and ¢ is the heat flow into the capacitance. Also

T =qR

where T is the temperature drop across the resistance and R is the thermal resistance. An
important note: We need to include the mass of the material to calculate the thermal capac-
itances in these equations, as the units for C are [J/°C| and you are given the specific heat
of the copper and water in [J/kg °C]|. Thermal capacitance is derivied by multiplying the
specific heat times the mass. Using these equations and Figure 7.2.1, write out the governing

equations:
dTy
b — g 1
B = b (1)
dTy
Cw— = Gbw — Qua 2
W g = w4 (2)
(To — Tw) = qow Row (3)
(Tw - Ta) = QwaRwa (4)
combine equations (1) through (4) to the derivied two equations in state space form as:
dTy 1 1
- Ty —Ty) — ——— (T — Ta 5
e (= T) — (T - T2) )
dTy 1
Mo _ Ty — T 6
dt wacB( b ) (6)
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(b) To transform equations (5) and (6) into a single 2"%-order differential equation in T,,(t), we

need to eliminate 7} from equations (5) and (6). Start by re-arranging (5):

dTy,  Rpw
Ry ,Cw——— + “thw

7 7 (Tw —T,)+ Ty =Ty (7)

and take the time derivative

Ry Cw

d*T, L B (AT dTY | dT, _ dTy ®)
dt? Rya \ dt dt dt  dt

) . . : T, _ .
combine equations (7) and (8) into (6), rembering that 3= = 0:

T, Ry dT, Ry, dT, -1 dT,,  Rpy Ry
Ry C 1 — =—— | Rp,C T, — T,
bW = <Rm + > dt Ry, dt  RyuCp [ TR R ]
d’T, Ry Cw \ dT,, 1 Ry, dT, 1
Ry Oy ——2 1+ 2 ) 24+ _T,= — T,
bwCW g (Rwa i CB> At RuaCp " " Rea df = RuaCp
d*T,, dT,
waCWRwaCBW + (waCB + RwaCB + RwaCW) W + Tw = Ta

(9)
Equation (9) is of the form
mi + bi + kx = f(t)
we need to find the roots to figure out what the solution will look like.

—b+Vb? — dmk

2m
51 = —0.2621[sec ']

59 = —1.3878 - 10 °[sec ]

S1,82 =

This means the solution takes the form
Tu(t) = Ae*'t + Be®' + C

To find the constants A, B and C, we need three known states. We know that 7,,(0) = T, =
25°C. The other initial condition is found by evaluating (5) at ¢ =0

dT,(0) B 1 1
i = TG D0 = Tu(0) = 75— (Tu(0) ~ Tu(0))
: 95-25 1,
Tw(0) = RoCr 6[ C/sec]

we also know that T, = T,, plugging in the initial conditions yields two equations:

A+B+C =25

1
SlA+S2B:6
C=25
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therefore our constants are A = —0.6359, B = 0.6359, and C' = 25. The total solution is thus
To(t) = ‘6359(6—1.282910_515 _ 6—0.028415) +25
The system poles are shown in Figure 7.2.2

S-plane plot of poles for part (c)
0.25 T T

0.2 =

0.15 B

0.1 4

0.05- B

Imaginary Part

-0.05 B

01k B

-0.15- B

-0.2F B

-0.25 I I I I I I
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05

Real Part

Figure 7.2.2: System Poles

(d) Figure 7.2.3 shows the plots of T, (t) over both a long and a short time scale. The plots look
like this because the copper block temperature equalizes with the water temperature very
quickly. Then, over a much longer time (on the order of two days; this must be a really good
vacuum bottle!), the water temperature equilizes with the ambient temperature through heat
losses through the walls of the vacuum bottle. You can see the effects of the time constants
in the figures. The small time constant has no important effect beyond about 50 seconds,
where the longer time constant dominates the response after that.
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Plot of TW(t), short time scale
25.7 \

25.6
255

254

®Ic

225.3

T

25.2
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Plot of TW(t), long time scale
25.7 T

25.6
255

254

®Ic

225.3

T

25.2
251

25 | | | |
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Time, [hrs]

Figure 7.2.3: Plot of T,,(t)

(e) If the block starts out at only 60°C, we need to change the initial condition found with
equation (5). It now becomes

_60—-25 1

-~ RpCw 12

Figure 7.2.4 show the difference from the original response. The original response is dotted.

Note that since the block termperature difference to ambient has been lowered by a factor of

2, this response is one half the earlier response.

T:(0)
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Plot of TW(t), short time scale
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Plot of TW(t), long time scale
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Figure 7.2.4: Plots of T,,(t), T;(0) = 60°C

thermalblocksol.m

Download

%The Hot Copper Block thermalblocksol.m
%Part C

clear all

close all

cB=.1%385

cW=1 * 4200

rbw=.1

rwa=17

twinit = 25

twdiff = 1/6

m=rbwkcBxrwaxcW

c = rbw*cB + rwa*cB + rwa * cW
k=1

tw=[m c k]
s = roots(tw)

B = twdiff/(s(2)-s(1))
A= -B
C= twinit
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figure(1)

plot(s ,0 , ’x’)

axis([-.3 .05 -.25 .25])

xlabel (’Real Part’)

ylabel(’Imaginary Part’)

title(’S-plane plot of poles for part (c)’)

J%Part D

figure(2)

subplot(2,1,1)

t1=[0:.001:40];

T_wl = Axexp(s(1)*t1) + Bxexp(s(2)*tl1l) + C;
plot(t1,T_wil)

axis([0 40 25 25.7])

xlabel (’Time, [s]’)

ylabel(°T_w(t) [~\circCl?)

title(’Plot of T_w(t), short time scale’)

subplot(2,1,2)

t2=[0:5:500000] ;

T_w2 = Axexp(s(1)*t2) + Bxexp(s(2)*t2) + C;
plot (£2/3600,T_w2)

axis([0 120 25 25.7])

xlabel (’Time, [hrs]’)

ylabel (°T_w(t) [“\circC]’)

title(’Plot of T_w(t), long time scale’)

J%Part E

twdiff2 = 1/12

B2 = twdiff2/(s(2)-s(1))

A2 = -B2

T_w3 = A2%exp(s(1)*tl) + B2*exp(s(2)*tl) + C;

T_wd = A2xexp(s(1)*t2) + B2*xexp(s(2)*t2) + C;
figure(3)

subplot(2,1,1)

plot(t1,T_wl,’:?)

hold

plot(t1,T_w3)

axis([0 40 25 25.7])

xlabel (’Time, [s]’)

ylabel (°T_w(t) [“\circC]’)

title(’Plot of T_w(t), short time scale’)

subplot(2,1,2)

plot(t2/3600,T_w2,’:’)

hold

plot(t2/3600,T_w4)

axis([0 120 25 25.7])

xlabel (’Time, [hrs]’)

ylabel (°T_w(t) [“\circC]’)

title(’Plot of T_w(t), long time scale’)
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7.3 The Hot Copper Block 2

(a) First, draw a diagram which shows heat flow through the system. It is useful to think about
heat flowing from heat capacitances to other heat capacitances through thermal resistances.
However, because the heater is embedded in the copper block, we model the resistance between
the block and the heater to be 0. This model is shown in Figure 7.3.1.

Tb wa Tw Rwa Ta
Cy C,
TN 1 1T —>

qin wa QWCI

Figure 7.3.1: Thermal model

We need to use the constitutive relationships for thermal elements to write out the governing
equations. Remember that

dr
at 7
where C' is thermal capacitance, % refers to the time derivative of the temperature of the

capacitance and ¢ is the heat flow into the capacitance. Also
T =¢qR

where T is the temperature drop across the resistance and R is the thermal resistance. An
important note: We need to include the mass of the material to calculate the thermal capac-
itances in these equations, as the units for C are [J/°C| and you are given the specific heat
of the copper and water in [J/kg °C|. Thermal capacitance is derivied by multiplying the
specific heat times the mass. Using these equations and Figure 7.3.1, write out the governing

equations:
dT;
CBaTtb = Gin — Qbw (1)
dT;
CWT;U = Qbw — Qua (2)
(To — Tw) = qow Row (3)
(Tw - Ta) = QwaRwa (4)
combine equations (1) through (4) to the derivied two equations in state space form as:
T, 1 1
= Ty —Ty) — ———Tw — T, 5
dt waCW( b w) RwaCW( v a) (5)
dTy 1 din
—_— = T, — T, 6
dt waCB( b w) + Cg ( )
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To transform equations (5) and (6) into a single 2"%-order differential equation in T,,(t), we
need to eliminate 7} from equations (5) and (6). Start by re-arranging (5):
dly Ry

waCWW + R

(Ty —T,)+ Ty =Ty (7)
and take the time derivative

dt dt

d’Ty Ry (dT, dT, ar, dT
FonC gt + i )+ = )

. . . : AT, _ (.
combine equations (7) and (8) into (6), rembering that %= = 0:

d*T, Ry dT,, Ry, dT,
w 1) ——— =
RowCw =5~ + (Rwa > dt. Rua di
-1 dTw wa wa din
Ry Oy —— T, — 2T,
waCB [ b W dt + Rwa Rwa ] CB
d*T, Rbw Cw )\ dT, 1 Ry dT, 1 Gin
Ry Oy ——— 14+ =) —F— 4+ —-T,= T, + ==~
bwCW g+ (Rwa LR CB) At RuaCp " Ruw dt | RuaCp * " Cp
A>T, dT,,
waCWRwaCBW + (waCB + RwaCB + RwaCW) W + Tw = Ta + Qiana (9)

Equation (9) is the governing differential equation.

Equation (9) is of the form
mi + bi + kx = f(t)
we need to find the roots to figure out what the solution will look like.

—b £ Vb> — dmk

2m
51 = —0.2621[sec ']

s = —1.3878 - 10 °[sec ']

S1,82 =

This means the solution takes the form
Tw(t) = Aes't + Be®' + C

To find the constants A, B and C, we need three known states. We know that T,,(0) =
T,(0) = T, = 25°C. The other initial condition is found by evaluating (5) at t =0

dl,(0) 1 1
i = TGy D0 = Tu(0) = —— (Tu(0) - Tu(0))
T(0) = 25171:0215 = 0[°C/sec]

we also know that T,,(c0) = T, + @inRuwa, plugging in the initial conditions yields two equa-
tions:

A+B+C =25
81A+S2B:0
C=25+4-17=93
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therefore our constants are A = 3.6 - 1072, B = —68.0036, and C' = 93. The total solution is
thus 5
Ty(t) =3.6- 1073702621t _ 58 0036~ 1-3878:107°t | 93

(c) Figure 7.3.2 shows the plots of T,,(t) over both a long and a short time scale. The small time
constant has no important effect beyond about 50 seconds, where the longer time constant
dominates the response after that. The script thermalblock.m finds the system poles and
plots the response on both a small and large time scale.

Plot of TW(t), short time scale
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Plot of Tw(t), long time scale
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Figure 7.3.2: Plot of T,,(t)

thermalblock2sol.m

Download

%The Hot Copper Block 2 thermalblock2sol.m
clear all
close all

cB=.1%385
cW=1 * 4200
rbw=.1
rwa=17
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twinit = 25

twdiff = 0

m=rbwkcBxrwaxcW

c = rbw*cB + rwa*cB + rwa * cW
k=1

tw=[m c k]

s = roots(tw)

B = (68%s(1))/(s(2)-s(1))
A = -B-68

C =93

figure(1)

subplot(2,1,1)

t1=[0:.001:20];

T_wl = Axexp(s(1)*tl) + Bxexp(s(2)*tl1l) + C;
plot(t1,T_wil)

%axis([0 40 25 25.7])

xlabel (’Time, [s]’)

ylabel (°T_w(t) [~\circCl?)

title(’Plot of T_w(t), short time scale’)

subplot(2,1,2)

t2=[0:5:500000] ;

T_w2 = Axexp(s(1)#*t2) + Bxexp(s(2)*t2) + C;
plot (£2/3600,T_w2)

axis([0 120 25 95])

xlabel (’Time, [hrs]’)

ylabel (°T_w(t) [“\circC]’)

title(’Plot of T_w(t), long time scale’)
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7.4 Transistor on heat sink

(a) As always, first begin by drawing a figure. In this case, draw the circuit equivalent of this
system. The equivalent circuit is shown in Figure 7.4.1.

T A A TOA NN T N

4.1 D

T

Figure 7.4.1: Transistor thermal system equivalent circuit

Because this is steady state, we do not need to worry about thermal capacitances at the
moment. We need the constitutive relationships for the devices:

Tq—T. =50 R4
T. —Ts =50 R
Ts —Tq =50 Rgy

rearranging these equations and plugging in the numerical values leads to

T, =T,+ 50 Ry, = 50°C
T.=T5+ 50 R.s = 60°C
Ty =T+ 50 Rgq. =65°C

(b) Now draw another picture with the thermal capacitance of the heat sink added in. This new
circuit equivalent is shown in Figure 7.4.2.

T A Ko Tp Ko T@\f\/\/—
4.1 D C.==

T

Figure 7.4.2: Transistor thermal Equivalent circuit with heatsink thermal capacitance
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Why is the thermal capacitance in parallel with it’s associated resistance? Imagine if they
were in series. At steady state, there is no heat flow through the capacitance. If they
were connected in series, there would be an open circuit with no heat flow, which would be
impossible for this thermal system. The thermal capacitance is simply the specific heat times
the mass: Cs = 0.90 - 500 = 450 [J/°C] (remember that °C = °K as far as magnitude is
concerned). The constitutive relation for the thermal capacitance is

dls — dTy, dT

=C =C
1= *Tdt
Write out the node equation at T
dl's Ts—"1T,
- Gtfs s a
%n S dt + Rsa
dT.
}%sac’sditS + Ts = Rsa%'n + Ta

This first order differential equation is the governing equation for the system. The general
solution to this equation is

Ts(t) = Ae VT + B where 7 = R, Cs

First solve for the time 0 < ¢t < 1. During this time, ¢;, = 500 [W]. The initial and final
conditions for this time frame are

T,(0) = 50°C
Ty(00) = Ty 4 500 - Ryq = 275°C

These conditions yield A = —225 and B = 275. The solution is
Ty(t) = —225¢ 7122 4 275

Plug this solution into the constitutive relationships for the other devices to obtain other
equations:

To(t) = Ty(t) + 500 - Res = —225¢12%° 4 375

Ty(t) = To(t) 4+ 500 - Rge = —225¢~ /%% 4+ 425
Now, there is something to note here. These equations don’t match the initial conditions of
their respective steady state values. That is to say, these temperatures seem to “jump” from
their steady state values to new values, and this doesn’t make sense. This happens because
we have approximated these thermal capacitances to be zero, and therefore their associated

time constants will be zero, and their responses will be infinitely fast. In the real world, we
would have to take these capacitances into effect.

Now attack the time frame 1 < ¢ < co. All that will change is the value of g;, to 50 [W]. The
initial and final conditions will be

Ty(1) = —225¢ /2% 4 275 = 51°C
Ts(00) = Ty + 50 - Rgq = 50°C
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These conditions yield A =1 and B = 50. The solution is
Ty(t) = e /25 4 50

Plug this solution into the constitutive relationships for the other devices to obtain other
equations:

To(t) = Ts(t) + 50 - Res = e7H22° 160
Tu(t) = To(t) + 50 - Rge = e~ t/??° 4+ 65

The peak device temperature happens at ¢t = 1:
Ty(1) = —225e~1/225 4 425 = 201°C

This would more than likely fry the transistor.

A bigger heatsink would not help in this case. In the limiting case as Cs — oo, Ty(t) =
200°C. This is because there must be a temperature difference that follows the constituent
relationship Ty —Ts = .3-500 = 150°C. The device will fry just as easily at 200 °C as it would
201 °C, so even the biggest heat sink won’t help this chip. Smaller thermal resistances would
though. The plots of the temperature transients are shown below.
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Figure 7.4.3: Plots of Temperature transients
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J%Transistor Solution transistorsol.m

rdc=.1
rcd=.2
rsa=.5
cs=450

tau=rsa*cs

t1=[0:.001:1];
t2=[1:.5:1000] ;

gen_tl = -225xexp(-tl/tau);
tsl=gen_tl + 275;
tcl=gen_t1+375;
tdl=gen_t1+425;

gen_t2 = exp(-t2/tau);
ts2=gen_t2 + 50;
tc2=gen_t2+60;
td2=gen_t2+65;

figure(1)

subplot(3,2,1)

plot(tl,tdl)

xlabel (’time [s]’)

ylabel (°T_d(t) [“\circ CI]’)
subplot(3,2,3)

plot(tl,tcl)

xlabel(’time [s]?)

ylabel (°T_c(t) [“\circ C]’)
subplot(3,2,5)

plot(tl,tsl)

xlabel(’time [s]?)

ylabel (°T_s(t) [“\circ C]’)
subplot(3,2,2)

plot(t2,td2)

xlabel(’time [s]?)

ylabel (°T_d(t) [“\circ C]’)
subplot(3,2,4)

plot(t2,tc2)

xlabel(’time [s]?)

ylabel (°T_c(t) ["“\circ C]’)
subplot(3,2,6)

plot(t2,ts2)

xlabel(’time [s]’)

ylabel (°T_s(t) ["\circ C]’)
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8 Circuits

8.1 RC Transfer Function

(a) Begin by combining Ry and C' into an equivalent impedance Z., = Ro+ é Sum the currents
at the node between R; and Ro

Vils) = Vols) _ V(o)
Ry Ry + é

1(8) 1 1
:‘/OS 74—7
Ry (5) Ry R2+é

1

<

Vo(s) _ Ry

. -1 1
V;(S) Ry + R2+é
V;(S) B RyCs+1
Vl(s) N (R1 + RQ)CS +1

This transfer function is an important result. When we find the equivalent impedance, the
circuit becomes a voltage divider. In a voltage divider, the voltage drop across any resistor
is simply its resistance divided by the total resistance seen at the input terminals multiplied
by the input voltage. This is also true for impedances. The voltage we wanted to solve for
was across the equivalent impedance Z.; = Ra + é The total impedance seen by the input
voltage source is Z;otqt = R1 + Ra + é This becomes

Z. Ry + &
Vo(s) = LVils) = =———C

Ztotal Rl + RZ + s
V;)(S) RoCs+1

Vz(s) (Rl + RQ)CS +1

This produces the same transfer function (with much less work).

-~ __833
AT TR0

S —— Y
2 (R1 +R2)C
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Figure 8.1.1: Pole Zero Plot

(¢) This solution is not available.
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8.2 RLC Transfer Function

(a) Using the voltage divider relationship:

VA 1
o= Zaa O R e )
ota C's

(s) _ 1
Vi(s)  LCs?2+ RCs+1

N

_ 1 _ —8
C= o7 =10 F)
R=-2 100 [

Wn

The characteristic equation is 1071952 +107%s + 1 = 0. The roots (and therefore the poles)
are
51,2 = —5000 £ 99875¢

In polar form, these poles become

s12 = 10° 47 + 1.52077

, 10°

1.5 i
1+ x B
0.5 4
(U i
0.5+ B
1+ X b
1.5 4

2 L I I | L
-6000 -5000 -4000 -3000 -2000 -1000 0

Figure 8.2.1: System Poles

(c) The step response for this system with values is shown in Figure 8.2.2.
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Step Response

2 System: sys
Time (sec): 3.2e-005
Amplitude: 1.85

1.8 System: sys

Time (sec): 9.4e-005

Amplitude: 1.62
System: sys

161 Time (sec): 0.000158
Ampli’ system: sys
Time (sec): 0.00022
1.4 Amplitude: 1.33
121 System: sys

Time (sec): 0.000598
/\ A Amplitude: 1.05
1 AWAW.

®
k-]
=
B \/ \/ Vv vy
<
0.8 [
0.6
0.4
0.2
0 I I I I
0 0.2 0.4 0.6 0.8

Time (sec)

Figure 8.2.2: Step Response

(d) This solution is not available.
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8.3
(a)

Bandpass Filter

Using KCL, the current is i = i¢ + ig + ir,. The output voltage is vg = L%L. The current
in the capacitor is ic = C’d;t". The current in the resistor is ig = v,/R. The current in the
inductor is i;, = ¢ —i¢ —ig. Substituting for i;, into the constitutive relation for the inductor,

we obtain the governing differential equation

dvp dug di
i —RrLY
aez Ly ther=RLYy,

RLC

Taking the Laplace Transform, we find the transfer function is the impedance

Vr(s) RLs
I(s) RLCs?+Ls+R

Z(s) =

To find the damping ratio and natural frequency, we compare the characteristic equation
(RLCs? + Ls + R = 0) to the canonical form (s? + 2¢wys + w2 = 0). Thus, we find

1 /L

“9oRrVC

nd ¢

1
Wy = a
vV LC

The zero is located at s, = 0. The poles are located at

Ly 4
= 9RC RC LC

Using the given values (R = 50k, C' = 10pF, and L = 3.14815 x 10~ "H, we find w, =
563.6 x 10° rad/sec = 89.7MHz and ¢ = 0.18.

The Bode plot is shown in Figure 8.3.1 The circuit is called a bandpass filter because it
passes signals with a frequency in a band centered at 89.7MHz. Frequency content away from
this band is attenuated. The frequency 89.7MHz is frequency of the Boston radio station
WGBH-FM.
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Magnitude

100 —
- 501 :
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[}
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Q
(0]
@
=
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10 10

10
Frequency [Hz]

Figure 8.3.1: Bode Plot

(f) If radio stations are separated by at least 400kHz, we must examine the attenuation at
89.3MHz and 90.1MHz. The magnitude of the transfer function is

L (RLw)?
[H{gw)l = \/(R(l — LCw?) +1)* + (Lw)?

The peak magnitude (f = 89.7MHz) is 5 x 10%. The magnitude at 89.3MHz is 1.85 x 10%.
The magnitude at 90.1MHz is 1.85 x 10%. The attenuation of the neighboring radio stations

is shown in Figure 8.3.2.
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Figure 8.3.2: Attenuation of neighboring frequencies
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8.4
(a)

LC Circuit Differential Equations

Using KCL at the node between the inductor and capacitor with the assumed currents both
positive into the node gives the following:

ip+ic =0 (1)

) 1
ZL:L/ULdt

. dv,
i =0

Equation (1) must be differentiated before substituting for the currents and from the direction
of our assumed currents, vy, = v; — v, and vog = 0 — v,. The governing differential equation

is then

d?v, Vo Vi
= 2
dt? + LC LC (2)

The Laplace transform of Equation (2), with w,, = 1/v/LC) initial rest and some rearranging,
is
2

— wn
Vo(8) = R v;($)
With the input voltage a unit step and after performing partial fraction decomposition
1 s
Vo(s) = =

s 824w
The inverse Laplace transform reveals the output voltage as a function of time after substi-

tuting w = 1/VLC
t

VLC

Note in the period of the output voltage in Figure 8.4.1

Vo(t) =1 — cos

-

Output Voltage (vo)

Time (s)

Figure 8.4.1: Labeled plot of the output voltage
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8.5 Equivalent Impedance

The equivalent impedance of the circuit is
Zeq = 2+ (Zr1 + Zr2)|[(Zcnl| Ze2) (1)

But realize the series resistive impedance, Zr1 + Zgo, can be simplified into an equivalent resistive
impedance by Rio = R1 + Ro and Zp12 = Zp1 + Zro. Also, the parallel capacitors can be replaced
by an equivalent capacitance C12 = C7 4+ C3. The impedance of the equivalent capacitor is then
Zco12 = Zc||Zeo2. Equation (1) is now simplified to

Zeq = 21, + (Zr12||Zc12)
Substitute Z;, = Ls, Zri2 = Ri2, and Zc12 = 1/Chas gives

ng(l/Cms)

Loy = Ls +
“ Ris 4+ 1/Chas
Now expand the Rio and C1s substitutions, then simplify and

R, + Rg) (C1 + CQ) 52 + Ls+ (Rl + Rz)
(Ri+ Ra) (C1 1 C2)s + 1

L
Leqg = (
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8.6 Circuit Response

From Prof. Trumper’s handouts and lecture, we know that the solution to any differential equation
is the sum of the homogenous and particular solutions.

(a) The differential equation for i. is

dic . dviy,
RC% +1. = C dt
Vin = u(t)
dvin,
= Ot
o (t)

thusfort>0RC%—|—ic =0
thus for ¢t > 0i.(t) = Ae~we
where A = i(07)

and i(07) = 7

i) = %e—%

i) i(t) = _%ew:—c

i) i) = 0
1
_1, ]
Ll ]
ol ]
Ll ]
ol ]
ol ]

—

i i
ol ]
1 ; ; : :

Figure 8.6.1: Step Response for Part (a)
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Amplitude

deitL +Ru, = Ldsz"
Vi, = u(t)
s -
thus for ¢ > 0 deLtL +Rv, = 0
thus for t > 0vp(t) = Ae T
where A = v7(07)
and v, (07) = v, (0) — Riz(0)
Ho(t) = e T
i) o(t) = —9e T
i) v(t) = 0
Step Response

1 :

Ok sk sk e e e KRR TR R R TR R F R F A AAAAA A A A ool totlsckedo
-ir Xxxxxxxxxxxxx |
o f ,
3t XXXXX i
-4+ XXXXX 4
sbf i
°l I
-7t i
ah i
0 1 2 3 4 5 6

Time (sec)

Figure 8.6.2: Step Response for Part (b)
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Amplitude

0.9

0.8

0.7

0.6

0.5

0.4
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0.2

0.1

L dUL dim
-7 = L
Rat dt
L d’UL
fort >0—=—= =0
ort > R di + vy
fort > 0w (t) = Ae T
iin(0) = ig(0)+ir(0) =ir(0)+0
UR(O) = ’UL(O) = A= imR
vr(t) = Re T
Step Response

Time (sec)

Figure 8.6.3: Step Response for Part (c)

+v. = Rip

ve(t) = Riip+ Ae” RO
v(0) = 0— A=—-R

t

ve(t) = (1 - e_ﬁ) R
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Figure 8.6.4: Step Response for Part (d)

A 1
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8.7 LRC Circuit 1

Vl 1Q v2

+
i =1-u(t) D 19 ——IF 1 H

iic iiL

v

Figure 8.7.1: LRC Circuit

(a) v =05V, =0V, 4 =05A,i.=0

(b)

V1 (0+)
dv
— (07
ir(07)
i (0F)
dU1

—(09)

v =

le =

dvl
dt
d?v, dv

+2— L4 =

vi(t) =

dt? dt

d
= RLO™ot + (R*C + L)% +2Ru =0

0.707e " sin (t + 37 /4)
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8.8 LRC Circuit 2
(a) The node equations are

_. _u . U1
0=t=95 "%~ g (1)

U1 — V2 .
0 F (2)

0=

for nodes v and vy respectively. The constituent relationships for the capacitor and inductor

are
. dve  dvy
=0 T 3)
di
v, = Ld—tL = vy (4)

These are the 4 main equations that we need to solve this problem. We need to find vs in
terms of v1. Begin by differentiating (2) and plugging in equation (4).

dv1 dvg

P (5)

Substitute equation (3) into equation (1) and differentiate

dv
0 =14 v1—7;—v1+02 (6)
dis _ d*vy dvr _ dvy (7)
dt — dt? dt dt

plug equation (5) into (7)

diy _ doy doy
dt — dt? dt

+ Vo

Finally, substitute (8) into (6) to obtain the final differential equation.

dig . d21}1 dvy
Bs 5 28U L o0 Ly
g T g TA g Tem

(b) is=1A,0,=05V,05=0V,i;=05A, i.=0A.
(c)

dis . d*u; dvy
E—FZS: W+2E+2U1
I(s)(s+1) —is(07) = Vi(s) (s + 25 +2) — sv1(07) — 91(07) — 2v1(07)
_ I(s) —is(07) + v (07)(s +2) +91(07)
Vi(s) = 52425+ 2
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Plug in the initial conditions i5(07) =1, v1(07) = .5, and 0;(07) = 0. Also, I(s) = 0.

—1+ 5(s+2)
M= aere
.Ds
_ _ 9
s2 42542 9)

Equation (9) does not appear in our Laplace transform table. We must manipulate it until
it matches a standard form.

.Ds

T 212542
- .Ds

S (s+1)2412
s+1 5 1
T(s+1)24+12 0 T (s+1)2+12

Vi(s)

Now we have the transform in a form available on the table. The final equation is then:
ot
vi(t) = 5 (cost — sint)

(d) The plot is shown in Figure 8.8.1.

0.5

0.4

0.3

© 0.2
Al
=
01
0
-0.1
_02 | | | | | | |
0 1 2 3 4 5 6 7 8
Time [s]

Figure 8.8.1: Plot of vy (¢)
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(e) Begin by finding the transfer function

‘I/;((SS)) by using a current divider relationship after

combining the inductor and resistor into a single impedance.

1 11
Iy(s) = — 4T
(#) V1<R+L3+R+1>

Cs
Vi 1+s
I(s)  s*2+2s+2

To find gf((j)) , recognize that

[L(S) IL(S) Vl(s)

I(s)  Vi(s) Is(s)

Thus, all we need is a relationship between V; and Ij to obtain the correct transfer func-
tion. Impedance provide that when we combine the resistor and the inductor into a single
impedance.

Ir(s)(R+ Ls) = Vi(s)

In(s) 1
Vi(s) R+Ls

This works out because the resistor and inductor are in series, and thus the current through
them are equal. Therefore

I(s)  Vi(s) Is(s)  s2+2s5+2
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8.9 LR Circuit Step

Figure 8.9.1: Circuit Diagram

(a) First, write out constituent relationships for each element:

dig,
== 1
Vi, 7 (1)
Ve = ir1 Ry (2)
Vre =V, = ige R (3)

From the circuit diagram in Figure 8.9.1, notice that
i =1 = 1R = IR2 (4)

However, we want the differential equation to be in terms of V; and V,. Apply KVL to the
entire circuit loop to obtain

Vi=VL—Vr —V,=0 (5)

To get an expression for V7, differentiate equation (3) with respect to time and substitute
into equation (1), taking into account (4):

Ly,
Ry dt

(6)

L

To get an expression for Vg, substitute equation (3) into equation (2):

Vil = —V, 7
= (7

Substitute equations (6) and (7) back into (5) to obtain the differential equation

L dV, R;
- — ——V, =V, =0
Ry dt Ry

L av, R
= 1)y, =
Ro di +( +R2)
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To find the transfer, substitue sV (s) for each derivative to obtain:

(o (+2) v

o) = Vo(s) _ 1
TN T L (e )
H(s) = — 12 !

_R1+R2ﬁs—l—l

The final form of H(s) is the same as the form above it. However, it is in standard form for
easier manipulation later. The pole zero plot is shown below.

5

4t il

Imaginary Part
o

-5
-15000 -10000 -5000 0 5000

Figure 8.9.2: Pole Zero plot of circuit

(b) To find Ry, apply the Final Value Theorem to the transfer function, using the final value .1
as obtained from the graph. Remember that the Laplace Transform of the unit step function

is 1.
S

1 1
Vo(oo) =.1=1lims- Fz 7 - =
s—0 Ri+ Ro 7R1+R23+1 S
1o
Ri 4+ Rs
Ry = 9000[€]

To find L, recognize that 7 = ﬁ from the standard form of a transfer function for an
exponential decay ﬁﬂ 7 is found from the graph to be 1-107* seconds.

Lot
- R+ R
L=1[H]
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(c) The value M is the magnitude of the transfer function evaluated at s = jw, and the vaule
¢ is the phase of the transfer function evaluated at s = jw. The magnitude of the transfer
function is

b)) _ 1
PO ) s ()
1

,/100+#w2

[H (jw)| =

The phase of the transfer function is

/H (jw) = tan™* [m]

L

= —tan~! Li7ied
!

= —tan~! ( Y >
10000

(d) The bode plot is shown in Figure 8.9.3. The DC gain is the magnitude of the transfer function
as w — 0, which is 0.1. The high-frequency asypmtotic gain is the magnitude of the transfer
function as w — oo, which is 0.
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Magnitude vs. Frequency
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Figure 8.9.3: Bode Plot, M and ¢
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9 Op Amps

9.1 Opamp Arithmetic

The solution for this problem is not available.
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9.2 Inverting Op-Amp

The solution for this problem is not available.
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9.3 Opamp Transfer Function

The solution for this problem is not available.
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9.4 Op-Amp Differentiator 1

In this problem, we examine a practical differentiator. Notice that the second op-amp circuit is
simply a unity gain inverter. The transfer function of the circuit is

Vo(s)  RCs
Vl(s) N RiCs+1
(a) The zero of the transfer function occurs at s, = 0. The pole occurs at s, = —1/RC =
—0.5rad/s.

(b) The magnitude and phase of the transfer function are found by evaluating the transfer function
at s = jw. The magnitude is

RCw 0.2w

(RiCw)? +1 (2w)?2+1
The phase is

¢ = g —arctan R1Cw = g — arctan(2w)

(¢) The step response is given in Figure 9.4.1. An ideal differentiator has a transfer function of
%. This transfer function is not ideal because of the resistance R;. An ideal differentiator has
no pole, only a zero. The step response of an ideal differentiator is an impulse.

Step Response

From: U(1)
0.1 T
0.09 |- B
0.08 - B
0.07 B
0.06 |- B
[}
e}
2 2
'E. : 0.05| E
< [
0.04 - B
0.03 Bl
0.02 Bl
0.01 Bl
0 Il Il Il Il
0 2 4 6 8 10 12
Time (sec.)

Figure 9.4.1: Step Response

(d) The Bode plot is given in Figure 9.4.2. The breakpoint frequency, also known as the corner
frequency, is identical to the pole location. The corner frequency is used for sketching the
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asymptotes of the magnitude portion of the Bode plot. At the corner frequency, the transfer
function has a value of 10@. At the corner frequency, actual plot is 3 decibels below the

asymptote (201log g ~ —3).

Bode Diagrams

From: U(1)
-20 . —

—~
o i
Z
P i
°
>
= -
c
g
g -60
=
@ 100
k=)
=
[}
@ 80 4
<
o

a 60 -

s

#

= a0 4

20+ 4
0 Il Il
107 10" 10° 10"

Frequency (rad/sec)

Figure 9.4.2: Bode Plot
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9.5 Op-Amp Proportional plus Integral Controller

We are asked to analyze a Proportional plus Integral (PI) circuit. The transfer function for this
circuit is

Vo(s)  RyCs+1

Vi(s) R,Cs

(a) The pole occurs at s, = 0. The zero is located at s, = —1/R¢C = —1.

(b) The magnitude and phase of the transfer function are found by evaluating the transfer function
at s = jw. The magnitude is

A VROW)?E+1 Vw2 +1
B R,Cw 0w

The phase is
3T

3
¢ = arctan RyCw — ?ﬂ = arctanw — -

(c) The step response is given in Figure 9.5.1. The transfer function for a PI circuit may be
written as

K
Hpi(s) = Kp + ?I

The transfer function may be re-written as

Vo(s) Ry 1

VZ(S) Ri RZC S
The step response will have a non-zero initial value and then grow linearly with time.

Step Response
From: U(1)
0 T

Amplitude
To: Y(1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec.)

Figure 9.5.1: Step Response

401



(d) The Bode plot is given in Figure 9.5.2. The breakpoint frequency, also known as the corner
frequency, is identical to the zero location.

Bode Diagrams

From: U(1)

70

-180

-200

Phase (deg); Magnitude (dB)

-220

To: Y(1)

-240

-260

_280 . | . | MR
10° 10" 10° 10"

Frequency (rad/sec)

Figure 9.5.2: Bode Plot
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9.6 Op-Amp Circuit Design 1

We want to design an non-inverting summing circuit whose output is

Vo =5V1 +3Va — 10V3

Vout

R2

=,

vV

Figure 9.6.1: Summing Amplifier

We should use the principle of superposition, and we must realize that for adding voltages, we
should have the inputs go to the non-inverting terminal and subtracting a voltage inputs should go
to the inverting terminal. The non-inverting configuration gives the addition of V; and Vs, while the
inverting configuration gives the subtraction of V3. Together, they can realize the given equation.
The circuit in Figure 9.6.1 gives the desired output for appropriately chosen resistors.

As always, we start with the equation V, = A(s)[V; —V_] and find V; and V_. We then plug them
back into the equation. Using superposition (i.e. setting V, = 0 and solving for V_, then setting
V3 = 0 and solving for V_, and summing the two) gives

Ry Rs

V_ = Vo +
R4+ R5 R4+ R5

Vs

Using the voltage divider and superposition, we find

Ry//R3 Ri//Rs3
T e N 7 oY N 7
t T Ry//Rs+ R ° " Ri//Rs+ Ry '
RoR R.R
21413 V2+ 1413 Vl

" RoRs+ Ri(Ry+ R3) ° ' RiRs+ Ro(Ry + Rs)

Plugging these values back into the equation and solving for V,, with A(s) having infinite gain,
gives

. R, + Rs R1R3 RoR3 Rs

Vs i+ Vo —
Ry RiR3 + RQ(Rl + Rg) ! RoR3 + Rl(RQ + Rg) 2 R4+ R;5

Vi
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The V3 coefficient gives us the constraint that Rs/R4 = 10. We arbitrarily choose Ry = 1k and
this then sets R = 10k€2. We then choose R3 = 1k, and this leaves 2 equations and 2 unknowns
for the coefficients of V; and V5. Solving the system of equations gives Ry = 1k and Ry = 60012.
The final solution has the following form:

Vo = K [C1V1 + CoVa — C3V3]

where K = 11, C = 0.4545, Cy = 0.2727, and C3 = 0.9091.
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9.7 Op-Amp Block Diagram

The solution for this problem is not available.
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9.8 Op-Amp Circuit Design 2

Vin IV\/\/\/ —

R, Vout

Figure 9.8.1: Circuit implementation of first stage

The circuit in Figure 9.8.1 gives one implementation for the desired output for appropriately chosen
resistors and capacitors. There is more than one possible design.

As presented in tutorials, the circuit without the Cy capacitor gives a pole at the origin and a zero.
This leaves us to figure out how to get an additional pole. The impedance of a capacitor is 1/C's
so that may be a good starting point to achieving a pole. We add a capacitor in parallel with the
capacitor and resistor in series and this does the trick.

The impedance across the negative and output terminals is

. RoCs+1
N S(Rgcls + C1 + CQ)

We know that for an inverting op using the infinite gain model, V,y/Vi, = Z/R1. The transfer

function then reduces to
Vo 1 RoCs+1

Vio  Ri(Cr+C) BT s 11

We choose C7; = 0.01uF and that sets Ro = 100k€2. Solving the rest of the equations, we get
Cy = 1.11nF and Ry = 900&1).

Finally, we add a negative unity gain buffer to invert the signal and make it positive overall. This
circuit is cascaded onto the first and it is shown in Figure 9.8.2.
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Vin IV\/\/\/ —

Vout

Figure 9.8.2: Negative unity gain buffer
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9.9 Op-Amp Differentiator 2
The op-amp output is Ve = A(s)(Vy — V_).

(a) Because the op-amps have a low output impedance, we may model the system as two blocks
cascaded (see Figure 9.9.1).

S

Figure 9.9.1: Cascaded Block Circuit

First, consider the differentiator block. Using the voltage divider relation and the principle
of superposition, the voltage at the inverting terminal is

R+ R
T Ri+R+ & T RI+R+ &

%

The voltage at the non-inverting terminal is zero. The amplifier outputs Vi = A(s)(—V_).
The block diagram for this part of the circuit is given in Figure 9.9.2.

v RCs -~ -V %
S ) REs _>Q—> AGs) L,
(R+R)Cs + 1

RCs+1
(R+R)Cs + 1

Figure 9.9.2: Block Diagram

Next, consider the inverting amplifier part of the circuit. The voltage input is V;. The voltage
at the non-inverting terminal is zero. The voltage at the inverting terminal is
VoW
T2

The output voltage of the op-amp is V, = —A(s)V_. The block diagram is shown in Figure
9.9.3.
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= C -V Aés)

Figure 9.9.3: Block Diagram for Inverting Amplifier

To obtain the total block diagram, we simply cascade the two blocks. In general, we cannot
simply cascade two systems because there will interaction between the two systems. With two
cascaded blocks, the second block has no effect on the first. However, because the op-amps
have a very small output impedance, we may cascade the two blocks. The total block diagram

is shown in Figure 9.9.4.

A(s)

4 RCs - O
(RTR)Cs + 1

AG)

-O

RCs+1

Figure 9.9.4: Block Diagram of Cascaded System

Assuming A(s) = g/s, the transfer function for the first block (practical differentiator) is

Hi(s) =

(R+R)Cs + 1

Substituting A(s) = g/s, we obtain

Hi(s)

and

The total transfer function is

Vo(s) _

—A(s)RC's
(R+ R1)Cs+1) + A(s)(RiCs + 1)
*A2(S)
Ha(s) =
1+ Ags)
—gRC's

a s(R+R1)Cs+1) + g(RiCs +1)

HQ(S) =

-1
%S-}-l

1.257 x 107s

Vi(s)  7.003 x 107853 4 6.252 4 1.257 x 108s + 6.283 x 107
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(¢) The pole-zero plot is shown in Figure 9.9.5.

1

0.8 i

0.6 b

04 b

0.2 b

o x X 4

Imaginary Axis

-0.2F b

041 g

-0.6 b

-0.8 b

4 I I I I I
-6 -5 -4 -3 -2 -1 0
Real Axis

Figure 9.9.5: Pole Zero Plot

The zero is located at s, = 0. The poles are located at s, = —0.5, —3.1437x 107, —5.7096 x 107.

The dominant pole is s = —0.5. The transfer function for the dominant roots is of the form
s
H(s) —
)= 505

In other words, the approximate transfer function is a non-ideal differentiator. The step
response for the approximate system is shown in Figure 9.9.6.
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Step Response
0.1 T

0.08 - B

0.07 - B

0.06 - B

0.05 b

Amplitude

0.03 - b

0.02 - B

0.01 B

0 1 1 1 1
0 2 4 6 8 10 12

Time (sec)

Figure 9.9.6: Step response ignoring higher-order dynamics

(d) The step response of the exact transfer function is shown in Figure 9.9.7. We see that step
response is the same as for the system including only the dominant dynamics except for the
first .02 seconds. The reason that the actual system takes a finite amount of time to approach
the ideal behavior is because of the high frequency dynamics. As seen from the Bode plot
(see Figure 9.9.8), the system has a very small response at high frequencies (above 1MHz).
The step response excites all frequencies, but the contribution to the response is very small
when the dynamics of the op-amps are considered.
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Amplitude

Magnitude (dB)

Step Response Step Response
0.1 T 0.1 T

0.08 |- B

0.07 |- b

0.06 |- B

Amplitude
o
o
(5]
T
|

0.04 |- B

0.03 |- b

0.02 |- B

0 I I I I I
0 0.005 0.01 0.015 0.02 0.025 0.03

Time (sec) Time (sec)

Figure 9.9.7: Step response of exact transfer function

Bode Diagram
-20 T T T T T T

.50

90 T

Frequency (rad/sec)

Figure 9.9.8: Bode Plot of full Transfer Function
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9.10 RC Op-Amp Frequency Response

Z1 o
\( Rs Ci)

N A

—_ = — D
C2 Ro ‘/

Vi

~\t
U
Py

N
'

Y

200 2000 5000

Figure 9.10.1: RC Op-Amp Circuit

(a) Figure 9.10.1 shows the circuit for this problem. I solved this using impedance methods.
Both Z; and Zs share the same current i. With a(s) = oo, we can make the assumption that

V- =0.
YA = <1 + 018) - _ R1R3013 + Rl
= Ry RsCis+1 - C1(R1 + Rg)s +1
1 RoCos +1
Z == R =
2 2+ CQS CQS
I = Cl(R1+R3)S—|—1V
N R1R3Cis + Ry !
I = G g
RoChys +1
Voo (ReCas+1)(Ci(R1+ R3)s+1)
Vi - C’gs(RleCls -+ Rl)

(b) Our transfer function has two poles and two zeros. We need to associate these poles and
zeros with the breakpoints on the frequency response. We have a pole at the origin which
is associated with the initial negative slope. We then have a zero at 200 r/s (slope goes to
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zero). We then have a 2nd zero at 2000 r/s and the 2nd pole at 5000 r/s. To start with we
note that the low frequency response is dominated by the pole at the origin. We can express
the low frequency magnitude as

1
Clew

M(jw) =

Since we are given R; if we know the magnitude at some low frequency we can find Cy. Well
we know the magnitude at 200 is 5 and thus using just the low frequency asymptote

1 1

b = = C2 = = 0000 % 200

- — 0.1uF
R1C5200 H

Now we can tie the (RoCas + 1) zero or (C1(R; + R3)s + 1) with the breakpoint at 200. I
chose the following;:

1

== Q.
200%x0.1E -6 S0k

200 = Ry

.
RyCy
Now all that is left is the zero at 2000 and the pole at 5000, thus:

1
2000 = —
C1(R1 + R3)
1
5000 —
R3C1
2000C1 (R + R3) = 5000R3C; — 3000R3 = 2000R;
2
Ry = ZRi= 66679
1
- 0.03uF
= 5000 * 3 S

Now we need to figure out A. Well we know that the slope of magnitude between 2000 and
5000 is +1. Thus

A = 1010g(5)+A:)3

Az = log(5000) — log(2000) = 3.699 — 3.301 = 0.395
A = 10(0.7+0.395) —12.5

Alternately, you could use the fact that at high frequencies

Ro(Ry +R3)  50000(16667)
— = = 12.5
M(w) RiRs 10000 * 6667

Figure 9.10.2 shows the actual frequency response of this circuit with the asymptotes.
If you choose to set the first zero using (C1(R; + R2)s + 1) you would get the following
component values:

Ry = 5000
Ry = 4170
C, = 048uF
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Figure 9.10.2: Frequency Response
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10 Differential Equations

10.1 Differential Equations 1
(a) 5007 + 1000y = 0

d
yn(t) = clesltand% = c151€%t

500¢151€°111000¢; €51t = 0
(50051 + 1000)c et =0

therefore s = —2
Im
" e
-2
Figure 10.1.1: Plot of poles for part (a)
(b) y(=3) =10
yn(t) = cre®’
6166 =10
10
= —
1= 6
10 o
)= —
yh( ) 6 e
(c) yn(t) <107°
10
—e H<107°
e

e 2t <107 7€b
—2t < In(107 7€)
t > 5.06

(d) Using units of meters for y, we have the following plot shown in Figure 10.1.2, made with the
script ‘diff2sol.m’ found at the end of the solution.
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500dy/dt+1000y=0 with y(-3 s)=10 m
80 T T T T

70

60

position (m)
IN 3
o o

w
=]

20

!
-4 -35 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
time (s)

Figure 10.1.2: Plot for Part (d)

(e) One physical system would be a spring-dashpot system like the one modeled in Lab 1. The
variable y would represent the displacement in units of meters (m). The dashpot would have
a viscous damping constant (b) of 500 Ns/m, and the spring would have a spring constant (k)
of 1000 N/m. First order systems are not just limited to springs and dashpots but describe
electrical systems, fluid flow, and many other natural behaviors. Figure 10.1.3 is taken from
the ActivLab website.

SIS II SIS IS

k
yi &

=] b

YA

Figure 10.1.3: Physical System

diffplotlsol.m
Download

t=[-4:.01:1];
y=10*exp (-6) *exp (-2*t) ;
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figure(2)

plot(t,y)

title(’500dy/dt+1000y=0 with y(-3 s)=10 m’)
xlabel(’time (s)’)

ylabel(’position (m)?)
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10.2 Differential Equations 2

(a)

§j + 10y + 10000y = 0

k b
wp =1/ — and { = and wg = wp\/1 — €2
Vi ¢ i d ¢

SO

wp, = 100rad/s
¢ =0.05
wqg = 99.9rad/s

y(0.1) = =3 and 9(0.1) =0
From lecture for an underdamped system:
yn(t) = cre 7" coswyt + coe 7' sinwgt

SO
un(t) = —croe 7 coswgt — crwge 7t sinwgt — caoe” " sinwgt 4 cawge 7" cos wgyt
From part (a), we know wy,, ¢, and wy. We also know o = (w,,. Therefore we can solve for ¢;
and ¢y based on the initial conditions.
c1 = 4.051
Cy = 2.848

dzy/dt2+10dy/dt+1000y=0 with dy/dt(0.1 s)=0 m/s and y(0.1 s)=-3 m
60 T T

40

20

position (m)
o

-20

-40

.60 I I
-0.5 0 0.5 1

(C) time (s)

Figure 10.2.1: Plot of Position vs. time

We can zoom in on the plot shown in Figure 10.2.1 near the given initial conditions to look
at y and y at t = .01s. This zoomed plot is shown in Figure 10.2.2.
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dzy/dt2+10dy/dt+1 000y=0 with dy/dt(0.1 s)=0 m/s and y(0.1 s)=-3 m
T T T

position (m)

1 1 1 1 1 1 1 1 1
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
time (s)

Figure 10.2.2: Zoomed Plot of Position vs. time

If we look at Figure 10.2.2 at t = 0.1s, we can see that the position is approximately -3 m.
Because the position curve is at a peak, we can also conclude that the velocity g is 0.

One physical system would be a mass-spring-dashpot system like the one shown below. The
variable y would represent the displacement in units of meters (m). The dashpot would have
a viscous damping constant (b) of 10 Ns/m, the spring would have a spring constant (k) of
10000 N/m, and the mass (m) would be 1 kg. Second order systems are not just limited
to masses, springs, and dashpots but describe electrical systems, fluid flow, and many other
natural behaviors. Figure 10.2.3 below is taken from the ActivLab website.
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y(t)

72
=

7
|

Figure 10.2.3: Physical System

diff2sol.m

Download

%diff2sol.m, script for Archive Problem Differential Equations 2
figure(1)

k=10000;

m=1;

b=10;

wn=sqrt (k/m) ;

zeta=b/(2*sqrt (k*m)) ;

wd=wn*sqrt (1-zeta"2);

sigma=zeta*wn

sl=-sigma+j*wd

s2=-sigma-j*wd

t=[-.5:.001:1];

%To solve for cl and c2, the following may be used:

%cl and c2 can also be solved manually

%Bx=C

tl=.1;

B=[exp(-tl*sigma)*cos(wd*tl) exp(-tl*sigma)*sin(wd*tl);
-sigma*exp (-t1*sigma)*cos(wd*t1)-wd*sin(wd*t1)*exp(-sigma*tl) -sigmaxexp(-tl*sigma)*sin(wd*tl)+wd*cos(wd*tl)*exp(-sigma*ti)]
c=[-3

0l;

x=inv (B) *C

c1=x(1)

c2=x(2)
y=cl*exp(-sigma*t) .*cos (wd*t)+c2*exp(-sigma*t) .*sin(wd*t) ;
plot(t,y)

title(’d"2y/dt~2+10dy/dt+1000y=0 with dy/dt(0.1 s)=0 m/s and y(0.1 s)= -3 m’)
xlabel(’time (s)’)

ylabel(’position (m)’)

figure(2)

t=[.1:.001:1];

y=cl*exp(-sigma*t) .*cos(wd*t)+c2*exp(-sigma*t) .*sin(wd*t) ;
plot(t,y)

title(’d"2y/dt~2+10dy/dt+1000y=0 with dy/dt(0.1 s)=0 m/s and y(0.1 s)= -3 m’)
xlabel(’time (s)’)

ylabel(’position (m)’)
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10.3 Differential Equations 3
(a) §j -+ 2005 + 10000y = 0

k b
wp =14/ — and ¢ = and wyg = wp\/1 — 2
Vo ¢ Wi d ¢

SO

wp, = 100 rad/s
(=1
wg = 0 rad/s

s plane plot of poles
30 T

20

Imaginary Axis

30 !

= 1
-150 -100 -50 0
Real Axis

Figure 10.3.1: Poles for Part (a)

(b) y(0) =1 and 4(0) =1

For the critically damped case:

yn(t) = cre™ 7" + cote ™
un(t) = —oc1e™ %t + e — oeote ™
o = Cwy

SO
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c1 =1 given y(0) =1
co = 101 given y(0) =1

therefore
yh(t) — e—lOOt + 101t€_100t

Looking at the last plot of Figure 10.3.2, we can see that both y(0) and y(0) are 1 at ¢ = 0.

d?y/dt?+200dy/dt+1000y=0 with dy/dt(0 s)=1 m/s and y(0 s)= 1 m
T

500 T T T T T
E o}
c
Ke]
2 500 ,
[oN
_1000 | | | | | | | | |
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.0&
time (s)
1 T
E
S05F i
®
(]
o
0 | | | | Il I |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time (s)
1.001 \
E 1.0005 B
S 1F ,
.“%
o
Q2 0.9995 - -
0999 | | | | | | |
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
time (s) x10°
Figure 10.3.2: Plots for Part (b)
diff3sol.m
Download

%diff3sol, a script for Problem Archive problem Differential Equations 3
figure(1)

plot(-100,0,°x’)

axis([-150 50 -30 30])

figure(6)

t=[-.05:.001:.05];

y=exp (-100*t)+101*t .*exp(-100%t) ;

subplot(3,1,1)

plot(t,y)

title(’d"2y/dt~2+200dy/dt+1000y=0 with dy/dt(0 s)=1 m/s and y(0 s)= 1 m’)
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xlabel(’time (s)’)
ylabel(’position (m)’)
t=[0:.001:.1];
y=exp(-100%t)+101*t . *exp(-100*t) ;
subplot(3,1,2)

plot(t,y)

xlabel(’time (s)’)
ylabel(’position (m)’)
t=[-.01:.0001:.01];
y=exp(-100%t) +101*t . *exp(-100*t) ;
subplot(3,1,3)

plot(t,y)

xlabel(’time (s)’)
ylabel(’position (m)’)
axis([-.002 .002 .999 1.001])
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10.4 Euler’s Theorem 1

Three Forms of Eulers Theorem:

eI = cos ¢ + jsin g
o ej“’t-l—e*j“’t

cos ¢ = ( 05— ]
. o ejwtie—jut

sin ¢ = [ i ]

cedt 4 ¢*e7It = Acoswt+ Bsinwt where ¢ = o+ j3 and ¢ = o — j3

ce?t 4 eI = c(coswt + jsinwt)

(a + jB)(coswt + jsinwt) + (a — jfB)(coswt — jsinwt)

acoswt + jasinwt + jBcoswt — Bsinwt + acoswt — jasinwt — jFG coswt — Bsinwt
2accoswt — 23 sinwt

= Acoswt+ Bsinwt

SO
A _
a:§ &nd ,6:7
A B d oA B
c= 5 j 5 an ¢ = j 5
Or, if you don’t like that method:
Jwt —jwt Jjwt _ —jwt
Acoswt + Bsinwt = A erte + B i
2 27
A , B, .
- Jwt —jwt - Jwt —jw
5 (e + e + 2 (e e )
A B A B
= i Juwt = —jwt
(2+2j]€ +[2+2j]
therefore
A n B . A B
cT 9Ty CT 9Ty
A . Bj A Bj
2255 2 255
A B A n B
— 2779 PR

where ¢* is the complex conjugate of c.
(b) c=I—jandc* =1+

(c) Using units of meters for A and B and rad/s for w, we get the plots seen in Figure 10.4.1.
The following MATLAB script creates this plot.
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Acos(wt)+Bsin(wt) where A=7 m, B=2 m, w=100 rad/sec
10 T T T T T T T

position (m)
o
T
|

5+ -
_1 O | | | | | | | | |
0 002 004 006 008 0.1 012 014 016  0.18 0.2
time (s)
ce+c' & where c=A2-B/2j , ¢ =A/2+B/2j, w=100 rad/s
10 T T T T T T T
5} i

position (m)
o
T
|

5k ,

-10 ! ! ! ! ! ! ! ! !
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

time (s)

Figure 10.4.1: Plots for Part (c)

eulerlsol.m

Download

A=T7;

B=2;

w=100;

t=[0:.0001:2%pi*3/100];

y=Axcos (w¥t)+B*sin(w*t) ;

figure(1)

subplot(2,1,1)

plot(t,y)

title(’Acos(wt)+Bsin(wt) where A=7 m, B=2 m, w=100 rad/sec’)
xlabel(’time (s)’)

ylabel(’position (m)’)

subplot(2,1,2)

%or plotting ce” (jwt)+c*e”(-jwt) we have

c=A/2-B/2%j;

cstar=A/2+B/2%j;

y=c*exp (j*w*t)+cstar*exp(-j*wxt) ;

plot(t,y)

title(’ce”{jwt}+c *e"{jwt} where c=A/2-B/2j , c"*=A/2+B/2j, w=100 rad/s’)
xlabel(’time (s)’)

ylabel (’position (m)’)
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10.5
(a)

Euler’s Theorem 2

(I (i) | oi(wite) J

Mcoswt+q§:M[ 5

_M (ejwtequ n e—jwte—qu)
2

_ M e M gt —jo

2
From Problem 10.4:

Acoswt + Bsinwt = A [

2 2
SO
A B o A B M
Z .= Jjwt _ 27 ¢ jwit a2 —jwt _
[24—2]] 266 and[2 2j] 5
[A+B]:Mej¢ [A_B]_Mj¢>
2 2 2 2 2 2
therefore
M . A B,
E(COS(ﬁ—F]SIHQZ))—E—E]
Mcosp=A
Msiné = B
M? (cos¢2+sinq§2) = A* 4+ B?
t _
an ¢ "
(\,
M = 4(R{c})? + 4(3{c})?and tan ¢ = ;R%

M is the amplitude of the waveform in Problem 10.4.
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10.6 Force Steps

In this problem, we examine the behavior of the three basic mechanical elements when a step force
is applied. Assuming zero initial position and velocity of the elements, for the mass

ME, = us(t) (1)
_ b 1
Tm = Uy = . aus(t)dt = Et (2)
bt 1
= —tdt = —t? 3
Tm m om ( )
For the spring,
us(t) = fu(t) = k() (4)
1
£y (1) = Tug(t) 6
d 1
v(t) = %xk(t) = %(5(’5) (6)
For the dashpot,
fe(t) = cae = us(?) (7)
1
Te = Ve = *Us(t) (8)
| t
= —ug(t)dt = - 9
e / N “us(t)dt = - (9)
velocity of mass
10
5r i
0 POSTTON Of MAass
50 T T T T T T T T
0 : VeTocHty of SpAng ‘ ‘ ‘
2 T T
l [ ‘ -
0 position of Sprng
2 T T
|
0 Velocity of dashpot
2 T T
L
0 posHtion of dashpot
10 T T T T T T T T T
sk i
O | | | | | | | | |
-1 0 1 2 3 4 5 6 7 8 9 10

Figure 10.6.1: Step Response of Mass, Spring and Dashpot
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10.7 Input for Zero Output

The solution for this problem is not available.
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10.8 Zero Input Response

In this problem we would like to solve for the Zero Input Response (ZIR) of the systems given.
First, we start with the rotational system. The governing equation is

dw 1+
dt J

|
o

Solving this equation, we obtain
w(t) = Ae M7

where 7 = J/(c1 + ¢2) and A is determined from initial conditions. Using the initial condition
0(0) = w(0) = wp we find A = wy. To solve for the position 0(t), we integrate w(t) to find

o(t) = —LetT 4
T

Using the initial condition §(0) = 6y, we find C' = =2 + 6. Thus, the total response is
o(t) = 0o + 20 (1 - e_t/T>
T
For the translational system, we begin with the governing equation

M:f‘-f—(cl +62)i‘+(k51 +k‘2)$=0

with the initial conditions x(0) = x¢ and #(0) = vg. Dividing the equation by M, we find the

natural frequency to be
Y 2
" M

1+ ¢
C:—
2/ M (ki + k2)

Assuming the system is underdamped (¢ < 1), we find the damped natural frequency to be

ki 4k (c1+c2)?
wg=wpV1—C= VAR Y

The damping ratio is

To solve for x(t), we assume a harmonic solution x(t) = Ae®’. The governing equation simplifies to
an algebraic equation
ms® + (c1+c2)s+ (k1 +k2)=0

or equivalently,
82 4+ 20wps + w2 =0

Solving this quadratic equation, we obtain

. c1+ ¢ (61 + 62)2 k1 4+ ko
w=—Cwn + jw,/1—(>=— Wi :l:\/ O

Assuming the underdamped solution, the response x(t) is

x(t) = Aqe®tt 4+ Ages??
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At t =0, we have
.CU(O) =0 = Al + A2 and LL’(O) =) = A].S]_ + A282

After some algebra, we arrive at the solution

(t) = e ( o VTGl + 220 sm<mwnt>)

Other convenient forms exist. For example, we could combine the cos and sin terms into a single

x(t) = Xoe “nt cos (\/ 1—CPwpt — gb)

cos term with a phase.

where

2
 _ $3+<v0+<wn$o> and 6= tan! [ 20

wn/1— e
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10.9 Zero Step Response 1

The forced-response with zero initial conditions is composed of the particular solution and the
homogeneous solution.

First, we solve the rotational system. The governing equation is

dw c1tc  us(l)
T

The particular solution is given by w, = ﬁ The homogeneous solution is wy, = Ae~*/7. The
total solution is !
w(t) = Ae™H7 4+
c1+ ¢

Using the initial condition that w(0) = 0, we obtain

w(t) = 1 (1 — e_t/T)

c1+ e

Integrating this equation, and using the initial condition that #(0) = 0, we obtain

o(t) = b T (e*t/f—l)

c1+co c1+c2

where 7 = J/(c1 + ¢2).

For the translational system, the particular solution is =, = F'/(k1 + k2). The total solution is

F

= + Ajeftt + Age®?t
k1 + ko ! 2

x(t)

Solving using the initial conditions, we obtain

Ay = r S
T2k ) \ (T2

F J<

:2(k1+k2)(m_1

Az

After some algebra, we obtain

F _ (sinwgt
= — gw'nt _—
x(t) . (1 e <cos wqt + \/ﬁ) )

where ¢ = S}Jﬁ, wn =/ (k1 + k2)/M, and wg = wp+/1 — (2. Again, various equivalent forms may
be found using trigonometric identities.
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10.10 Zero Step Response 2

(a) The unit step response for the rotational system is given in Figure 10.10.1. To aid in the
sketching the response, find the difference between wyt and x(t) as t — oo. This quantity
represents the vertical distance between wyt and z(t) in the response. The initial slope is zero
because the initial velocity is zero.

The unit step response for the translational system is given in Figure 10.10.2. To aid in
sketching, draw the envelope defined by the real part of s and use the damped natural
frequency to determine how fast the response oscillates inside of the envelope. We also know
from the initial conditions that the initial slope is zero because the initial velocity is zero.

. x10° Step Response
T T

Jl(cl+c2)

Amplitude
w
T
I

0 I I I I
0 50 100 150 200 250

Time (sec)

Figure 10.10.1: Sketch of the step response for the rotational system
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18 T

16 T

14 T

121 T

Position [mm]
-
T
I

0.8- T

0.6 T

0.2 T

I
0 0.1 0.2
Time [s]

Figure 10.10.2: Sketch of the step response for the translational system

(b) The unit step response for the rotational system is given in Figure 10.10.3. The step response
for the translational system is given in Figure 10.10.4. Both responses were made with the
Matlab script ‘zsrsol.m’ found at the end of this solution.

x 10

Angle [radians]
w
T
I

I I I
0 50 100 150 200 250
Time [s]

Figure 10.10.3: Unit step response 6(t) for the rotational system
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x 10

18 T

14 T

Position [mm]
-
T
I

0.8- T

0.6 T

0.4 T

0.2 T

I
0 0.1 0.2
Time [s]

Figure 10.10.4: Unit step response z(t) for the translational system

zsrsol.m

Download
%Justin Verdirame

%%h--Rotary System
J=0.1;

C1=1E-3;

C2=3E-3;

num_rot=[1];
den_rot=[J C1+C2 0];

sys_rot=tf (num_rot, den_rot);
step(sys_rot);

%%--Translational System
M=10;

K1=10"5;

K2=8E5;

C1=300;

€2=C1;

num_trans=[1e3];
den_trans=[M C1+C2 K1+K2];

£=0:0.0001:0.2;

figure(2)

sys_trans=tf (num_trans,den_trans);
step(sys_trans,t);
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10.11 Nonlinear String System

The solution for this problem is not available.
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10.12 Homogenous and Particular Solutions

(a) Figure 10.12.1 shows the model for inertia and damper system. The arrows in the figure
show the reference directions for the physical variables. Separating the model into parts for
each element, we can get the free body diagram as in Figure 10.12.2. Note the two T, have
equal values but opposite directions, because they are a pair of acting force and reacting force.

According to Newton’s second law, we can derive the differential equation for the inertia
element:

Iw:ZT:Tm—Td. (1)
For the damping, the constitute relation is:
Ty =Cw (2)
Combining equation 1 and 2, we can get

I+ Cw="T,, (3)

: angular velocity
Tin: input torque

Figure 10.12.1: System Model

C: damper
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Td : the torquen acting on C by |

C: damper
: angular velocity

(a) Free Body Diagram for damper

Tin: input torque ~ ®: angular yelocity

(b) Free Body Diagram for intertia

Figure 10.12.2: Free Body Diagram

(b) The characteristic equation is
Is+C=0

c

(4)

The solution is s = —%, so the homogenous solution is wy, = Ae’t = Ae=Tt. The parameter
A will be determined by the initial condition. To get the particular solution for input Tj, =
Ku,(t), we guess that the solution has the form w, = B. Plugging it into equation 3, we get
B+C =K. So B = K/C, and the particular solution is w, = K/C. The complete solution is

K c
=— + Ae 1t
w c + Ae
With the initial condition, we have
K + A
wa = —
T ¢
K
A=wy— —.
wo C
The complete solution is
(wo— gl Fr 5
w=(wyg— —=)e —.
' C C

When wy = %, there will be no transient.
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(c) For K =10"2Nm , I = 0.000317kg — m? and ¢ = 0.0011N — m — sec/rad,
(i) when w, = Orad/sec, w = —9.0909¢ 34700 + 9.0909,
(ii) when w, = 40rad/sec, w = 30.9091e~>470% 1 9.0909.
The result is plotted in Figure 10.12.3.

40 T

T
— - Initial velocity=0[rad/sec]
—— |Initial velocity=40[rad/sec]

35 b

251 B

20 b

angular velocity [rad/sec]

0 0.5 1 15 2 25 3
time [sec]

Figure 10.12.3: Step Response

(d) (i) For cosine input, we guess that the particular solution takes the form of w, = Bjcos(2t)+
Bysin(Qt). Plugging it back into the differential equation 3,
I % (—QBysin(Qt) + QBacos(Qt)) + C x (Bicos(Qt) + Basin(t)) = Kcos(Qt)  (9)
—QIB1+CBy;=0 QIB; +CBy =K (10)
KC

Bi=——= (11
L= o2 g2 (11)
_ KIQ (12)
27 o202
The complete solution is
KC KIQ .
(A)p = mCOS(Qt) + msln(gt) (13)

(ii) In complex fomat, the cosine input can be expressed as T;, = KcosQit = Re{K ejm}, we
guess that the particular solution takes the form of w, = Re{Be?™} . Plugging it back
into the differential equation 3,

Re{(BI(jQ) + CB)e/*™} = Re{KeI¥} (14)
K
P=corjar o)
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The complete solution is

K
KC KIQ )
= vy PR cos(Q2t) + ZE Iy sin () (17)
(e) The complete solution is
w=wp+wp (18)
_c KC KIQ) .
=Ae 1!+ mcos(Qt) + msm((lt) (19)
For zero initial condition, we can get A = _%7

KC _c KIQ )
w = m(COS(Qt) —e I t) + mszn(ﬁt) (20)
(21)

The total solution is plotted in Figure 10.12.4. From the figure we can see that the out-
put amplitude at = 0.5rad/sec is much larger than the output at Q = 20rad/sec. For
Q = 0.5rad/sec, the homegeous solution have significant effect in the first cycle. For Q =
20rad/sec, the effect of the homegeous solution is negligible. From the total solution expres-
sion, at high frequency the system significantly attenuate the output sinusoidal magnitude ,
“sin” component will dominate the output and thus the phase shift will be 90 degree.

10 T T T
_ — - frequency=0.5[rad/sec]
~. | — frequency=20[rad/sec]
gk - / N -
/ \ / \
| A / '
6k \ / \ B
[ \ \
I \ ! \
/
45 \ 4
_ [ ' ! \
(8]
¢ 1 ' // \\
@ I 4
g ' f
2z
S 0
2 \
>
8
3 -2 \ / \ 7
=4
a \ / \
—al ! / ' ]
\ \
! \
\ /
\
6L \ ; . 4
\ .
\ / \
-8+ \ / \ i
\ 4 N
-10 1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20

time [sec]

Figure 10.12.4: Sinusoidal Response
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11 Frequency Response

11.1 Circuit Bode Plots

The solution for this problem is not available.
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11.2 Sketch Bode Plots

10
[}
el
2
S 10° | 9
©
=
10 ! 2 ‘2 3
10° 10 10
801 R
7N\
g 60— 2 4
z
N
8 a0 / N J
c ‘ A
o ’ .
4 N
20 ,’ N i
Cd ~
= - - o - -
0 L L L =
102 10" 10° 10’ 10% 10°

Frequency (rad/s)

Figure 2: Frequency response for G(s) = iiﬁé

Xo, . Xo .
za(t) = A’;(M) sin (wHZUQ(w))
S - ;
U J \/(k‘lk‘z — b1b2w2)2 + ([kle + bQ(kl + k2)]w>2
Xy 1 ([k;lbz + b1 (k1 + k2)]w)
/22 - _
7 ) tan kerka — brbyw?
Problem 2

Figures 2-6 show the frequency response plots for this problem. The solid
black line on the plots is the asymptotic frequency response, while the
dashed red line is the actual frequency response. In order to sketch, the
frequency response you need to determine the frequencies of the poles and
zeros of the transfer function. You also need to find the magnitude of at

least one frequency often either at w = 0 or oc.
A) G(s) = 35tl = 55102 "hole @ -10, zero @ -0.2. |G(0)| = 0.1,

— s+10 s+10°
|G(c0)| = 5. - oo
S S .
B) G(s) = PraeT = 5(5+0.38)(8+2_62), poles @ -.38 and -2.62, zeros @ -0.2,
|G(0)] =1, G(c0) =0
C) G(s) = (S+2)(:2111%S+100), poles @ -2 and -548.665, w,1 = 10 , zeros @

110, |G(0)] = 1/20, G(o0) = 0

Figure 11.2.1:
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Figure 3: Frequency response for G(s) = szif%lﬂ

107 ¢
) 2
-2
5 107 Q i
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o} [ Q
= 3
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Ir==—= ‘
S
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~
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o \
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L L ald R~
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10 10° 10" 10°
Frequency (rad/s)
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Figure 4: Frequency response for G(s) = (572) (21 1057100)
Figure 11.2.2:
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11.3 LC Circuit Frequency Response

(a) It is easiest to use impedances for this problem. Combine the capacitor and inductor into an

equivalent impedance Z.
Ls L
Cs 8

:Ls—i—é_LCsQ—l-l

The constitutive relationship for this equivalent impedance is V,(s) = ZIz(s). By definition,
Vz(s) = Vi(s) and Iz(s) = Is(s). Combine these equations and take the inverse Laplace
transform to derive the differential equation.

Ls
Ve(s) = mfs(s)

(LCs* + 1)V,(s) = LsI(s)
LC%, +ve. = LI,

The characteristic equation for this differential equation is LC's?> 4+ 1. This is of the standard
form M%SQ + % + 1. This yields

W = \/g [rad /sec]
o e

0 = Cw, =0 [1/sec]

The pole zero plot is shown in Figure 11.3.1

A Im
1
LC
- D >Re
L
LC
\J

Figure 11.3.1: Pole Zero Plot

(b) Start with the differential equation and take the Laplace transform, including initial condi-
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tions.

LC%. + v, = LI,
Ve(s)(LCs* +1) — LCv.(07) — LC.(07) = LsI(s) — I(07)
_ LsI(s)+ LCo.(07)
Vels) = (LCs?+1)

We need an expression for v.(07). We know that i,(07) = —1 [A]. Summing currents at the
top node with Iy = 0, we find that i = —iy, = 1 [A]. By using the constitutive relationship
for a capacitor we find that v.(07) = 1/C. Therefore

_ Lsly(s)+ L
Vel) = o 1)

Substitute I5(s) = 1/s and take the inverse Laplace transform to find an expression for v, (t).

This function is plotted in Figure 11.3.2

V.IV]

<«——T=2nyLC —>

__\/L_C——

Figure 11.3.2: Step Response with v.(0) = 0 [V] and i1(0) = —1 [A]
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(¢) M is simply the magnitude of the transfer function evaluated at s = jw.

M= Ve(s) _ Lw
Is(s) |1 — LCw?|
The phase is
Lw
=tan" ' — —tan" ' ————
¢ = tan S —tan T
1 1
=90°,w? < — and —90°,w* > —
N Tol 7o
(d) The plot is shown in Figure 11.3.3
Bode Diagram
g
=
10
Ble
20 ‘ ‘ ——
45 -
g
©
T
45 i
90 k& : ‘ R
1 \IL_ o
= IC
Jic Frequency (rad/sec) \

Figure 11.3.3: Bode plot
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11.4 LRC Circuit Frequency Response
(a) It is easiest to use impedances for this problem. Combine the resistor, capacitor and inductor

into an equivalent impedance Z.

1 1

The constitutive relationship for this equivalent impedance is V. (s) = ZI,(s). By definition,
V.(s) = Vi(s) and I,(s) = Is(s). Combine these equations and take the inverse Laplace

transform to derive the differential equation.

(LCs* + %s + 1)Ve(s) = Lsls(s)

L )
LC%,. + Ei)c +v. = LI,

The characteristic equation for this differential equation is LC's® + %s + 1. This is of the
standard form W%SQ + % + 1. This yields

W = \/g [rad /sec]

_ Lwy, 1 L

¢= 2R~ 2RV C

2
1 1 /L 1 1
7\ <2R c) =\Vic ez M
1

o= (wp, = —— [1/sec]

2RC

The pole zero plot is shown in Figure 11.4.1
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1 1
X LC 4R'C’
- 1 : © >Re
2RC
X 1_[1 1
LC 4R°C

Figure 11.4.1: Pole Zero Plot

(b) With zero initial conditions, the transfer function of this system is simply the system’s equiv-
alent impedance. Substitute Is(s) = 1/s and take the inverse Laplace transform to find an
expression for v.(t).

Ve(s) Ls
I(s) LCs?2+ Ls+1
L
Ve(s) =
() LOs? + %5+ 1
1
_ C
1 1
32 + WS + c
1 1
1 LC ~ 4R2C?

2
C %_41%%02(5—’_%) +(%_ﬁ)

ve(t) = et sin [/ = — L
¢ _C 1 1 LC  4R2C?

LC ~ 4R2C?

—_

This function is plotted in Figure 11.4.2
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time [s] x 10

[«

Figure 11.4.2: Step Response with v.(0) =0 [V] and i7,(0) = —1 [A]

(c) M is simply the magnitude of the transfer function evaluated at s = jw.

M= Ve(s) B Lw
LOT 0 - rew) + (Bw)’
The phase is
L
¢ =tan"! = — tan"! T _Iz%w2
L
=90 —tan~! 1 }sz 5
— LCw

(d) The plot is shown in Figure 11.4.3. The peak frequency occurs when the system is excited at
its natural frequency w,, = \/% = 10° [rad/sec]. The peak magnitude is found by plugging

in w = 10° into the magnitude expression. This evaluates to R.
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Figure 11.4.3: Bode plot
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11.5 Pole-Zero Plots

The solution for this problem is not available.
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12 Signals, Transforms, and Transfer Functions

12.1 First Order Zeros

In this problem, we are asked to consider a system with a differential equation
TY+y=au+u (1)
The system has pole at s = —1/7 and a zero at s = —1/a.

(a) Integrate the equation from 0~ to 0T, we get

t=0" t=0"
/ (7§ + y)dt = / (aih + u)dt @)
t=0— t=0—
m(y(0%) = y(07)) = a(u(0") —u(07) (3)
y(0*) = Zu(0*) = 2 (4)

yp(t) =1 (5)
yn(t) = Ae™~ (6)
The complete solution is
y(t) =yp(t) +yn(t) =1+ Ae™ 7 (7)
Combining the initial condition
" a
Y0 =2 =1+24 ®)
a
A=—--1 9
- (©)
a _t
y(t) =14 (2~ 1) (10)

(b) Figures 12.1.1 and 12.1.2 give the response and pole-zero plots.
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08 (@)
0.6
0.4
0 0.1 0.2 0.3 0.4 0.5
1
(©)
>
X
0.9
0 0.1 0.2 0.3 0.4 0.5
1.2¢
(e)
lll\
1
0 01 02 03 04 05
Time [s]

Figure 12.1.1: Step response and pole-zero plots for a =0.05, 0.09, 0.11. (a) Step response for
a = 0.05. (b) Pole-zero plot for a = 0.05. (c) Step response for a = 0.09. (d) Pole-zero plot for

Im(s)

(b)

-18 -16 -14 -12 -10

(d)

-11 -10.5 -10

()

-98 -96 -94

Re(s)

-9.2 -9

a =0.09. (e) Step response for a = 0.11. (f) Pole-zero plot for a = 0.11.
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10

Figure 12.1.2: Step response and pole-zero plots for a =1, -1, -0.1. (a) Step response for a = 1.
(b) Pole-zero plot for @ = 1. (c¢) Step response for a = —1. (d) Pole-zero plot for a = —1. (e) Step

@)
0.1 0.2 0.3 0.4 0.5
(c)
0.1 0.2 0.3 0.4 0.5
(e)
0.1 0.2 0.3 0.4 0.5
Time [s]

(b)

-8 -6 -4 -2

(d)

()

-1
-10

response for a = —0.1. (f) Pole-zero plot for a = —0.1.

(c) Figure 12.1.3 shows that as a — 7, H(s) — 1.
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15 1r

1.4 0.8f
1.3 Decreasing a for a>t 0.6
1.2 0.4
1.1 0.2
1 o® O O O O ® OO0
0.9 -0.2 /
: a=T, zero

08 Increasing a for a<t —0.4F and pole coalesce
0.7 -0.61
0.6 -0.81
05 L | | | ) -1 L L J

0 0.1 0.2 0.3 0.4 0.5 -20 -15 -10 -5

Figure 12.1.3: Step response and pole-zero plots for a — 7 = 0.1.

(d) We want to show that a zero causes certain exponential inputs to have zero response. We
consider an exponential input of the form u(t) = e*!*. We begin the equation in the time
domain

TY+y=at+u (11)

If we desire y = 0, then at + v must equal zero for all time. Therefore, the input must be

u(t) = Ae~t/e (12)

Comparing this input with u(#) = e%1!, we find that . In the complex plane, the

zero and s1 are in the same location.

(e) The response is the same as part (a).
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12.2 Laplace Practice
The Laplace Transform of z(t)is defined as

therefore

o0
1
- (0+ e
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12.3 Step-Zero

In this problem, we consider the second-order system with a real zero

s/aC +1
s24+2(s+1

H(s) = (1)

A useful way method of analyzing the behavior of this transfer function is to write it as a sum of
two transfer functions

B s/aC 1

H(S)_82+2Cs+1 s24+2(s+1 (2)

If we define Hi(s) as

1
M) = Tt ¥
and Hs(s) as
s

Hy(s) = 2+ 2s+1 = sH\(s) (4)

then we notice that Ha(s) is the derivative of Hi(s) in the Laplace domain. Thus, we may write
the transfer function as

H(s) = (Oz + 1) Hi(s) (5)

For our purposes, we consider only negative real zeros. If the zero is close to the imaginary axis,
then the transfer function closely resembles the derivative term only. If the zero is far away from
the origin, then the H(s) behaves primarily like H;(s). Using partial fractions, we find that step
response is given by

y(t) =1+e (( = ¢ ) siny/1—¢?t —cos /1 — CQt) (6)

/1= 1=
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Imaginary Part of s
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Figure 12.3.1: Pole Zero Plots. (a) /zeta = 0.01. (b) /zeta = 0.1. (¢) /zeta = 0.7.



12.4 Laplace to Time

(a) This transform is simple enough to be in most tables. However, we can simplify it with partial
fractions:
1 C D

Yis) = (s+a)(s+0b) :8+a+5+b

find the constants C' and D by setting s = —a and s = —b
1 C D

(s+a)(s+0b) s+a+s+b
1=C(s+b)+D(s+a)

1
C =
b—a
1
D=
a—2b
therefore
1 1 1 1

Y(s) =

b—as+a_b—as+b

By looking up the inverse Laplace Transform of S%rb, we find the total solution y(t)

1

W) = =g (=)

(b) First, note that the transform is

S
%—Ffj—is—kl
= S - w%
S2+2<CL)TLS+LUT2L

Y(s) =

This Laplace Transform is in a standard form, but not on all tables. We will solve this
problem using the property

a _

o = sF(s) — (0)

therefore

d w
_ n —Cwnt _ 2
y(t) = o <me sin (wn 1-¢ t))
2
= wle Wt cos <wn 1— §2t> — C#6_4“’” sin <wn 1— C2t>

1-¢2

remember that for this form to be correct, { must be less than 1.
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12.5 Time to Laplace

(a) This function is one of the most widely used in dynamic systems, so memorize it’s transform!

Yis) = s i a
(b)
Y (s) d
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12.6 Laplace Transform

Each term of X (s) can be evaluated directly using the Table of Laplace Transforms.

L7Hb} = bs(t)

£ {s(sj—a)} —loe

L7UIX(s)) = bo(t) +1— e~

and

The final result is then
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12.7 Signal in Time and Frequency Domain

(a) Sketch of x(t).

0.7

x(t)

0 1 1 1 1 L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time(sec)

Figure 12.7.1: Signal x(t) plotted as a function of time

(b) Simplify the expression in to a sum of terms,
z(t) = e tug(t) — e Tug(t) — e tug(t — 1) + e tug(t — 1)
Now take the Laplace transform of the first, second and fourth terms,

1 el _ e le™s
X(s) = ) —T—Le bug(t — 1) + -

(1)

The third term requires some massaging to get it in a form available on the table. The term
can be modified into the form of a time delay, by factoring out e™!.

L{etus(t—1)} =e'L {e_(t_l)us(t — 1)}

Now applying the Laplace Transform for a time delay from the table

—-1,—s

-1 —(t-1) _ _¢ €
e .C{e us(t 1)} ]

Substituting this piece back into Equation (1) gives the solution

1 el ele™s  elems
- = +

s+ 1 S s+1 s
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12.8 Transfer Function and Time Constants
(a) The transfer function for the circuit is easily found using the impedance method.

Ry

Zes1 = R1]|Ch = =————
a1 IH ! R1Cis+1

and Zggo is similar. The circuit is now a voltage divider with complex impedances.

Ze
1 vi(s)

UO(S) = Zeql +Zeq2 )

Simplifying results in the transfer function

UO(S) _ Ry (RQCQS + 1)
vi(s)  Ri1R2(Cy+ C3)s+ Ry + Ro

To get the transfer function in the desired form we factor R1 + R2 out of the denominator,
while the numerator is already in the desired form. We now have

Vo(S) . Ry RyCoys +1
. - R1R2(C14C2)
U,(S) R1+R2%+1

o)
Ry

K=_"1
R+ Rs
T1 = RoCy
_ R1R2(01 + CQ)
R+ Ro

72

Using the Laplace initial value theorem with v; = 1/s

. ) 1 Ry RyCos +1

+ _ N —

vo(07) = lim sv,(s) = SlgrolossRl TRy %54_ 1
1 2

After simplifying, we can now factor s out of the numerator and denominator, which cancel,
resulting in

. Ry RyCo+1/s
v,(07) = lim R
Ry + Ry Mafa(CiCa) 4

Now when taking the limit, the second terms in the numerator and denominator go to zero,
and after simplifying

C:
UO(0+) = Cl jCQ

Using the Laplace final value theorem with v; = 1/s

( ) 1i ( ) i 1 Ry RoCos +1
v(00) = lim sv,(s) = lim s—
") TS R Ry BB G
and simplifying
R
Ri+ Ry



The x in Figure 12.8.1 shows the pole location and the o shows the zero location. Plotting is
made possible by assuming 71 > 79, but assuming 7 < 7 would have been just as valid for
plotting purposes.

AIm

R
-/, -1/, ¢

\/

Figure 12.8.1: Plot of pole and zero of system in terms of 71 and

When R;Cy = Re(C5 the circuit becomes a voltage divider independent of frequency.

(b) Letting v;(s) = 1/s, a unit step, and assuming initial rest conditions, and continuing with
the K, 71, ™ form,
K(Tls + 1)

Uo(s) = s(mas + 1)

In order to calculate v,(t), we first perform partial fraction decomposition, which results in

the following:
K K(r— 1)

S R 1

We can now calculate the inverse Laplace transform for each term directly from the Table of
Laplace Transforms.
K(r —
£ (1)} = Kuy(t) + T o
T2
After substituting K, 71, and 7 in we have v,(t) as a function of Ry, Ry, C1, and Cj for a
step input.
—t(R1+R9)
= Lm@) + Cs — Rl 631;2(1;1;202)
R+ Ry C1+ Cy R+ Ry

The step response and pole locations are now plotted for the following sets of parameter

Vo(t)

values:

(i) R1 = 1]43(2, R2 = gk‘Q, 01 = 1,LLF, 02 = 9/LF
(i) Ry = 1kQ, Ry = 9kQ, C) = 9uF, Cy = 1uF
(111) R1 == gk‘Q, R2 == 1]{39, 01 == 9,LLF, 02 == 1,uF
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Step Response

1 T
0.8 .
8 o6 J
2
2
£ o4l .
0.2 d
0 | | | | | | | | |
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time (sec)
Pole locations for case (iii)
1
0.5 B
2
Z
s Of X o B
5]
4
0.5k |
_1 | | | | |
-120 -100 -80 -60 -40 -20 0
Imaginary Axis
Figure 12.8.2: Step response and pole locations for case (i)
Step Response
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Figure 12.8.3: Step response and pole locations for case (ii). Pole and zero are collocated.
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Real Axis

Step Response

1 T

0.8 4
§ 0.6 il
%
Eoo4} -
0.2} -
0 1 1 1 1 1 1 1 1 1
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Figure 12.8.4: Step response and pole locations for case (iii)
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12.9 Fourier Series Input
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%:2.003 Problem Set #9
%Problem 3

T=0.628;
w=2*pi/T*[13 57 9];

%Defining laplace variable
s=tf('s");

%G1(s)

K=10;

tau=20;
Gls=K/(tau*s+1);
figure(1);
bode(Gls,{10"-3,100});
title('Bode plot of G1(s)');

%G2(s)

K=1;

taul=25;

tau2=10;

G2s=K/(taul *s+1)/(tau2*s+1);
figure(2);
bode(G2s,{10"-3,100});
title('Bode plot of G2(s)");

%G3s

zeta=0.5;

wn=50;
G3s=s*wn"2/(s"2+2*zeta*wn*s+wn"2);
figure(3);

bode(G3s);

title('Bode plot of G3(s)");

%G4s
K=1;
tau=0.01;
zeta=1;
wn=100;
zetaz=0.05;
wzn=10;

G4s=K/(tau*s+1)*(s"2+2*zetaz*wzn*s+wzn"2)/(s"2+2*zeta*wn*s+wn"2)

figure(4);
bode(G4s);
title('Bode plot of G4(s)");

Figure 12.9.3:
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u(t)
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Figure 12.9.6:
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Output y(t) of system G1(s)
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G(s)

Bode Diagram
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12.10 Spring Mass System
(a)
ft) = u(t—2)—u(t—10)

1
g(8—23 _ 6_108)

mi +bi+kx = f(t)=u(t—2)—u(t—10)

The Laplace transform of this system is

m[s?X (s) — sz(0) — #(0)] + b[s X (s) — z(0)] + kX (s) = %(6_28 — e 109)
Assuming z(0) = #(0) = 0
(ms* +bs+ k)X (s) = %(6728 — e 109)
X(s) = s(s? +1S +1) (7% —e7™)

The inverse laplace transform of 1/(s(s?+s+1)) can easily be seen to be a decaying sinusoid.
e~ 2% and —e 1% are just time delays in the real time. Thus

r-1 L(l] = 1— ¥e70'5t sin(mt + ¢)

s24+s+1) V1-=0.52
o) = u(t—2)1— \/1_1W€_0'5(t_2) sin(v/1 = 0.52(t — 2) + &)]
—u(t —10)[1 — \/1_1W€_0'5(t_10) sin(v/1 — 0.52(t — 10) + )]

¢ = tan"'(v/1—0.52/0.5)

Figure 12.10.1: x(t) for Part c
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(c) Well there are a couple of ways to get this plot using Matlab. One is to use the lsim command
in which you specify the system transfer function (we have not talked about this in class yet),
the input vector (0 t<2, 1 2<t<10, 0 t>10), and the calculation time vector (t=[0:0.01:20]).
Note this method determines the solution by integrating from one time step to the next, thus
for "Good” results you need to have a relatively fine time vector. The advantage of this
method is a relatively compact .M file.

I calculated the response by nesting an if loop inside a for loop and calculated the exact
response for each time index. I used the script ‘springmasssol.m’ at the end of this solution.
Figure 12.10.1 shows the resulting plot.

(d) The plot is basically the sum of two separate decaying sinusoids. By this I mean, the dynamic
response to the first step input has largely died away before the response to the negative step
begins.

(e) If the pulse were 2 sec. instead of 8 sec., the two sinusoids would act destructively with each
other. The exact response would depend on the phase of the two sinusoid relative to one
another but the system would not reach 1 but still oscillate about zero. Figure 12.10.2 shows
this response.

12

Figure 12.10.2: x(t) for Part e

springmasssol.m

Download

clear all; close all; Yclears the workspace and closes all figures
t=[0:0.01:20]; %creates time vector

%Next line creates key constants

wd=1%sqrt(1-0.572); C=1/sqrt(1-0.572);

phi=atan2(sqrt(1-0.572),0.5);

X=[1; %Creates an empty matrix where I can store each value x(t)

for i=1:length(t) %starts a for loop index from 1 to the length of t
%If loop should be clear

if t(i)<2
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x=0;
elseif t(i)<10

x=1-C*exp(-0.5%(t (i)-2))*sin(wd*(t (i)-2)+phi);
else

x=1-C*exp(-0.5%(t(i)-2)) *sin(wd*(t(i)-2)+phi) ...

- (1-Cxexp(-0.5*%(£(1)-10))*sin(wd* (£t (1)-10)+phi));

end
X=[X,x]; %Adds new x(t_i) to matrix x(t)
end plot(t,X)
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12.11 Transfer Function

(a) The zeros are located at

ST = -1
So = —10
S3 = —99
The poles are located at
s12 = —0.540.8667
s34 = —0.51+7.053)
8
.
6, .
41 _
2, .
2 o
< op o o
£ x
2L i
4L i
-6+ -
.
100 90 80 70 60 50 40 30 20  -10 0

Real Axis

Figure 12.11.1: Pole zero plot

(b) Figure 12.11.1 shows the pole/zero plot for this system.

(c¢) From the pole locations, we know that the response will be a sum of sinusoids with a damped

natural frequency of 0.87 r/s and 7 r/s. The higher frequency sinusoid is more lightly damped
but since o is the same for both sinusoids, they will decay out in the same time period.
In this case, we would might assume that the energy contained in each of the sinusoids is
approximately equal. Since kinetic energy is %va and v = % = wy coswgt, we would expect
the magnitude of the faster sinusoid to be smaller than the magnitude of the slower sinusoid.
Thus the response will look like a large slow sinusoid with a smaller faster sinusoid added on
top. The impact of the zeros is a little harder to predict. The zero at -100 is so fast that any
effect will be over so quickly that it will not effect the shape of the response. The zeros as
-1 and -10 will impact the system response. Generally, zeros near the frequency of a complex

pole pair cause the system to overshoot more than predicted by the pole pair (. Thus the
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zero at -10 will cause the 7 r/s sinusoid to overshoot more than predicted while the zero at -1
will cause the 0.86 r/s sinusoid to have more overshoot. Note: if the zeros were in the right
half plane they would cause the system to initially move in the negative direction.

(d) Figure 12.11.2 shows the step response for this system. My Matlab code for this problem is
shown at the end of the solution in an m-file called “tfsol.m”.

Step Response
30 T

N
o
T

Amplitude
o

10} §

0 L L L L L

Time (sec)

Figure 12.11.2: Step Response

tfsol.m

Download

clear all; close all;

num=[1 110 1100 1000]; den=[1 2 52 51 50];
A=roots(num); Ar=real(A);Ai=imag(A);
B=roots(den) ;Br=real (B) ;Bi=imag(B) ;
plot(Ar,Ai,’o’,Br,Bi, ’x’)

grid on;

figure(2)
step(num,den)
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13 Controls

13.1 Rooftop Antenna

(a) To start this problem we need to break the analysis into steps. In step 1, we analysis antenna
system. Figure 13.1.1-A shows shows the free body diagram for the antenna. The control
torque T}, and a disturbance T, act on the antenna inertia:

T, + 1T
Jig = Tp+Ty — wy=-t1d
Js
o _ @
S

The equivalent block diagram is shown beside the FBD. Next, we need to evaluate the motor.
Figure 13.1.1-B shows the circuit model of the motor:

Vin = Rolg+ 10w,
Vin — 10w,
R,

Tm = KmIa

The equivalent block diagram for the motor is shown next to the circuit. We can now combine
the block diagrams in Figure 13.1.1 -A&B to form the block diagram in Figure 13.1.1-C. The
amplifier has the following characteristics:

Vi = G(0; —0,)

with the equivalent block diagram in Figure 13.1.1-D. Combining Figure 13.1.1 -C&D yields
the block diagram for the complete system Figure 13.1.1-E.

In order to find the transfer function V,/V;(s), we set the disturbance torque Ty = 0. We
start by reducing the inner loop of the block diagram to:

Ko

Po(s) = —Tals  _ Ko
Vin 1+ llgf]*; RyJs + 10K,
We can now address the outer loop
GKnm,
@(S) _ S(ReJs+10Km) GKn,
0; 1+ % R,Js? + 10K,,s + GK,,

To determine the transfer function 6,/Ty(s), we set §; = 0. It is helpful to reorganize the
block diagram into the form shown in Figure 13.1.1-F.

1
970(3) = Js? - RUL
T, 1+ L2 (G+10s)  RaJs? +10K,s + GKp,
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Figure 13.1.1: Block diagrams for antenna analysis
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0o 100
f(s) = 3
0i 1052 + 1005 + 100
s1 = —8.873
sy = —1.127
Oo(t) = 1+0.145¢ 557 — 1.145¢~ 1127

Figure 13.1.2 shows the pole map and step response for this system

Amplitude radians

Figure 13.1.2: Pole map w,/w;(s) and step response w,(t) for u(t)w;

(c) The solid line in Figure 13.1.3 shows the frequency response.
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Figure 13.1.3: Frequency response w,/w;(s) (solid line) and w,/Ty(s) (dashed line)

)
7(8) = 2
Ty 10s# 4 100s + 100

1
— (14 0.145¢7 8873 _ 1,145~ 1127
20

>
Q
—~
~
~—

The step response is identical to that shown in Figure 13.1.2 except the magnitude is scale
down to 0.05. The frequency response is the dashed line in Figure 13.1.3.

(e) The negative of the loop transmission for this system is

GKn, 100
L(S) = =
$(RqJs + 10K,,)  10s? + 100s
we = 1r/s
bo = —95.8° — G = 84.2°
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Figure 13.1.4: Bode plot for the negative of the loop transmission L(s) for G=10.

Figure 13.1.4 shows the bode plot of L(s). The crossover frequency w, is the frequency where
the magnitude of L(s) =1 (0 dB). The phase margin ¢, = 180° — ¢, where ¢. is the phase
of L(s) at w,.

(f)

Qﬂ(s) B 1000
0; ~ 10s2 + 100s + 1000
8172 = *5:‘:866]
0,(t) = 14 1.15e " sin (8.66t — 2.094) for u(t)w;
Yoy = 0
T, ~ 10s2 + 100s + 1000
1
0,(t) = %dLHJ%*%m@%pnmm)mu@n
1000
L(s) = —5——
() 1052 + 100s
we = T7.871/s
o = —128° — ¢y, = 52°

Figure 13.1.5 shows the pole map and step response for w,/w; with a G=100. The w,/Ty(s)
step response is 1/200 the w,/w; step response. Figure 13.1.6 shows the frequency response for
wo/w; (solid line) and w,/Ty(s) (dashed line). Figure 13.1.7 shows the bode plot of the negative
of the loop transmission L(s). As we can see from the step response, increasing G speeds up
the closed-loop dynamics and reduces the damping ratio of the response. Increasing G impacts
the frequency response by increasing the range of frequencies for which the magnitude is at
or near one. This means that the range of frequencies where we get good command following
is increased. We also notice in the frequency response that the phase transition is sharper
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for the higher gain system reflecting the reduced damping ration. Lastly we note, that the
higher gain system rejects disturbance much better (10X better to be exact). Increasing the
gain has transformed the two real poles into a complex pole pair. Further increasing the G
will move the poles further up along the imaginary axis (i.e. increase wy) without changing
the real component of the pole (i.e. further reduce the damping ratio).

X
5
E o0
-5
X
-10
-10 -5 0
Re
x(t)
15 T
§ b
g
[0}
E
é 05 - -
<
0 1 1 1 1 1
0 02 04 06 08 1 12
Time (s) (sec)

Figure 13.1.5: Pole map w,/w;(s) and step response w,(t) for u(t)w; for G = 100.
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Figure 13.1.6: Frequency response w,/w;(s) (solid line)and w,/Ty(s) (dashed line) for G=100
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Figure 13.1.7: Bode plot for the negative of the loop transmission L(s) for G=100.
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00( ) 10000
Yorg) —
0; 10s2 + 100s + 10000
s12 = —5+31.2j
0,(t) = 14 1.01e ' sin(31.2t — 1.73) for u(t)w;
Yoy = °
T, ~ 10s2 + 100s + 10000
1
0,(t) = m(1 + 1.01e ! sin (31.2t — 1.73)) for u(t)Ty
10000
L(s) = ———
() 1052 + 100s
we = 30.77/s
o = —162° — ¢y, = 18°

Figure 13.1.8 shows the pole map and step response for w,/w; with a G=1000. The w,/Ty(s)
step response is 1/200 the w,/w; step response. Figure 13.1.9 shows the frequency response
for w,/w; (solid line) and w,/Ty(s) (dashed line). Figure 13.1.10 shows the bode plot of the
negative of the loop transmission L(s).

30 X
20
10
E o0
-10
-20

30 X

10 -5 0

Amplitude radians

Time (s) (sec)

Figure 13.1.8: Pole map w,/w;(s) and step response w,(t) for u(t)w; for G=1000.
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Figure 13.1.9: Frequency response w,/w;(s) (solid line) and w,/Ty(s) (dashed line) for G=1000.
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Figure 13.1.10: Bode plot for the negative of the loop transmission L(s) for G=1000.
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13.2 Lead Controller

The solution for this problem is not available.
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13.3 Third Order

Symmetrical mechanical drive. See Fig. 13.3.1. Two equal inertias I with equal linear friction
coefficients B are coupled by a shaft with torsional stiffness K. and torsional damping coefficient

T, o 0
m /\
\
0,
|
\Mcy L oad

Figure 13.3.1: Symmetrical Mechanical Drive

(a) The fundamental requirements are:
Geometrical Compatibility: AO =0, — 0, dAG/dt = wp, — wy

Constitutive Equations: Ty, = K.A0, Ty=B.dA0/dt, Tfp = Bwp,
Tf,l = Bwl, Tl,m = Idwm/dt, T[,l = Idwl/dt.

Torque Balance: Motor: 17, = T}, — K.Af — Bw,, — B.dA6/dt,
Load: T]J = K.A0 — Buw; + BchG/dt

In the following state equations , the first equation expresses the geometric compatibility
requirement, the second equation is the result of inserting the constitutive equations into
the torque balance for the motor, and the third is the result of substituting the constitutive
equations into the torque balance for the load.

A6l 0 1 -1 Ad 0

d

o Wm = | — % —% % Wy P+ % T
w T F e 0
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(b) The new variables Aw and wg,, satisfy the following equations:

2Wang = wWm twi

Aw = wy —wy
By adding and subtracting these equations we find
Wm = Wavg + Aw/2

W = Wapg — Aw/2

(c) We can construct the state equations for the new variables Af, Aw and wgyy one at a time.
For A6, we have

dAf
g T Wm W= Aw
For Aw, we write
dAw  dw,, dw; K, B+ B, B, T
T dat  dt PIM_I(%Wﬂwn+H%WAWﬂ+I
KC B + Bc BC
— [IAH — f(wavg —Aw/2) + T(wavg + Aw/Q)]
2K, B+ 2B, T
= - A — ——A —
i T Yt
Similarly, for wq.g, we write
dwapg 1 dwy, — dw 1 K. B+ B, B. T
== —) = - |——A0 — ————(Wavg + Aw/2) + —(Wavg — Aw/2 —
i 2Ca ) 2[ I T Wang + Aw/2) + 7 (Waug w/)}+1
1 [K. B+ B, B.
—|—§ [IAH i (Wavg — Aw/2) + T(wavg + Aw/Q)]
B T
T Vet T
These state equations for the new variables can be arranged in matrices of a third-order
Sytem:
Af 0 1 0 A6 0
d
pr Aw = —2% —73‘*}236 0 Aw + % T,
Wavg 0 0 —% Wavg %
or, as a combination of a second-order sub-system
d Al 0 1 A6 0
_ — + Tm
dt K. B+2B, 1
Aw —28c _Di2de Aw 7

describing the relative motion of the motor and the load, and a first-order sub-system

AdWang B 1

TR S S
describing the average speed of motor and load. Both sub-systems have the motor torque
as input, but the second-order sub-system is independent of the average speed wqyg, and the

first-order sub-system is independent of the relative motion between the motor and the load.
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(d) The first-order sub-system equation can be rewritten as

I dw T,
B o =

from which we identify the decay time-constant

I 5e-5
TEB T Toed 00
and the steady-state speed
T 6e-3
Wes = B = 10ed " 60 rad/sec

(e) From the second-order sub-system equations we identify

) 2K,
o7 T

B+ 2B,
1

w and 2Cw, =

from which we obtain the behavioral parameters of the second-order sub-system

2(1.24e-2) _ 1.0e-4 + 2(2e-5)

wo = \| ————= = 22.3 rad/sec and ¢= 2(22.3)(5e-5)

= 0.0629
5e-b
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13.4

Error Constants

A)

B)

E

?(s) = -1

E . 1

&Y T 1 KGH)
Step E(s) = !

Ramp E(s) =

Parabola F(s) =

C) For this section G(0) = K.

Type 0 | Type 1 | Type 2
Step Input ﬁ 0 0
Ramp 00 %M 0
T
Parabola o0 00 KK,

Figure 13.4.1:
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13.5 System Type

A) Figure 1 shows the negative loop transmission for this system.

B) Note: To get a phase margin of 50°, we would need the crossover
frequency to be 14.9 r/s. It is not possible to get a crossover at 14.9 r/s
because of the peak from the complex pair of poles. If we set K=8.6 (the
gain needed to raise the magnitude of the loop transmission to 1 at 14.9
r/s), we find that the real crossover occurs at 16.9 r/s with a resulting
phase margin of 44°.

K, = 1

1 1
D - =~ =011
nor K+K, 86 "

C) Figure 2 shows the loop transmission for the type 2 system. As we can
see, this is not a good thing to do since we now have system where the
phase is always below —180°. Now it is possible to get stable closed loop
systems where the loop transmission phase is below —180° but these
systems must have magnitudes less than 1 when the phase passes through
—180°. Since this system has 2 poles at w = 0 we essentially have an open
loop gain of co when we pass through —180° resulting in an unstable
closed loop system.

Figure 13.5.1:

494



Magnitude (dB)

Phase (deg)

Magnitude (dB)

Phase (deg)

Bode Diagram

50

!
o
=]

-100

-180

-135-

|

AN

©

S
T

-225

-270 =

10°

Frequency (rad/sec)

Figure 1: Bode diagram for Problem 2-A
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Figure 2: Bode diagram for Problem 2-C

Figure 13.5.2:
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Bode Diagram
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System: untitled1
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Figure 3: Intermidiate Bode plot for problem 2-D

D To get an error=2%, 0.02 < % — K > 50. From part B, we know that
without the lag compensator is 8.6, so if we reduce the magnitude of the
transfer function by a factor of ten we will raise the required gain to 86
(this is greater than 50). The transfer function for a lag compensator is

T7s+1

Cuag(9) = K el

For a lag compensator the pole occurs at a lower frequency than the zero,
thus for the region between the pole and the zero the lag compensator has
a -1 slope. We want to drop the magnitude by a factor of 10 (1 dec) so that
tells us that o = 10 so that the lag compensator acts over 1 decade. Now
we need to figure out 7. We do not want the phase of the lag compensator
to effect the phase at our desired crossover, so 7 can be any value which
places the zero of the lag a decade or more below the crossover frequency.

1

T > Ta9 = 0.67
To make life easy, I have elected to make 7 = 1. Figure 3 shows the bode
plot for tau = 1. As we can see, the magnitude is the where we wanted it
(required gain 86) but we have actually lost some phase. This is because
the lag compensator is close enough to have some impact on the phase. If I
were designing this for myself, I would just leave it but to fix this for the
problem set I have set tau = 2 and recovered all but 1° of phase. Figure 4
shows the negative loop transmission of this system with tau = 2, K = 86,
and « = 10.

Figure 13.5.3:
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Bode Diagram
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Figure 4: Bode plot for problem 2-D

On a design note here, I could get 0 steady state error by using the
following ”lag” compensator
1
Guls) = K22

S

You may ask yourself, how is this different than changing the system to a
type 2 system. The answer is that because we have added a zero in
addition to the pole the phase of the system never actually equals —180°
at low frequencies, just gets really close. The major issue with this
approach is that if there are any un-modelled dynamics such as time delay
which cause the phase to decrease, the system will be unstable.

E Figure 5 shows the step response of the error function for the controller
designed in part d. Well the damping is much lower than expected and the
natural frequency is higher as well. The crossover frequency is higher than
expected due to the resonant peak as discussed in part b. In the case of
the lag controller, we find that not only is the actual crossover frequency
about 16.5 r/s but that lag controller has further reduced our phase
margin to 36°.

F Figure 6 shows the error of my controller to a ramp input. Since, I
designed my controller to have an error less than 2% and my actual error
is about 1.6% I am happy. If customer (Prof. Hardt) really wanted 1% he
should have told me that before I built the thing.

Figure 13.5.4:
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Figure 5: Step response of the error for lag controller design in D
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Figure 6: Error to a ramp input

Figure 13.5.5:
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13.6 Unity Feedback
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13.7 P and PI Controllers

The solution for this problem is not available.
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14 Motors and Transformers

14.1 Locked Load

With the load clamped so that it cannot rotate, the application of motor torque causes twisting
of the coupler and oscillation of the rotor. The system consists of the motor rotor with moment
of inertia I, and the coupler with linear torsional stiffness K. and linear damping with damping
coefficient B,, acted on by the motor torque 7T, and a frictional motor torque with linear damping
coefficient B,,, as shown in Fig. 14.1.1.

T
Locked __m_
> Load
1J/\ 0., W,
Coupler
7
B m(’om Bc(’om
~~——
CH

Figure 14.1.1: Motor Rotor connected to Locked Load by Elastic Coupler

(a) The fundamental requirements are:

Geometric compatibility: Wi = dbOp,/dt
Constitutive equations: Tr = Iydwp/dt, Tf= (Bm+ Be)wm, T =Knbn
Torque balance: Ty =Ty —Tf =Ty

Take 6,,, and w,, as state variables. Then one equation is provided by the geometric compati-
bility requirement. The second equation is obtained by substituting the constitutive equations
into the torque-balance requirement to get

dw
Ird—;” =Ty — (B + Be)wm — KO
With T, as the input and 6,,, as the desired output, the standard form for a state-determined
system
%x = Ax+Bu
y = Cx+Du
becomes
d O 0 1 O 0 .
_ — + .
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with output 6, given by

Om
y=Cx+Du={10} +0="0p
Wm

The behavioral parameters w, and ¢ appear in the matrix A of second-order systems in the

following pattern

0 1
A= (1)

—w? 2w,

By comparing the matrix A in the equation for the locked-load response with (1) we identify
the the following relationships for the behavioral parameters

K, B + B
2 = T and 20w, = Iit

which lead to

K, 1.24e-2 B, + B, le-4 + 2e-
Wo =1/ — = \/76 = 15.75 rad/sec and (= e _ el ¥ 200 = 0.0762
VT, 5e-5 0/K.I,  24/(1.240-2)(50-5)

(i) The damped natural frequency is

wqg = wey/1 — (2 =15.75y/1 — (0.0762)2 = 15.70 rad/sec

(ii) The decrement ratio for a damped sinusoidal oscillation, as defined in the Notes for
Lecture 6, is the ratio of the amplitudes of two successive peaks. The time increment
between two such peaks is half of the period of the damped oscillation. The envelope of
the damped oscillation decays in proportion to exp(—(w,t), so with ¢ = %Td = 7/wq the
decrement ratio is

T\ 007621
\/@)_ep( 1—(0.0762)2) 0787

The dimensions of G; are [torque/angular velocity]. Its units are N-m/r/s or N-m-s/r in the
ST system of units. When the control algorithm (with wsensed = Wm ),

dec ratio = exp(—(w,m/wq) = exp(—

Ty = Gi(r1 — wm),

is substituted in the state equations of the uncontrolled locked-load system, the resulting
equations for the velocity-controlled system are

d [ m 0 1 0,, 0
_ — + 71

The input is changed from the motor torque T, to the reference speed r1, and the Matrices A
and B now depend on the gain G;. The undamped natural frequency w, remains unchanged
but the damping ratio now depends on the gain G;. By comparing the matrix A with (1) we
identify

Bm + Bc + Gl

2 Cwo = Ir
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(e)

To obtain the value of GG; required to yield a critical;ly damped response, set ( = 1 and solve
for G1

G1 = 2L,w, — B — Be = 2(5¢-5)(15.75) — le-4 — 2e-5 = 14.55¢-4 N-m-s/r

The dimensions of Gy are [torque/angle]. Its units are N-m in the SI system of units. When
the control algorithm (with Osepsed = 0m),

Ty = Ga(ra — On),

is substituted in the state equations of the uncontrolled locked-load system, the resulting
equations for the position-controlled system are

4 [ O 0 1 0,, 0
_ — + ro
dt wm _ Kc;;GQ _ Bmi‘Bc wm %

By comparing the matrix A in this equation with (1), we identify the following relationships
for the behavioral parameters

K.+ Go B, + B
2
PoT ad 2w =
Both the undamped natural frequency w, and the damping ratio ¢ now depend on the gain
Go.

w

(i) The undamped natural frequency is

K.+ Gy
wo =\ =
T

Bn+B.  By+B,
21w, 2 (Bm + GQ)IT

(ii) The damping ratio is

(=

The control algorithms can be implemented by ordinary mechanical elements connected be-
tween a desired-motion driver and the motor rotor.

(i) The velocity feedback control algorithm
Tm = Gl(’l"l - wm)

states that a torque is applied to the rotor which is proportional to the difference in
speeds between the motion driver and the rotor. A linear friction element connected
between the motion driver and the rotor would apply this same torque if its damping
coefficient were (7.

(ii) The position feedback control algorithm
Ty = G2(T2 - em)

states that a torque is applied to the rotor which is proportional to the difference in
angular position between the motion driver and the rotor. A linear torsional spring
connected between the motion driver and the rotor would apply this same torque if its
stiffness were Gs.

A drawback of these mechanical implementations is the necessity of constructing a mechanical
motion driver to provide the information about the desired motion.
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14.2 Motoring with a Capacitor

Figure 14.2.1 shows the free body diagram for this problem. Note: I have applied all of the torques
in the positive direction.

T

m

vm=Kw

Figure 14.2.1: Free Body Diagram and Circuit Diagram

(a) Based on the free body diagram

Jw = Tin + T
Tm = Kim,

Jw = T1ip + Kip,
(b) Evaluating the circuit results in

0= Vi + Ve = Vin = V.

q:/imdt
_4q _1 /.
VC—C—>VC—C/zmdt

Vi = Kw

1 im .
C/imdt:KwHZC:Kw

im = —KCw

Jo = T — K2Cw
(J+K?*C) o =1y

(d) The equivalent mechanical model would be Jeqw = 74y, where Joq = J + R2C. This is true
because the capacitor acts to increase the apparent inertia of the motor rotor.
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L{(J+K*C)aw} =Q(s) (J+ K°C) + (J + K*C) w(0)

™
2~
O O
~ ~
SN
+ |+
O
_
—~ —
w
Moo
Slk
——
7
L

506



14.3 Leadscrew with Translating Stage

When the system is moving, the lead-screw will exert a force F) retarding the motion of the mass.
The mass will in turn exert a torque 1" on the lead-screw retarding it’s motion. The equations of
motion for the carriage and lead-screw will be

M.f:F—Fl—CQi'—kJQCL' (1)
Jé':chlé—le (2)

We need a relationship between x and 6. From the definition of the pitch p, each revolution of the
lead-screw will advance the carriage 1072 [m]. One revolution is 27 [rad], therefore

z=2L9=N0where N = L (3)
27 2

™
Because the lead-screw is said to be ideal (no friction present), there is 100% efficiency in power
conversion from the linear to the rotational domain. Therefore

Fl:L’ =T60
T
P= (4)

Take the Laplace transforms of equations (1) and (2) to get

F(s) — Fi(s) = (Ms®* + cas + ko) X (s) (5)
T(s) = (Js* +c15+ ki) 0(s) (6)

Combine equations (3) through (6) and solve for the transfer function

F(s) — (J82 + 15+ ki) %X{s) = (M82 + co5 + ko) X (s)

X(s) 1
FO) (o) s+ (ea + ) 5o+ (kao+ )
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14.4 Mass Pulley System

(a)

(b)

As the pulley rotates clockwise, we assume a no-slip interface between the string and the
pulley, and therefore a length of string equal to Rf must be “unwound” on the right hand
side. The is clearly the distance the pulley moves upward, so x5 = R6.

Again we assume a no-slip interface and look at a rotation of f radians. We already established
both that the center of the pulley moves upward a distance Rf and that the string length
increases on the right hand side by a distance Rf. That means the string length on the left
hand side has decreased by Rf. The position of the mass with respect to the center of the
pulley is shorter (further upward) by R6, and the center of the pulley has moved upward itself
by Rf, so x1 = 2R = 2x5.

We have already derived geometric equations which show (together) that all three variables
(1,22, and #) must be linearly coupled at all time. This means we can describe the dynamics
of the system with a single equation of motion. Applying apply Newtons law at each inertia
and mass (there are no other nodes):

Figure 14.4.1: Pulley Free Body Diagrams

miZ1 =11 —mig
moZo = F —T1 — Ty — mag
J6 = (Ty — T))R
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From the force balance at x; and the geometric relation between x; and xa, we can get an
expression for 77 in term of xo: 17 = 2m @2 + my1g. Using this new expression, the torque
balance, and the geometric relation between xo and 6, we can write T» as:

J . J N .
=T+ Rale =g+ <2m1 + R2> )

Combining, we get:

F —(2my +ma)g
dmy +mo + 2

To =

The result is (of course) simply a constant acceleration (i.e. no damping or spring effect
anywhere).
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14.5 DC Motors
(a)

Vin = K

K,

Vi = imR — iy = —0

R

= Kp,i, Note: in this case the current leaving the motor thus negative

T

Qy

(c) This system is just a transmission with losses. In the case of the motors, the system outputs
equivalent torques and shows losses in the motor velocities. In most mechanical transmissions,

K2

Kol — I= Kjv;lﬂ

Kool — Th = g:ﬁTl

K1 = IR+ K989

[;m(Kle _IR)

Klmz(Kmlfh - RISLI) = K;(Kmlﬂl - RI?;)

the velocities will be equivalent with the losses showing up in the output torque.
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14.6 Gear Train

~J

Figure 14.6.1: Freebody Diagram

Figure 14.6.1 shows the freebody diagram for the inertia of the system. For this problem we
can ignore all of the dynamics of the transformer except for the actual transformer. 75 is the
transformed input torque 77. In my case I have drawn 75 such that 1o = %Tl. If you drew 15
acting in the positive direction you would get Th = —%T 1-

(a) The equation of motion for this system is

T, = bby
T. = kb,
)

T, = =T,
T1

JOy = —To—T,— T}

Jéz—l—bég—l—k‘@z = —QTl
™

Gy +1.2505 + 100, = —2T)
™

To determine ¢ and w,,, we ignore the input thus

wp, = v10=3.16
2Aw, = 1.25 — (=0.198 ~ 0.2

(b) To determine the system equation in terms of 01, we only need to note the characteristics
of the transformer. With the directions as defined on the picture, we know that 6, = —%91
(Note: this is the inverse of the torque relationship). Since r; and rp are constants all the
derivatives of 61 and @, share the same relationship. Thus the characteristic equation becomes

ST Jh + b6y + kO = —2T
T2 1
2
(61 +1.250, +106;) = (?) T
1

You end up with the same coefficients in the characteristic equation, thus ¢ and w,, are the
same as part a.
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(c) Figure 14.6.2 shows a sketch of the time response for 6, (t) and 62(¢) (for my sketch ro/r1 = 2).
Note the two responses are in opposite directions with the same phase and frequency. The

magnitudes are different by ro/r;.

(ralrq)?

Amplitude

Time (sec)

Figure 14.6.2: Sketch of 0;(t) and 61(t)

(d) Since the system only contains dynamic elements on one side of the transformer, the trans-
former only effects the magnitude and sign of the system dynamics. If like in problem 1, the
system contained dynamic elements on both sides of the transformer, the transformer would
effect the dynamics of the system by scaling both the magnitude of the response and the
equivalent values of the inertia, damping, and stiffness (see problem 1 where the equivalent
inertia of the transformer is J; + %Jg).
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14.7 Non-Ideal Transformer

0, 0, %  Jr
=~
/-FKZ

T2 .
Tio \:)3

Figure 14.7.1: Freebody Diagrams

To solve this problem we need to make a few assumptions about the model elements. First, we need
to consider the springs connecting the inertia elements in the model. We are told to assume that
k1 is very large, thus the input torque 7T} is assumed to act directly upon J;. The next question we
need consider is what to do with the damping caused by the bearings. In the case of the bearing
in the upper left of the picture, the losses associated with this bearing clearly act directly between
ground (0 = 0) and the inertia J;. Less clear is how to handle the bearing in the center of the
picture. Our first instinct would be to set this bearing to act between Jo and Jr. We can see that
this would be incorrect since the bearing drag would go to 0 when 0y = O3 (93 is the rotational
velocity of Jy). This is clearly incorrect since the bearing still generates a drag between the shaft
and ground. There are three different assumptions we can make instead. One, we can have the
bearing drag act between .Jo and ground. T'wo, we could instead have the bearing drag act between
Jr, and ground. Lastly, we could split the drag and have it act between ground and Jz, and Jy. All
are equally valid but I will solve the problem by splitting the drag between the two inertia.

(a) Figure 14.7.1 shows the free body diagrams for the three inertias in the model. Note the
inclusion of the torque T'jo on inertias J; and Jo. This torque represents the torque through
the gear transformer and will be solved algebraically later. All the other torques are expressed
as follows (7} is an input thus not accounted for here):

Ty = bify
Ty, = bobs
Tro = ka(62—63)
Tys = b3bs
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The equations of motion then become

Jb = T
Jiby = Ty — Ty —Tyo
Jiby +b16, = Ti—Tpo
Jobs = —Tjs —Tyo — Tho
Jol3 + bobs + kofs = koo — To
Jrby = Ty — Tis
Jr02 + b30 + kofly = kab3

(b) Now that we have written the equations of motion, we need to eliminate the unknown torque
Tj5. To do this we apply our knowledge about the transformer which equate 81andfs. Specif-
ically:

1
03 = ——0
T2

where r1 is the radius of J; and 7y is the radius of Js.

Ji0 + b6y = T1—Tyo
Jof3 + bobs + kofs = koo — Tro
;(JQél + 0oy + kob) = —koby + To
2

<J1 + mJQ) él + (bl + rlb2) 91 + 291 — Ty — koby
T2 T2 72
JLéQ + 5392 + kol = kob3 = —k‘2:—191
2

We can determine the transfer function by taking the Laplace transforms of remaining two
equations of motion.

O1(s) [(J1 + %Jg) 24 (b1 + by ) s + 4] — Ti(5) — k2Oa(s)
— Tl(s)_kSGQ(S)
O1(s) = (J1+%J2)82+(b1+%b2)8+%k2
O2(s) [JL52 + b3s + kz] = —kg%@l(S)
—kz%@l(s)

= Jr1,s2+bzs+ko

@2(8)

For simplicity, I am going to define the following transfer functions:
1
<J1 + %J2> 52 + (bl + %bz) s+ Lko
—kpL

JL82 + b3S + k2

Gi(s) =

Gs(s) =

(c) Figure 14.7.2 shows the block diagram for this system with the transfer functions as defined
above.
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T, =) G4(s) —>{ G5(s) >

kK, |[€———

Figure 14.7.2: Block Diagram

(d) Using the block diagram, we see that

Gl (S)Gg(s)
G
(s) 1+ kaG1(5)G3(s)
_kzﬂ
G(s) =
(1 +52) 824 (bi o+ 52ba) s+ Pkl [ os? + bas + ko] + K322
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14.8 Equivalent Mass and Inertia

(a) This problem is a little tricky. To solve it correctly you need to replace the mass with an
equivalent force (f,,,) as shown in the figure.

Figure 14.8.1: Free Body Diagram for 1-a

fm = mi'
v Y
a b

’ a
v = —BU
fm = _m%U
af = *bfm
2
f = mZ—zi)
CL2
meq = mbe

(b) This problem should be solved using a free-body diagram. You should note that all of the
masses travel at the same velocity, thus you only need a free body diagrams for one wheel
and the combined masses.

Cart Wheel

m,J

"

|

Figure 14.8.2: Free Body Diagram for 1-b

Note the force f;, this force is not a friction force, although it is created by the friction
between the tire and road surface, it is the force required to accelerate the rotational inertia
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of the wheel. From the figure,

On the cart XF = (M +4m)i = f —4f;
On one wheel X1 = Jw = fjr

No slip means v = & =71w = cZJ:f
r
fi = St
JN ..
M—1—4m—|—4—2 r = f
r
J
Meq = M—i—4m+4§

(c) Once again you should be solving this problem using free body diagrams. Note that the first
pulley does not have any inertia. From the FBD,

Pulley #1 ST = 0=r1(fi— fo)+ T
Pulley #2 T = Ju

Pulley 1 Pulley 2

f
| 1
0 (&
f J
2
f

Figure 14.8.3: Free Body Diagram for 1-c
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14.9 Inertia in Geartrain

The solution for this problem is not available.
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14.10 Motor Driving Inertia Through Gear Train

The solution for this problem is not available.

519



15 MATLAB and Simulink

15.1 Matlab Spirograph

(a) and (b) A gear of radius 7 turns inside a gear-faced hole of radius ry. The inner gear has a pen fixed
at a radius r3 from its center. The resulting path of the pen is most easily described as that
of the center of the gear (which just moves in a circular path) superimposed with the position
of the pen with respect to the center of the gear. The angle between the fixed center of the
outer hole and the center of the gear at any given time is 61, while the corresponding angle
from the center of the gear to the pen is f3. 03 and 0, are proportional to one another. Figure
15.1.1 shows the geometry of the gears (above) and the resulting path (below):

Figure 15.1.1: Geometry of gears and resulting paths

Above, 67 is shown as a dashed line for two locations, 0 and 90 degrees. Here, 7o = 7, ro = 4,
and rg = 3, so that s = (—4/3)6;, shown as the lines connecting gear center, ¢, with pen
location, p, for each of two locations of the inner gear. The figure below overlays the gear
geometry with the resulting spirograph:
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Figure 15.1.2: Overlay of geometry of gears and resulting spirograph

(c) The script spirographsol.m is avaliable at the end of the problem.
(d) Your plots will vary.

(¢) You can convert the MATLAB script given into a MATLAB function by completing the
following 2 steps:

1) change the TOP LINE of the m-file into a function declaration (beginning with the word
function)

2) take out the lines in the m-file that defined the various radii (r0, r2 and r3)
The m-file spisol.m below defines a spirographing function called spisol this file is found at
the end of the problem. Note that the function has no output. (It will still plot the picture,

however.) If we wished to define the vector of complex numbers describing the path as the
output of the function, we could rewrite the top line of the function above as:

function [position]=spisol(r0,r2,r3)

The rest of the m-file would remain the same. To plot the example shown earlier, you would
call the function as shown in Figure 15.1.1:
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spi(7,4,3)

subplot (131); spi(4,3,2/3); axis off
subplot (132); spi(4,3,1); axis off
subplot (133); spi(4,3,4/3); axis off

E

subplot (131); spi(9,4,3); axis off
subplot (132); spi(9,5,4); axis off
subplot (133); spi(9,5,3); axis off

R K

Figure 15.1.3: Spisol.m call and resulting plot

spirographsol.m

Download

% This MATLAB script plots a spirograph.

r0 = 2; % r0 is the outside (hole) radius

r2 = .84; % r2 is the inside gear radius

r3 = .7; % r3 is the radius at which the pen is
% held (wrt the gear center)

thetal = [0:pi/1000:100*pi]; % thetal defines an arbitrarily
% long list of angle positions which describes the path of

% the CENTER of the gear as it rotations in a ccw direction.
% Thetal is long enough to ’ensure’ the path will have been
% traced completely at least once.

theta3 = -thetal*((r0/r2) - 1); % theta3 defines the angle

% of a line from the gear center to the gear pen. The geometry
% forces theta3 to be proportional to thetal over time, just

% as with any standard gear system. Note, however, that the
ratio of angles is the ratio of the two radii
(hole_radius/gear_radius) MINUS 1, because for each time the
% gear makes a complete circuit around the hole, the surface

% on which it has travelled has "looped in on itself". Also,
theta3 will be in the opposite sense as thetal: hence the
minus sign.(i.e. If the gear center is making a ccw circuit
% in the hole, it is rotating in a cw direction.)
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position = (r0-r2)*exp(j*thetal) + r3*exp(j*theta3);

% position defines a vector of complex numbers describing
% the complete path of the pen as the sum of the paths of
% the center of the gear and of pen wrt the gear.

figure(1) % make figure 1 the current figure
plot(position) % plots the real vs. imag parts of position
axis equal % forces the same scaling in x and y dir’s.

spisol.m
Download

function []=spisol(x0,r2,r3)

thetal = [0:pi/1000:100*pi];

theta3 = -thetalx((r0/r2) - 1);

position = (rO-r2)*exp(j*thetal) + r3*exp(j*theta3);
figure(1)

plot(position)

axis equal
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15.2

MATLAB Plotting

10
5+ (@) i
0 i
5k i
_10 Il
0 0.05 0.1 0.15
1
0.5 [ (b) B
=
< 0
-0.5 B
_1 1 Il Il Il Il Il Il
0 0.5 1 15 2 25 3 35 4
1
0.5F (© i
of ]
-0.5F B
-1 1 1 Il Il Il Il
0 0.5 1 15 2 25 3 35

t

Figure 2: Problem 5: (a) 10sin100¢, (b) e 'cos100t, (c) Re{e®}; s =
-1+ 10:.

Problem 5: The objective of this problem is to recognize the time scales
involved so that proper time range and sampling rates may be selected. For
sinusoidal functions or exponential functions with a complex exponent of
the form ae™!, the period is given by

27

vl

T (36)

For decaying exponential functions of the form ae™® the time constant is
given by
(37)

1
=3
The function will be within 1% of its final value in 57. Therefore, one
must recognize the slowest timescale when plotting a function so that all

significant behavior will be shown. The graphs are shown in Figures 2 and
3.

Figure 15.2.1:
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(d) .

0.4 0.5

®

0 0.02 0.04 0.06

Figure 3: Problem 5: (d) 5e7 1%, (e) 5el%, (f) 8e=100f — 5 —1000¢,

Figure 15.2.2:

525



15.3 Simulink Introduction

The solution for this problem is not available.
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15.4 Wackygraph

(a)

The m-file wackygraph.m creates a strange looking graph with many loops (see Figure 15.4.1).
We are interested in understanding the effects of each parameter on the shape of the graph.
Begin by examining the function being plotted:

position = (rg + rl)ejel + el

Recall that a complex exponential is a circle when plotted in the the complex plane. r¢ and 7o
are constants, but r1 is a function of 8. Substituting relations given in the m-file, we obtain

position = 2roej91 + go Sin(NHl)ejel 4 r2€fj9191 (1)

Therefore, we recognize that the diameter of the main figure is 2rg. This circle of main
diameter is modulated by two additional terms, go sin(N6;)e’t and roe=7919%1 . gosin(N6;)el
has the same angle 8, as the main circle but the modulation changes as the angle changes. For
N > 1, the size of the perturbation changes faster than 6;. The other perturbation roe~79101
has a primary radius ro. The perturbation rotates in the opposite direction from the direction
of tracing out the large circle of radius ryp and with a different speed based on the magnitude
of g1 (see Figure 15.4.2 for a diagram explaining the variables). r; is a dependent variable
because it is calculated in the m-file.

Using Equation (1) we can separate position into its real and imaginary parts using z =
rel? = rcosf + jrsinf. We find the real part is

Re(position) = 2rg cos 01 + go sin(N6;) sin 01 + 9 cos(g161)
and the imaginary part is
Im(position) = 2rgsinf; + gasin(NO1)sinb; — rosin(g161)

To comment a MATLARB file, use the % symbol before the comments. A commented version
of wackygraph.m is given below.

15+

10

-5

-10+

-15F

Figure 15.4.1: Wackygraph with default parameters.
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Figure 15.4.2: Diagram of the Wackygraph system.

% wackygraph %
DL Trumper 9/9/02

r0 = 10; Ydefine r0

r2 = 1; %define r2

N = 10; %define N

gl = 40; Ydefine gl

g2 = 0.2%r0; Ydefine g2

thetal = [0:pi/1000:100%*pi]; %define the vector thetal

theta3 = -glxthetal; /define the vector theta3 as proportional to thetal
rl = r0 + g2xsin(N*thetal); %calculate the vector ri

position = (rO+rl).*exp(j*thetal) + r2*exp(j*thetal); Ycalculate position
figure(1) Y%select the window Figure 1

plot(position) %plot the variable position

axis equal %force the x and y axes to be scaled equally

We must use .* instead of . for element-by-element multiplication. Otherwise, Matlab returns
the following error:

??? Error using ==> *
Inner matrix dimensions must agree.
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(d) Various plots are given in Figure 15.4.3.

(e) A possible script is given below

function wackyscript(r0, r2, gl, g2, N)

%wackyscript (r0, r2, gi, g2, N)

%Justin Verdirame

%2.003 Problem Set 2

%#Fall 2002

A

%This function takes as input r0O, r2, gl, g2, N and outputs
%a plot based on wackygraph.m written by Prof Trumper.
thetal = [0:pi/1000:100*pi]; %define vector

theta3 = -glxthetal; %calculate vector theta3

rl = rO + g2*sin(N*thetal); Jcalculate vector rl

position = (rO+rl).*exp(j*thetal) + r2*exp(j*thetal);
figure(1l) Y%creates window for the plot if it does not exist
plot(position) %plot vector

axis equal %forces the x and y axes to have the same scaling
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r0=10, r2=2, g1=1, g2=4, N=5 r0=10, r2=2, g1=1, g2=4, N=100

_10 L
-15} /\
=20 -10 0 10 20 =20 =10 0 10 20

r0=10, r2=2, g1=1, g2=40, N=5 r0=10, r2=2, g1=10, g2=4, N=5

Figure 15.4.3: Wackygraph plotted with various parameters.
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16

Case Studies

16.1 CD Player 1

(a)

()

Let the outer radius of the CD be R, and let the radius of the hole be r. Let the mass density
of the disc be p per unit area, and let the total mass of the CD be m. Then

m = p(nR?) — p(n1?) = mp(R® —1?)

The moment of inertia is

and

1 4 a1 4_ 4 m 1 2,2
27rp(R r)—27rp(R %) (R =17 —2m(R +7)

Substitute R = 0.060 m, » = 0.0075 m, and m = 0.028 kg to get Icp = 5.12e-5 kg-m?.

At steady state, the motor torque T}, is balanced by the frictional torque Tf;c = Bpwss. If
wss 18 the same for the disc mounted and not mounted, the damping coefficient B,,, must also
be the same in both cases. In the transient, it is necessary to consider the complete dynamic
analysis. The constitutive equations are

dwp,

T[ = IW and Tfric = Bmwm

where [ is the total moment of inertia of the rotating parts, and the torque balance is
TI = Tm - Tfric

which lead to the differential equation

dwp, I\ dwp, T

from which we learn that the decay time-constant is 7 = I/B,,,. Now we are given the time it
takes the spindle to reach 95% of wss which is known to be 3 time-constants, for the spindle
alone, and for spindle plus the mounted CD, so

I.+ Icp 2.0

and TwithCD = ———— = —
withC B,, 3

L 03

ThoCD = ——
noC Bm 3

and, by subtraction to eliminate I,., we find

Icp 2.0-0.3 o B 3lcp
= T =
B, 3 LT

= 9.04e-5 N-m-s/r

This is the answer for both parts (i) and (ii).

To estimate I, return to 7,,cp and solve for I,

I, = By TnocD = 9.04e—5% = 9.04e-6 kg-m?
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(d) The standard form for state-determined representation of a dynamic system is

%x Ax + Bu
y = Cx+Du

where x is a column matrix of the state variables, u is a column matrix of the input variables,
and y is a column matrix of the desired output variables. The parameters which govern the
natural response of the system are contained in the square matrix A. The parameters which
describe how the input is delivered are contained in B, the parameters which describe how the
output depends on the state variables are contained in C, and the parameters which describe
how the output depends directly on the input are contained in D.

In the present case there is only one state variable w,, one input T},, and one output w,, so
all the matrices reduce to scalars. The state equation for w,, is
dwp, B, 1

dt Itotal " Itotal "

where I = I + Icp = (0.904 + 5.12)e-5 = 6.02e-5 kg-m?. The matrices of the standard
form reduce to the following scalars:

B 1
n u=17, B=

X =wWm, A= y=wn, C=1, D=0

- )
Itotal
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16.2 CD Player 2

(a)

(b)

The dimensions of the parameter G are [torque]/[angular velocity], or [FLT], or [ML2?/T]. In
the SI system, the common unit is the Newton-meter per radian per second, or N-m-s.

Assume that wsepsed = wm, and insert T, = G(r — wy,) in the state equation in Problem
16.1(d) to get
dom — Bm+G G

— w. +
dt Itotal " Itotal

as the state equation for the controlled system. Comparing this equation for the controlled
system with the equation in 1(d) above, note that the input u has changed from a torque
T, to a speed r, and that, A has changed from —B,,,/Iiota; t0 —(Bp + G)/Iiotar, and B has
changed from 1/I;ptq; t0 G/Iiotqr- The system is still a first-order dynamic system but its
behavior can easily be modified by adjusting the gain G.

r

The steady-state speed corresponding to 4 revolutions/second is wss = 87 = 25.1 radi-
ans/second.

(i) For the uncontrolled system, the motor torque required to maintain this speed is
Ty = Bpwss = (9.04e-5)(87) = 2.27e-3 N-m

(ii) For the controlled system, the reference speed required to maintain the same speed is

Byt G~ _9.0de5+G,

a Wsg = a 5.1

The decay time-constant for the uncontrolled system is 7, = Iyotq1/ Bm, while the decay time-
constant for the controlled systgem is 7. = Lita1/(Bm + G). If the controlled system is to be
five times faster than the uncontrolled system, it is necessary for 7. = 7,/5, or

Itotal _ EItotal
Bn,+G 5 By

from which we obtain
G = 4B,, = 4(9.04e-5) = 36.2e-5 N-m-s

The scripts for this problem are found below. The symbol v in the script stands for the
angular velocity w,,. After the equation is integrated to obtain wy,(t), the motor torque T,
is constructed from the control algorithm

T = G(r —wm)

and plotted. See Fig. 16.2.1.
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1 x 107 Time History of Motor Torque
T T T

Motor Torque [Newton meters]

2 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time [seconds]

Figure 16.2.1: Transient Motor Torque under Velocity Feedback Control

Note that the maximum motor torque occurs at ¢ = 0 when w,, = 0. The magnitude of the
maximum torque is

T (0) = Gr = (B, + G)wss = (B, + 4Bp,)wss = 5Bwss = 11.35e-3 N-m

Note that the five-fold increase in response speed is accompanied by a five-fold increase in
maximum torque.

EqVelFdbksol.m

Download

% EqVelFdbksol.m
% This function, which is called by the program ‘VelFdbk.m’, contains the
% equation of motion of a CD player with velocity feedback.

% Introduce V_dot, the time derivative of v.

function V_dot = EqVelFdbksol(t,v)

h

% Declare global parameters (a MATLAB detail).

h

global Itot Bm r G

h

% The mathematical model of velocity feedback applied to the CD player
% provides an equation for V_dot.
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%

V_dot = -((Bm + G)/Itot)*v + (G / Itot) * r;
%

% That’s all there is to it!

velfdbksol.m

Download

% VelFdbksol.m

% This program calculates the torque in CD player with velocity feedback.
% The differential equation used to model the system is:

%

% Itot dv/dt = - (Bm + G) v + G r

%

% This equation is stored in a separate m-file ‘EqVelFdbk_sol.m’ called by this
% program (a tedious MATLAB detail).

%

clear variables

%

% Declare global parameters (a MATLAB detail).

%

global Itot Bm r G

%

% Input parameter values.

%

Itot = input(’Enter the total moment of inertia "I(CD) + I(rotor)" in SI units: ’);
Bm = input(’Enter the linear friction coefficient Bm in SI units: ’);

ss = input (’Enter the steady-state speed in rad/sec ’);

G = input(’Enter the value of the gain G in SI units: ’);

pA

% Input initial condition.

yA

vO = input (’Enter the initial angular velocity in rad/sec: ’);
%

% Input integration time.

%

tspan = input(’Enter time interval of integration in seconds: ’);
yA

% Calculate r

%

r= ((Bm + G ) / G) * ss;

%

% Call a numerical integration algorithm.

)

[t,v] = ode45(’EqVelFdbksol’, tspan, vO0);
)

% Calculate motor torque

)

Tm=G=x* (r-v);

% Plot the results.

%

plot(t,Tm)

xlabel(’Time [seconds]’)

ylabel (’Motor Torque [Newton meters]’)
title(’Time History of Motor Torque’)
grid\\
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16.3 CD Player 3
The equation of motion for the CD-player is

dw dw B 1
where: (i) I = I, when no disc is mounted on the spindle, or (ii) I = I, + I; when a disc is mounted

on the spindle.

(a) Using the result of Problem 16.1 with B,, = 2B, the magnitude M (€2) of the angular velocity
response amplitude and the phase angle ¢(Q2) for an input torque of T}, = T, sin Q¢ are
T, 1 10

M(Q) = Bmm and  ¢(Q2) = —tan B,

Since no specific value of the input torque amplitude T, was given, we will express the the
magnitude of the response in terms of the ratio M(€2)/M(0). For the three frequencies 1
rad/sec, 5 rad/sec, 15 rad/sec the magnitude ratios and phase angles are:

(i) for no disc on the spindle (I = I, = 9e-6e-6 kg-m?, B,, = 9e-5 N-m/r/s),

M(1) —6)(1
— 0095 and = tan—t P =OW 5o e
M(0) \/1 9e 6 9¢ -5
M(5) 9e — 6)(5
— 0894 and = tan—t 2790 _ o6 6dee
M(0) \/1 9e 6 9¢ —5
M(1 1 —6)(1
(15) _ —0.555 and ¢ = tan~! W — 56.3deg

M(0) \/1+ 9e 6)(15

(ii) for a disc on the spindle (I = I, + Iy = 5.9e-5 kg-m?, B, = 9e-5 N-m/r/s),

M(1) 1 9e — 5)(1
_ 0647 and ¢ = tan—t 22T _ag 0,
M(0) \/1 (5. 9e 5)(1 )2 9¢e — 5
M( 9e —
5) ~ 01671 and ¢ = tan—t 22700 g e
M(0) \/1 4 (5. 9e 5 ) 9¢ —5
M(15) 1 | (5.9¢ — 5)(15)
= 0.0564 d =t — = =284.2d
M(0) (5 9e 5) (15) =0.0564 and ¢ =tan 9¢ — 5 8 °8
1+ )?
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(b) The low-frequency asymptote for M (£2)/M(0) is unity, and the high frequency asymptote
is M(Q)/M(0) = B,,,/IQ. These two asymptotes intersect at the break frequency Qpreqr =
By, /I. The numerical values are:

(1) Qreak = 9e-5/9e-6 = 10 rad/sec when no disc is mounted on the spindle.

(i) Qpreak = 9e-5/5.9e-5 = 1.525 rad/sec when a disc is mounted on the spindle.

Magnitude of Response Amplitude
10 T T

(i) No Disc Mounted

107 b

(i) With Disc Mounted

Magnitude Rato [dimensionless]

1073 1 : 0 : 1 1 3
10 10 10 10 10
Frequency [radians/second]

Figure 16.3.1: Magnitude Ratio for CD-Player
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Phase Angle of Response
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Figure 16.3.2: Phase Angle for CD-Player

(c) Bode plots for Case (i) and Case (ii) are shown in Fig. 16.3.1 for magnitude and in Fig.
16.3.2 for phase angle. These plots were obtained by running MATLAB scripts similar to the
one shown in the solution to Problem 4.21.

(d) The decay time-constant for the CD-player is 7 = I/By,. The time for 98% of the transient
to decay is 47 = 41/B,;,. This time is a natural property of the system and is independent
of the frequency 2 of the applied oscillating torque T},. This time does, however, depend on
the value of I which depends on whether a disc is mounted or not.

(i) With no disc mounted the time to reach steady state is 4(9e-6)/(9e-5) = 0.4 seconds.
(ii) With a disc mounted the time to reach steady state is 4(5.9e-5)/(9e-5) = 2.62 seconds.
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16.4 Pinewood Derby 1

(a) The potential energy PE of a mass m elevated a distance h in the gravity field is PE = mgh.

(b)

|<— 3 feet —)I

In ST units the 5 ounce mass is 5/16 pounds = (5/16)(0.4536 kg/pound) = 0.1418 kg. The
3 foot elevation h = 3(0.3048 meters/foot) = 0.914 meters, and the acceleration of gravity is
9.81 m/ s?. The energy available to move the racecar is

mgh = (0.1418)(9.81)(0.914) = 1.271kg (m/s)? = 1.271newton meters = 1.271Joules
g g
\7/ ) .

l 6 fee[

\

alpha

Figure 16.4.1: Pinewood Derby

If the center of mass is at the front of the car, its elevation is h = 0.914m and the available
potential energy is as calculated in (a). When the car is rolling on the level portion of the
track this energy has been transformed into kinetic energy KE= %mv2, so the maximum

velocity is
v =1+/2PE/m = /2gh = 1/2(9.81)(0.914) = 4.24 m/s

If the center of mass is at the rear of the car its elevation is
6 . 6 3
h=0.914 + 5(0.3048) sin(alpha) = 0.914 + 5(0'3048)(T6) =0.943 m

and the maximum velocity on the level portion of the track is
v =14/2(9.81)(0,943) = 4.30 m/s

a 1.4 % increase in speed over the case where the mass center is at the front of the car.

The energy relations are silent regarding the time taken to effect the energy transformation.
To introduce the time variable it is necessary to consider the equation of motion of the car.
On the sloping section of track the force which accelerates the mass along the track is the
component of the weight parallel to the track: mgsin(alpha). With no friction, this is the
only force, and the equation of motion is

dv

in(alpha) = m—
mg sin(alpha) m—
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Integrating this equation from the initial condition v = 0 at ¢ = 0 yields
v = gtsin(alpha)

Let s represent distance down the track from the starting point, so that ds/dt = v. Then
integrating the equation

d
d—i = gt sin(alpha)

from s =0at t=0to s = L at time t =T yields

1
L= B gT?sin(alpha)

2L
T=,———
gsin(alpha)

The time T to reach the bottom of the inclined track in case (c) is obtained by substituting
L =16.5 feet = (16.5)(0.3048)m = 5.09m and sin(alpha) = 3/16 to get

from which it follows that

2(5.09)
T= |22 935
9.81(3/16) See
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16.5 Pinewood Derby 2

At the limiting velocity vss, the retarding force bv just equals the component of the weight parallel

to the track, mgsin(alpha), so
_ mgsin(alpha)

USS

b

If vgs = 2(4.30) = 8.60 m/s, then

(0.1418)(9.81)(3/16)
8.60

b= = 0.0303 kg/sec
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16.6 Pinewood Derby 3

Consider the equation of motion of a racecar with mass m on an incline of angle (alpha), acted on
by the weight component parallel to the track, and by a viscous retarding force bv, as shown in

Figure 16.6.1.

<

/T

by

g .
&/7( 3/0/,@

Figure 16.6.1: Racecar Dynamics Diagram

d
md—qz = mgsin(alpha) — bv
or, after dividing through by m, and rearranging
d b
dit} + =9 sin(alpha)

This is the equation treated in the MATLAB scripts ‘carsol.m’ and ‘carviscsol.m’.

(a) For part (a) use the data m = 0.1418 kg, (alpha) = inv sin 3/16 = 10.81 degrees, b = 0.0303
kg/sec, and T = 2.35 sec to get the plot for Part (a).
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Speed of car on incline
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Figure 16.6.2: Plot for Part (a)

At the end of 2.35 seconds the speed of the car is 3.40 m/s. To indicate the effect of increas-
ing the weight, you can run the program again with all the same data, except with the mass
increased to 0.1701 kg (6 ounces) to get a final velocity of 3.53 m/s at the end of 2.35 seconds.

The limiting speed or ‘terminal velocity’ established in Problem 16.5 is vgs = 8.60 m/s. The
speed which is 99.9 % of this is 8.591 m/s. To determine the time it takes to reach this speed,
fix the values of m = 0.1418 kg, (alpha) = 10.81 degrees, and b = 0.0303 kg/sec, and run the
program for a sequence of time intervals, iterating toward a final velocity of 8.591 m/s. For
example,

Try T = 10 secs, get V = 7.59 m/s

Try T = 20 secs, get V = 8.49 m/s

Try T = 30 secs, get V = 8.596 m/s

Try T = 29 secs, get V = 8.593 m/s

Try T = 28 secs, get V = 8.589 m/s

Try T = 28.5 secs, get V = 8.591 m/s

The time history of velocity in the 28.5 second interval is displayed in the plot for Part (b).

The previous result is not very accurate because of round-off error. If we test the MATLAB
progams with the given data, we find that for the very large times, T = 70 to T = 100, the
final velocity is essentially constant at v = 8.61045 m/s; i.e., the program believes that the
terminal velocity is not 8.60 m/s, but 8.61045 m/s. If we then iterate to a final velocity of
8.602 m/s, which is 99.9% of 8.61045 m/s, we find that the time required is T = 32.5 sec,
which is 14% larger than our previous result of 28.5 sec.
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Speed of car on incline
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Figure 16.6.3: Plot for Part (b)

carsol.m

Download

carsol.

== =

This program calculates the velocity of a car rolling down an incline

% under the influence of viscous friction

% The differential equation used to model the car i

% m dv/dt = m g sin(alpha) - b

)

% This equation is stored in a separate m-file ’car_visc_sol’ called by this

B3

program (a tedious MATLAB detail

% Declare global parameters (a MATLAB detail

global g alpha b

% Input parameter value

g= 9.81

m = input (’Enter the mass of the car in SI units: ’)

alpha = input(’Enter the angle of the incline in degrees: ’)

b = input (’Enter the value of the friction coefficient "b" in SI units: °’

%Input initial conditioms.
vO = input (’Enter the initial velocity in SI units: °’

% Input integration time.
tspan = input(’Enter time interval of integration in seconds: ’);

% Call a numerical integration algorithm.
[t,v] = ode45(’carviscsol’, tspan, v0);

% Plot the results.

plot(t,v)

xlabel(’Time [seconds]’)
ylabel(’Speed, [meters/second]’)
title(’Speed of car on incline’)
grid
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% Print out speed at final instant.

%
N = max(size(v));

Finalspeed = v(N)

carviscsol.m

Download

% carviscsol.m

% This function, which is called by the program ’car.m’, contains the

% equation of motion of a car on an incline subjected to viscous frictionm.

% Introduce V_dot, the time derivative of v.

function V_dot = carviscsol(t,v)

yA

% Declare global parameters (a MATLAB detail).

pA

global g alpha b m

yA

% The mathematical model of the car provides an equation for v_dot.
%

V_dot = g * sin(alpha * pi/180) - (b/m) * v;

)

% That’s all there is to it!
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16.7 Pinewood Derby 4

(a)

Replace fyiscous by farag to get the free body diagram of the car mass acted on by the
component of the weight, and the retarding form-drag force, shown below.

%0 (,/)

*\\

Figure 16.7.1: Model Diagram

The equation of motion for the model is

d
md—: = mgsina — ACv%sgn v
The dimensions of the force fiq4 are [F] = [M][L]/[T?]; the dimensions of the area A are
[L?]; the dimensions of the velocity squared v? = [L?]/[T?]; and the signum function is

dimensionless. The dimensions of the parameter Cy are

= [atiga] =[] = o

In ST units, the dimensions of Cy are kg/m3.

On a horizontal track o = 0, and the only horizontal force acting on the mass is the retarding
form-drag force. Starting with a positive velocity v, at ¢ = 0, the mass will slow down, but
will not reverse direction; i.e., v(t) will be non-negative, so the equation of motion can be
written

dv
— = —ACp?
mdt dv

The initial condition is v = v, at ¢ = 0. The differential equation can be integrated by
separating the variables v and t

/ do_ _ [*ACa,,

v? 0 m

-1 1 ACy
+ ——t



The time history of the speed of the car is obtained by solving the above equation for v(t).

v(t)

— Yo
1 + A%{Uot

Note that v(t) decreases smoothly with time, and asymptotically approaces the limit v = 0
as t approaces infinity.
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16.8 Pinewood Derby 5

The differential equation for the model in which a car of mass m descends a very long inclined
track with angle a under the influence of gravity and form drag is

d
md—: = mgsina — ACv%sgn v

as given at the beginning of Problem 16.7.

(a)

(b)

At the terminal velocity vgs there is no longer any acceleration (dv/dt = 0), and the drag

force is equal and opposite to the accelerating force component, so that
9 mgsina
v =

ss ACd
If m = 0.1418 kg, a = 10.81 degrees = sin~1(3/16), and vss =8.60 m/s, then the product of
the frontal area A and the drag coefficient Cy is

mgsina  (0.1418)(9.81)(3/16)
v (8.60)2

ACy = = 0.00353 kg/m

To use the scripts ‘car2sol.m’ and ‘cardragsol.m’ to determine the time T for V to reach
(0.999)(8.60) = 8.5914 m/s fix the inputs of m = 0.1418 kg, o = 10.81 deg, and AC; = 0.00353
kg/m3n and then call ‘car2-sol’ and input various guesses for T, iterating toward “Final speed
= 8.5914 m/s”. For example:

Try T = 10 secs, get V = 8.362 m/s

Try T = 20 secs, get V = 8.594 m/s

Try T = 19 secs, get V = 8.5919 m/s

Try T = 18.9 secs, get V = 8.5917 m/s

Try T = 18.8 secs, get V = 8.5915 m/s

Try T = 18.7 secs, get V = 8.5913 m/s

Try T = 18.75 secs, get V = 8.5914 m/s (close enough)

This result is not very accurate, because of round-off error. The value 0.00353 kg/m obtained
in (b) above for the parameter aCy was rounded off to three significant figures. If we assume
that AC} is exactly equal to 0.00353 kg/m, and work backwards we find that v is not exactly
equal to 8.60 m/s but is actually 8.5958 m/s correct to five significant figures. If we repeat
the exercise we find that at T = 17.45 sec, the final speed is 8.5872 m/s which is 99.9 % of
8.5958 m/s. Both of the previous results assume that there are no errors in the integration
carried out by MATLAB. MATLAB is pretty good, but it does make small errors which can
accumulate over a long integration. If we let it run for long times 7', we find that throughout
the range from T' = 35 secs to T' = 70 secs, the final speed is essentially constant (to five
significant figures) at 8.5970 m/s; i.e., MATLAB disagrees, in the fourth significant figure,
with both vgs = 8.6000 m/s and vgs = 8.5958 m/s.

In Problem 4(b) of Problem 16.7, it was found that with viscous friction the time to reach
99.9% of the terminal velocity was in the neighborhood of 28.5 to 32.5 seconds. Here, with
form drag, the same speed is reached in about 17.45 to 18.75 seconds. With form drag
(quadratic speed dependence) the terminal velocity is approached more quickly than is the
case for viscous friction (linear speed dependence). The time histories of velocity for the two
models are shown in the Fig. 2(d)-1.
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Figure 16.8.1: Fig. 2(d)-1

To explain why a car with quadratic drag approaches the terminal velocity more rapidly than a
car with linear drag, compare the constitutive equations for the retarding forces as shown in Fig.
16.8.2. At all speeds below the common terminal velocity there is less retardation with form drag
than there is for viscous friction. This means that, when both cars have the same velocity, the
car with form drag accelerates faster than the car with viscous friction. Now the the slopes of the
velocity curves in Fig. 16.8.1 represent the accelerations of the cars. Thus at each speed, the form
drag curve will have a steeper slope than the viscous friction curve. As a consequence the form
drag curve must approach the terminal velocity more quickly than the viscous friction curve.
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Constitutive Equations for Retarding Forces
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Figure 16.8.2: Fig. 2(d)-2

NOTE re MATLAB technique: To plot two graphs in the same Figure, as in Fig. 2(d)-1. Run
"car2sol’ to obtain a plot of viscous friction case. Then, in the MATLAB Command Window, type
“hold on”. (this keeps the plot in the Figure screen). Next run ’car2sol’ (with the same time
interval 7). The plot for the form-drag case then appears on top of the existing plot. To print
captions such as ”Viscous Friction” on the interior of the plot, type, in the MATLAB Command
Window, “gtext(’Viscous Friction’)”. When you hit ‘return’ the cursor on the Figure turns into a
giant cross which can be moved by the mouse. Then when you click the mouse the caption appears
on the Figure starting from the intersection point of the cross. You can make as many additional
plots as you wish, as long as "hold’ is ’on’. To return to normal one-at-a-time plots, type “hold off”
in the MATLAB Command Window.

car2sol.m

Download

% car2sol.m

% This program calculates the velocity of a car rolling down an incline
% under the influence of form drag.

% The differential equation used to model the car is:

% m dv/dt = m g sin(alpha) - A Cd v"2

% This equation is stored in a separate m-file ’car-drag-sol’ called by this
% program (a tedious MATLAB detail).

Declare global parameters (a MATLAB detail).
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)

global g alpha ACd m

)

% Input parameter values.
)

g= 9.81;

m = input(’Enter the mass of the car in SI units: ’);

alpha = input(’Enter the angle of the incline in degrees: ’);
ACd = input(’Enter the value of the parameter "A*Cd" in SI units: ’);

o
h
% Input initial conditions.

%

vO = input(’Enter the initial (non-negative) velocity in SI units: ’);

o
h
% Input integration time.

%

tspan = input(’Enter time interval of integration in seconds:

%

% Call a numerical integration algorithm.
%

[t,v] = ode45(’cardragsol’, tspan, v0);
%

% Plot the results.

%

plot(t,v)

xlabel(’Time [seconds]’)

ylabel(’Speed, [meters/second]’)
title(’Speed of car on incline’)

grid

%

% Print out speed at final instant.

%

N = max(size(v));

Finalspeed = v(N)

cardragsol.m

Download

% cardragsol.m

% This function, which is called by the program ’car2_sol.m’

)

, contains the

% equation of motion of a car on an incline subjected to form drag. It

% is assumed that the car velocity is nonnegative.

% Introduce V_dot, the time derivative of v.

function V_dot = cardragsol(t,v)

%

% Declare global parameters (a MATLAB detail).

h
global g alpha ACd m
h

% The mathematical model of the car provides an equation for v_dot.

%

V_dot = g * sin(alpha * pi/180) - (ACd/m) * v~2;

%
% That’s all there is to it!
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16.9 Engine Block Vibration 1

Weight of engine block W = 200 pounds, stiffness & = 18,000 pounds/inch, damping coefficient
b = 2 pounds /inch/second. Input force is f(t) = f, sin Qt with f, = 2 pounds.

r (t)

/|y

W

Figure 16.9.1: Engine Block Subjected to Sinusoidally Varying Force

Let y(t) be displacement of engine block from equilibrium position. Geometric compatibility re-
quires that the block velocity v(t) satisfy v = dy/dt. Restoring force is fr = ky, damping force
is ffric = bu, input force is f(t) = f,sin€Q¢, and Newton’s second law is f,, = mdv/dt with
m = W/g. When these constitutive equations are substituted in the force-balance requirement
fm = f(t) — fx — ffric and v is replaced by dy/dt the result is the equation of motion
2
m% —l—b% + ky = fosin Qt
(a) If the input force is considered to be the imaginary part of the complex excitation fyexp(i€2t),
it is appropriate to consider the steady-state response to be the imaginary part of the complex
response Aexp(i€2t) where A is the complex amplitude of the response , which is to be found
by requiring the complex response to satisfy the equation of motion. Substitution of y =
Aexp(i2t) into

d? d :
mﬁg + bditJ + ky = faexp(iQt)
yields
fa
A= do
k+iQb — m?2

(b) (i) At very low frequencies A — f,/k.
(ii) At very high frequencies A — — f,/mQ?2.

(iii) The magnitudes of (b) and (c) become equal when Q* — Q2 = =k/m = w?.
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()

In terms of the behavioral parameters w, and ¢ defined by

wg = L and 2w, = —
m
the ratio Z of A(£2) to A(0),
7 AQ) 1

AQ)  (1-%) i

is a convenient dimensionless form of the complex amplitude A. The engine displacement
amplitude has its peak magnitude when |Z|? is a maximum. Now
1
2 2
(1-52)2+4¢2 5

w3

2] =

and its maximum occurs when its derivative with respect to Q2 /w? vanishes; i.e., when

d|z|* 0 2
—2(1— )44 =
dQ?/w? ( wQ) =0

o

The solution of this equation for €2 yields
Qpeak: = WoV 1- 2<2

To evaluate | Z(Qpeqr)|, insert Q2 , = w?(1 —2¢?) in the preceding expression for | Z|* to get

pea
1 1
Z Q 2 == =
A= a0 a0 T a0
so that )
Z(Qpear)| = —F—
’ ( pea )| 2<m
For comparison, note that |Z(w,)| = 1/2¢. The actual peak occurs at a frequency that is

smaller than the undamped natural frequency w, by a factor of /1 — 2¢2 and the magnitude
of the peak is greater than the magnitude of the response at Q = w, by the factor 1/4/1 — (2.
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Figure 16.9.2: Bode Plot of Magnitude of A(€2)/A(0) in dB vs. Frequency Ratio Q/w,
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Figure 16.9.3: Bode Plot of Phase Angle vs. Frequency Ratio £/w,
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(e) The Bode plots shown in Fig.2 and Fig.3 were obtained by running the script enginebodesol.m.

enginebodesol.m

Download

% enginebodesol.m makes Bode Plots for Engine Block Vibrationm,
% in terms of the amplitude ratio Z = A(OMEGA)/ A(omegaO) and the
% frequency ratio OMEGA/omega0O (OmRa = Omega Ratio).

clear variables
zeta = 0.01035;

OmRa = logspace(-2, 2, 200);
unity = ones(1,length(OmRa));
Re = unity - OmRa."2;

Im = 2% zeta *0OmRa;

Dsq = Re.”2 + Im."2;

MagZsq = unity ./ Dsq;

dB = 10* logl0(MagZsq) ;

phi = 57.3 * atan2( -Im , Re );

semilogx(OmRa,dB), title(’Magnitude of Response Amplitude Ratio’),
xlabel (’Frequency Ratio, OMEGA/omega0  [dimensionless]’),
ylabel(’ |Z(OMEGA) /Z(0) |, Decibels [dimensionless] ’),

pause

semilogx(OmRa, phi), title(’Phase Angle of Response’),

xlabel (’Frequency Ratio, OMEGA/omega0  [dimensionless]’),
ylabel(’Phase angle [degrees]’)
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16.10 Engine Block Vibration 2
Repeat Problem 16.9, but with f(t) = CQ?sin Qt with C' = 0.005 pound-sec?.
(a) Substitution of y = Aexp(ifdt) into
mil;g + b% + ky = CQ%exp(iQt)
yields o2
=
(b) (i) At very low frequencies A — CQ?/k.
(ii) At very high frequencies A — —C'/m.

(iii) The magnitudes of (b) and (c) become equal when Q* — Q2 = =k/m = w?.

(¢) In terms of the behavioral parameters w, and ¢ defined by

k b
wi=— and 20w,=—
m m
the ratio Z of A(f2) to A(c0),
-

Aleo)  (1-%) +ics

is a convenient dimensionless form of the complex amplitude A. The engine displacement
amplitude has its peak magnitude when |Z|? is a maximum. Now

Q4

x

|Z|2: 02 =
2 202
( _LTE) + 4¢ Wz

and its maximum occurs when its derivative with respect to Q2 /w? vanishes; i.e., when

0? 0?2 0?2 04 0?2
2;3[(1 - ;3)2 + 4<2c7§} - ;g[—2(1 - uTg) +4¢% =0

The solution of this equation for Q2 /w? yields

02 1

wZ  1-2(2

so that
Wo

Q eak — T ——
peak =122

(d) To evaluate |Z(Qpeqr )|, insert Q2 /w2 =1/(1 —2¢?) in the preceding expression for |Z|? to

peak
get
(71 12 2)2 1
—2¢
|Z(Qpear)* = =
o W B T (R L
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so that
1

21—

Comparing this result with that of Problem 16.9, we note that the actual peak here occurs at a
frequency that is greater than the undamped natural frequency w, by a factor of 1/4/1 — 2¢2,
but the magnitude of the peak is the same. It is greater than the magnitude of the response

at Q = w, by the same factor 1/4/1 — (2.

’Z(Qpeak” =

Magnitude of Response Amplitude Ratio
40 T

20 B

20 i

|Z(OMEGA)/Z(0)|, Decibels [dimensionless]

1

-80 1 1
10 10" 10° 10" 10
Frequency Ratio, OMEGA/omega0 [dimensionless]

Figure 16.10.1: Bode Plot of Magnitude of A(€2)/A(0) in dB vs. Frequency Ratio Q/w,
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Figure 16.10.2: Bode Plot of Phase Angle vs. Frequency Ratio ©/w,

(e) The Bode plots shown in Fig. 16.10.1 and Fig. 16.10.2 were obtained by running the following
script (adapted from the Script for Problem 16.9):

enginevibration2sol.m

Download

% enginevibration2sol.m makes Bode Plots
% in terms of the amplitude ratio Z = A(OMEGA)/ A(omegaO) and the
% frequency ratio OMEGA/omega0

clear variables
zeta = 0.01035;

OmRa = logspace(-2, 2, 200);
unity = ones(1,length(OmRa));
Re = unity - OmRa."2;

Im = 2x zeta *0OmRa;

Dsq = Re.”2 + Im."2;

Nsq = OmRa."4

MagZsq = Nsq ./ Dsq;

dB = 10* logl0(MagZsq);

phi = 57.3 * atan2( -Im , Re );

semilogx(OmRa,dB), title(’Magnitude of Response Amplitude Ratio’),
xlabel (’Frequency Ratio, OMEGA/omega0  [dimensionless]’),
ylabel(’ |Z(OMEGA) /Z(0) |, Decibels [dimensionless] ’),

pause

semilogx(OmRa, phi), title(’Phase Angle of Response’),

xlabel (’Frequency Ratio, OMEGA/omega0  [dimensionless]’),
ylabel(’Phase angle  [degrees]’)
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16.11 Engine Block Vibration 3

The equation of motion
d’y . dy
el A N4
"z
obtained in Problem 16.9 can be rewritten in the standard form for state-determined systems by

taking y(t) and v(t) = dy/dt as state varibles and writing the state equations in matrix form

+ky = f(t) = fosinQt

d Y 0 1 y 0 '
n = + & sin Qt
dt v _k _b v 1 m
m m
£ X 10°  History of Displacement JX 10%  History of Power Input

Power Input [Watts]

Displacement [meters]
o

o 2 4 6 0 2 4 6
Time [Seconds] Time [Seconds]

% 10° Power Dissipated x10°  History of Power Stored

N w
Ul w Ul

=
ol

|
by

4 6 0 2 4 6
Time [Seconds] Time [Seconds]

Ay

0.

Power Dissipated [Watts]
(¢] N
Power Flow into Storage [Watts]

|

0 ,llllll
0

Figure 16.11.1: Engine Start-Up when Q = Qprear/3

One of the desired outputs is the state variable y(¢). The other outputs desired are Py, = f(t)*v(t);
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Pjiss = bv xv; and Psoreq = Py — Piiss- The values of the physical parameters are:

m = 200 pounds =
k = 18,000pounds/inch =
b = 2 pounds/inch/second =
fa = 2 pounds =
Qpreak/3 = 62.1 rad/sec =
Qprear = 186.4 rad/sec =
3Qbreak = 559 rad/sec =

90.7 kg

3.152e6 Newton/meter

350 Newtons/meter/second
8.90 Newtons

62.1 rad/sec

186.4 rad/sec

559 rad/sec

The plots shown in Figs. 6-8 were obtained by running the following MATLAB scripts. The input
script is called ‘engstartsol.m’ and the script called by ‘engstartsol.m’ is called ‘eqengstartsol.m’.

15

057
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0.25
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x 10
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-0.05
0
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Power Flow into Storage [Watts]
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Figure 16.11.2: Engine Start-Up when Q2 = Qpcqk
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Figure 16.11.3: Engine Start-Up when € = 3Qpcqk

engstartsol.m

Download

% ’EngStartsol.m’, a MATLAB script that produces plots of

% (i) position vs. time

% (ii) input power vs. time

% (iii) dissipated power vs. time

% (iv) power flow into storage vs. time

% for the response of an engine block, with mass m, stiffness k,

% and damping parameter b, when the system starts from initial conditions
%y =0 and v = 0 under the action of a suddenly applied sinusoidal force
% fa sin OMEGA t, at t = O.

clear variables

global m k b fa Om

% Input parameters

m = 90.7; %input (’Enter the mass "m" in kilograms ’);

k = 3.152e6; Yinput(’Enter the stiffness "k" in Newtons/meter ’ );

b = 350; %input(’Enter the damping constant "b" in kilograms/sec ’);

fa= 8.90; %input(’Enter the magnitude "fa" of the suddenly applied force in Newtons ’);
Om= input(’Enter the frequency OMEGA of the suddenly applied force in rad/sec ’);

% Input initial conditions.
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yo= 0;

vO0= 0;

tspan = input(’Enter the duration "T" of the desired time history, in seconds ’);
X0 =[y0; v0o1;

% Integrate equations of motion

[t,X] = ode45(’EqEngStartsol’, tspan, X0);

% Construct power variables

Pin = fa * sin(Om*t) .* X(:,2);

Pdiss = b*X(:,2).72;

Pstored = Pin - Pdiss;

% Plot results

subplot(221) ,plot(t,X(:,1)), title(’History of Displacement’),
xlabel(*Time [Seconds]’), ylabel(’Displacement [meters]’), pause

subplot (222) ,plot(t,Pin), title(’History of Power Input’),
xlabel(’Time [Seconds]’), ylabel(’Power Input [Watts]’), pause

subplot (223) ,plot(t, Pdiss), title(’Power Dissipated’),
xlabel (’Time [Seconds]’), ylabel(’Power Dissipated [Watts]’), pause

subplot(224) ,plot(t, Pstored), title(’History of Power Stored’),

xlabel(’Time [Seconds]’), ylabel(’Power Flow into Storage [Watts]’)
\end{verbatim}

EqEngStartsol.m

Download

% ’EqEngStartsol.m’ Provides equation of motion for initial transient
% to be integrated by script ’EngStart-sol.m’

function Xdot = EqEngStartsol(t,X)

global m k b fa Om

Xdot = [0 1 ; -k/m -b/m ]*X + [ 0 ; fa/m*sin(Om*t)];

\end{verbatim}
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16.12 Plate On Springs 1

m JYk

A

Figure 16.12.1: Steel Plate on Springs

The displacement gy, measures the vertical extension of the four springs from the equilibrium
configuration where the weight of the plate mg is balanced by initial compressive forces in the
springs. The excess tensile force in each spring due to a displacement yy, is fr; = keyr (i =1,---,4).
The total vertical spring force is fr = 4fx; = 4kcyr = kyi. The constitutive equation for the mass
is Newton’s law f,, = mdv,,/dt. When friction is absent and there is no external load, the force
balance equation is simply —fr = fm, or

dvm, duy,

or —kyp=m—

ke =
Y =M= dt

on using the geometric compatibility condition v, = wv;. The standard form of the differential
equation (See Lecture notes of 9/15/99) is

% (E)
dt? m Yk

=0
Guess a solution of the form y, = Aexp(At), which leads to the characteristic equation
2 2
AM+w;=0

where w? = k/m. The roots of the characteristic equation are +iw, and —iw,, and the general
solution of the differential erquation is

yr = Aexpl(iwet) + B exp(—iwt)

An alternative form of the general solution can be obtained by introducing Fuler’s formula exp(iw,t) =
coS Wyt + 7 sinwyt.
yr = Crcoswet + Cosinw,t

These two forms of solution are equivalent if the constants of integration are related as follows:

1
Cr = A+B A= (Ci+Cy)

C, — A-B B:%(Cl—(]g)
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The given initial conditions are yx(0) = 0 and dyx/dt(0) = v,. Using the trigonometric form of the
general solution, we have

Y

T —Chw, sinwet + Cow, cos wyt

Yy = C1 coswet + Co sin w,t and

Setting t = 0 yields
v
Ci=0 and Cy=—2
Wo
so the displacement history of the plate, starting from rest at the equilibrium position with the

initial velocity v, is
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16.13 Plate On Springs 2

The unloaded plate system here is the same as that considered in Problem 16.12. The mass of the
plate is m and the effective stiffness of the four springs is k. The natural frequency of the unloaded
system is w, where w? = k/m. When the book of mass m/2 is attached to the plate, the resulting
system has mass 3m/2 and stiffness k, and its natural frequency of free oscillation is w; where
w} = 2k/3m. The oscillations in both Case I and Case II involve motions with the book attached
to the plate. The difference between Cases I and II lies in the initial conditions, not in the basic
system.

(a)

(b)

()

The ratio of frequencies of Case I oscillations to unloaded plate oscillations is w; /w, = /2/3 =
0.816.

The ratio of frequencies of Case II oscillations to unloaded plate oscillations is wy/w, =
\V/2/3 = 0.816.

In the (book + plate) system there is an additional gravity load of mg/2, so the equilibrium
position of the (book + plate) system is beneath the equilibrium position of the unloaded
plate by a distance of A = mg/2k.

In Case I the system starts from rest at the equilibrium position of the unloaded plate.
Viewed from the equilibrium position of the (book + plate) system, the initial displacement
yr(0) = A, and the initial velocity is dyg/dt(0) = 0.

In Case II there is an initial velocity dyi/dt(0) = —wv; imparted by the impact of the book
upon the plate. This initial velocity can be determined by applying conservation of linear
momentum to the impact. Immediately before the impact the plate has no momentum while
the book has a downward momentum of 1/2muv,. Immediately after the impact the (book
+ plate) has the downward momentum 3muwv;/2. For these two momenta to be equal it
is necessary that v; = v,/3. The initial conditions for Case II are thus: y;(0) = A and

dyi/d(0) = —v,/3.

The general solution for both Case I and Case II is the same as the general solution for
Problem 16.12, except that w, is everywhere replaced by wy. For Case I, the initial conditions
require
A We 3y — o —
ye(0) =A=C and E(O) =0 = Cow;

so that
yr(t) = A coswit

where A = mg/2k, and w? = 2k/3m.
For Case 11, the initial conditions require
A= W ) — _py —
ye(0) =A=C and E(O) = —v; = Chw;
so that v
yr(t) = Acoswit — L sinwt
w1

where A = mg/2k, v1 = v,/3, and w? = 2k/3m
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16.14 Mousetrap Dynamics 1

The solution for this problem is not available.
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16.15 Mousetrap Dynamics 2

The solution for this problem is not available.
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16.16 Mousetrap Dynamics 3

The solution for this problem is not available.
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16.17 Mousetrap Dynamics 4

The solution for this problem is not available.
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16.18 Hydraulic Elevator Design

(a) As the elevator falls, there is both the constant force due to the acceleration of gravity and a
damping force which is proportional to (and in a direction opposing) the velocity.

YF =ma
—mg — cv = ma

ct +mi = —mg

Note that the x coordinate is defined to be positive in the up direction. Therefore, mg is in
the negative x direction. The cv term must always act in opposition to the direction of the
velocity. (If the mass is moving in the negative x direction, velocity is negative, and the force
acts in the positive direction to slow the fall, for instance.)

When the elevator suddenly fails, whatever force has been compensating for the force of
gravity (from tension in elevator cables or force applied by the hydraulic lift, etc) suddenly
disappears, resulting in a net step in force. Thus, the fall of the elevator can be well-modeled
as a lst order system with a step input:

et +mi = —mg - us(t)

1
(cs +ms®) X (s) = —mgU(s) = —mg~—

s
mg

X(s) =  s2(c+ ms)

Note that the velocity and acceleration are just the first and second derivatives of x(t):

V(s) = sX(s) = —ﬁ
A(s) = 82X (s) = - —T?gns

The acceleration, A(s), should look familiar; it is just the Laplace domain representation of a
1st order system. We know the response will start at some value (which we can find by using
the I.V.T.) and go to some steady state value (which we can find by using the F.V.T.) via an
exponential decay with some time constant. Rewriting A(s),

o 2y e

(5) = #X(9) = et
it should be clear to you that the time constant is:
2000k

Lom 000kg 1)

c 2000kg/sec
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Using the Initial Value Theorem:

A(0) = lim s mg/e _ —gmjc _

_ 2
5—00 %S—i— 1 m/c 9= 08 [m/S ]

This is what wed expect from the basic physics. Using the Final Value Theorem:

A(oo) = msrzgﬁ =0 [m/s?

therefore

a(t) = —9.8¢7! [m/s?]
v(t) = 9.8¢ 7"+ Oy [m/s]

To match the initial condition that v(0)=0,

v(t) = 9.8¢7" — 9.8 [m/s]

Position can be obtain by taking another integral:

z(t) = —9.8¢ 7" — 9.8t + Cy

Then we need to match i.c.s again:

z(t) = —9.8¢ 7" — 9.8t + 9.8

You can use the step() function in MATLAB to plot the step response of a system (given its
transfer function), rather than deriving it by hand (as above).

Figure 16.18.1 are plots of position, velocity and acceleration. We can first solve to find the
time at which the elevator has reached 10 meters. This happens at about t = 1.87 seconds
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Figure 16.18.1: Plots of Position, Velocity and Acceleration

The total force on a passenger must satisfy F' = ma, where the acceleration is shown (over
time) in the plot above, and the mass is 100 kg.

We can calculate the response of the elevator hitting the spring-damping system at the bottom
of the shaft by calculating a FREE RESPONSE from the initial conditions and a FORCED
RESPONSE due to a step in force (of the mass of the elevator times gravity). For conve-
nience, well redefine time such that t=0 when the elevator hits and x=0 where the elevator
hits.

To get the velocity to settle within .1 m/s as quickly as possible, well aim for a response which
overshoots by just under 0.1 m/s. This would be close to critically damped. (The velocity at
impact is about 8.3 m/s, so a response which slows down and then reverse to move upward
at no more than 0.1 m/s would have an overshoot of about 1.2%.)
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Its fine to have a response which overshoots by more than this amount, but note that this
will generally increase the time needed for the system to settle.

Figure 16.18.2 shows the response with the following parameters:

k = 6990 [N/m]
¢ = 2000 + 5300 [Ns/m]

Acceleration
20

15

a (m/s 2)
L

-5
0 2 4 6 8 10
Velocity
5
0 &
Q
E
> 5
-10
0 2 4 6 8 10
Position
0

x (m)
JESs—

0 2 4 6 8 10
Time (seconds)

Figure 16.18.2: Plot of Position, Velocity and Acceleration with & = 6990 [N/m] and ¢ = 2000+5300
[Ns/m]
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Note that the acceleration requirement is barely met (under 20 m/s?) at t=0, and that the
position goes down to a minimum value of almost 3 meters!! (Thats a large of deflection in
the system...)

The system settles to within 0.1 m/s in about 1.24 seconds.

For a problem like this, you may find it convenient to write a MATLAB script or function, so
you can iterate through possible solutions and develop at intuition about the dynamics of the
system. (Here, since the system is allowed to overshoot, you can calculate the free and forced
responses for an underdamped second order system as in 2.27, given the initial conditions
(v=vhit) and step in force (m*g).

Below is a second alternative which puts more importance on minimizing the maximum
deflection. The settling time is a bit longer (2.4 sec; about 2x that of the previous solution).
The maximum deflection is cut by about 40% (from 3m to 1.8m). Figure 16.18.3 shows the
responses when k = 22,500 [N/m] and ¢ = 2000 [Ns/m)].
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Figure 16.18.3: Plot of Position, Velocity and Acceleration with k£ = 22,500 [N/m] and ¢ = 2000
[Ns/m]
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16.19 Servo Position Control

The solution for this problem is not available.
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16.20 Servo Frequency Compensation

The solution for this problem is not available.
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16.21 Servo Torque Disturbance

The solution for this problem is not available.

578



16.22 Plate On Springs Damped 1

The rigid plate of mass m is supported by four springs, each of stiffness k. and damping parameter
be. If yp is measured from the equilibrium position where

fi(t)

|- |-

Figure 16.22.1: Plate on Springs with Damper

the weight of the plate is balanced by the initial compression of the springs, the constitutive
equations are
dvm,

Jm = m-- Tri = kcyri Joi = beup; (i=1,---4)
Geometric compatibility requires that, for (i =1, - -,4),

_ dyri _ dyk
dt dt

Yki = Yk Um = Vb

Because there are four springs,

4 4
dyx dys,
fr 51 Ik Yk = Ky and f 51 fo o I

Finally force balance requires that
f@) = fe = fo = fm

which leads to the differential equation

Py | dyp
— +b—— + ky, = f(t
When the behavioral parameters w, and ¢ defined by
k b b
2
ws = — 20w, = — or =
o= ¢ - ¢ T
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are introduced, the equation takes the form

d?yp. dyy,
¢ Ik + 2{‘«‘)0% + wgyk =

f(t)
dt? m

(a) The desired behavioral parameters are w, = 5Hz(27 rad/cycle) = 31.4 rads/sec and (i)
¢ = 0.1, (ii) ¢ = 0.5, (iii) ¢ = 1.0, and (iv) ¢ = 1.5. With the plate mass fixed at 5 pounds,
or 5(0.4536) = 2.268 kilograms, the spring constant k£ must also be fixed at

k = mw? = 2.268(31.4)2 = 2236 Newtons/meter

in order to keep the undamped natural frequency, given by w2 = k/m, equal to 5 Hz. To
provide the desired values of ¢, the damping parameter b must be chosen to satisfy

b b
B 2V km B 2mw,

The b-values for the four cases are: (i) 14.24 kg/sec; (ii) 71,2 kg/sec; (iii) 142.4 kg/sec; (iv)
213.6 kg/sec. The decay time constants, 7 = 1/Cwq, for the first three cases are: (i) 0.318
secs: (ii) 0.0637 secs; (iii) 0.0318 secs. In Case (iv) the roots of the characteristic equation
are A = wo(—( + /(% — 1). The time constants are the negative reciprocals of the A-values,
so the longest time constant is the negative reciprocal of the smallest A

-1
Tiongest = — [31.4(—1.5 + /(152 - 1)} — 0.0834secs

The duration of the time histories in the four cases are 5 times the corresponding time
constants: (i) 1.59 secs; (ii) 0.319 secs; (iii) 0.159 secs; (iv) 0.417 secs.
The damped natural frequency wy, for cases with 0 < ¢ < 1, is given by

wqg = wov/1—¢?

For Case (i) wq = 31.26 rad/sec for ¢ = 0.1, and for case (ii) wq = 27.21 rad/sec. For Cases
(iii) and (iv), the eigenvalues are purely real, and wg = 0.

¢ or  b=20mw, = 2(2.268)(31.4)¢ = 142.4¢

The data for the four cases in Part (a) are assembled in the Table below.
Case (¢ k[N/m] b[N/m/sec] 7 [sec] 57 [sec] wq [r/s] C(wo

(i) 0.1 2239 14.25 0.3183  1.592 31.26 3.124
(i) 0.5 2239 71.25 0.06365 0.3183  27.21 15.62
(iii) 1.0 2239 142.5 0.03183 0.1592 0.0 31.42
(iv) 1.5 2239 213.8 0.08332 0.4166 0.0 47.13

In addition to these data, every case has m = 2.268 kg, f, = (5)(4.448) = 22.24 Newtons,
and the initial conditions, y;(0) = 0 and v;(0) = 0.

The time histories are obtained by inputting the above data into the MATLAB scripts. When
0 < ¢ <1, Cases (i) and (ii), the script to be used is '"MassSprgDmprl.m’. When ¢ = 1, Case
(iii), the script to be used is "MassSprgDmpr2.m’, and when 1 < ¢, Case (iv), the script to
be used is '"MassSprgDmpr3.m’.
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Case (i) Case (ii)
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Figure 16.22.2: Part (a)
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Displacement [meters]

Time History of Displacement Response

0.018

0.016

0.014
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0.01f

0.008 |-

0.006 |-

0.004

0.002

Case (iv)

0
0

The results are displayed in Fig. 16.22.2. In Fig. 16.22.2 the duration of each response was
5 times the decay time constant of each case. An alternative comparison of the four Cases in
Part (a) is displayed in Fig. 16.22.3 where all responses are plotted on the same time axis for

0.1

0.15

0.2 0.25

0.3

Time [seconds]

Figure 16.22.3: Part (a)

a duration of 0.5 seconds.

The desired behavioral parameters are wy = 31.42 rad/sec (5 Hz) with the following values
of damping ratio: Case (i) has ¢ = 0.1; Case (ii) has ¢ = 0.3; Case (iii) has ( = 0.5; Case (iv)

0.35

has ¢ = 0.7. From the definitions of wy and ¢ follow the formulas

b=

2¢mwy

-0

The data for Part (b) are assembled in the following Table.

Case (
(i) 0.1
(i) 0.3
(iii) 0.5
(iv) 0.7

k [N/m]
2262
2460
2085
4390

2
k= ;7??2 and
b [N/m/sec] T [sec]
14.32 0.3167
44.02 0.1012
82.28 0.05513
139.7 0.03247
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57 [sec]
1.584
0.5060
0.2757
0.1624

wa [r/s]
31.42
31.42
31.42
31.24

0.4

(Wo

0.3167
0.1012
0.0551
0.0325

0.45

0.5



In Part (b) all four Cases are handled by the MATLAB script 'MassSprgDmprl.m’. The
plots for durations of 5 times the decay time constant are displayed in Fig. 16.22.4.

Case (i) Case (ii)
0.02 ‘ 0.014 :
— __0.012
5 0.015 %
Q 0. i
< 5 0.01
E E
% 001l E 0.008
5 £ 0.006
Q Q
© ©
2 0.005} @ 0.004
a [a)
0.002
0 : : : 0 : : :
0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8
Time [seconds] Time [seconds]
Case (iii) x 107 Case (iv)
0.01 6
7 0.008 | wO
L L
() ()
4
% 0.006 | %
c c
() ()
S S 3
© 0.004} e
« 8 2
o o
D 0
0 0.002 Q4
0 : : : 0 : : :
0 0.1 0.2 0.3 0.4 0 0.05 0.1 0.15 0.2
Time [seconds] Time [seconds]

Figure 16.22.4: Part (b)
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Time History of Displacement Response
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Figure 16.22.5: Part (b)

An alternative plot in which all four cases are plotted against the same time scale for a
duration of 0.5 seconds is displayed in Fig. 16.22.5.

(c) The desired behavioral parameters are 7 = 0.10 seconds with (i) ¢ = 0.3, (ii) ¢ = 0.5, (iii)
¢ =0.7, and (iv) ¢ = 0.9. From the definitions of 7 and ¢

1

T = CT 2<w0 = —
o
follow the formulas 5
m m
k = W and b = T

The data for Part (c) are assembled in the following Table
Case ¢k [N/m] b [N/m/sec] 7 [sec] 57 [sec] wq [r/s] C(wo

(i) 0.3 2520 45.36 0.1 0.5 31.80 10
(i) 05 9072  45.36 01 05 1732 10
(iii) 0.7 4629  45.36 0.1 0.5 1020 10
(iv) 0.9 2800  45.36 01 05 4843 10
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In Part (c) all four cases are handled by the MATLAB script 'MassSprgDmprl.m’. The
responses for durations of 5 times the decay time constant are plotted against the same time
axis in Fig. 16.22.6.

Time History of Displacement Response
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0.01F _
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0 | | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time [seconds]

Figure 16.22.6: Part (c)
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16.23 Plate On Springs Damped 2

The eigenvalues \ for the cases handled by "MassSprgDmprl.m’ (0 < ¢ < 1) are complex conjugates
of the form
A= —Cw, + 1wy and A= —Cw, — twy

The eigenvalues for the case handled by 'MassSprgDmpr2.m’ (( = 1) are a pair of repeated real
roots: A = —w, and A = —w,. The eigenvalues for the case handled by 'MassSprgDmpr3.m’ (1 < ()
are A\ = wo(—C+ /(2 —1) and A\g = wo(—C¢ — /(% — 1). The values of (w, and wy for the various
cases are listed in the Tables in Problem 16.22. The eigenvalues in the upper half of the complex
plane for Part (a) are plotted in Fig. 16.23.1. The complex roots for Cases (i) and (ii) have mirror
image roots in the lower half-plane.

40

Imag

35 b

Case (i
X

30+ B
Case (i)
X

251 bl

15 bl

10 bl

Case (iv) Case (i) Case (iv) Real

Figure 16.23.1: Eigenvalues for Part (a)

The eigenvalues in the upper half of the complex plane for Part (b) are plotted in Fig. 16.23.2, and
the eigenvalues in the upper half of the complex plane for Part (c) are plotted in Fig. 16.23.3.
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Figure 16.23.2: Eigenvalues for Part (b)
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Figure 16.23.3: Eigenvalues for Part (c)

It is instructive to compare the responses from Problem 16.22 with the locations of the eigenvalues
for Parts (a)-(c).
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16.24 Plate On Springs Damped 3

Here the system of Problem 16.22 is excited, not by a suddenly applied force, but by the impact of
a rubber ball at t = 0, which produces an initial velocity v(0) = v,.

(a) The initial velocity is obtained by applying conservation of linear momentum to the impact.

Downward momentum before impact = (2pounds)(10 ft/sec)
Downward momentum after impact = (5pounds)(v,) + (2pounds)(-3 ft/sec)

Equating these, yields v, = 5.2 ft/sec = 1.5850 m/s (for convenience, it has been assumed
that the positive direction for y; and v = dyy/dt is downwards).

(b) A damped natural frequency of 5 Hz with ¢ = 0.3 is obtained with the parameters found for
Case (ii) of Part (b) in Problem 16.22: k = 2460 N/m, and b = 44.02 N/m/s.

(c) When these parameters, plus the conditions f, = 0, y%(0) = 0, and v(0) = 1.5850 m/s, are
input to the MATLAB script "MassSprgDmprl.m’ the response history labeled ”Response to
impact of ball” in Fig. 16.24.1 is obtained.

Time History of Displacement Response
0.035 T T T T T

0.03

0.025

0.02

0.015

Response to suddenly applied force

0.01

0.005

Displacement [meters]

Response to impact of ball

-0.005

-0.01

-0.015 | | | | | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time [seconds]

Figure 16.24.1: Comparison of responses
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(d) In Fig. 16.24.1 the response to the impact of the ball is compared to the response of the same
system to a step-function force of 5 pounds (Case (ii) of Part (b) in Problem 16.22). In both
cases the motion starts from the original equilibrium position of the system. In both cases the
mass oscillates for a few cycles and comes to rest. The damped natural frequency and damp-
ing ratio is the same in both oscillations. The final rest position is the same as the original
equilibrium position in the ball-impact case, while the final rest position in the step-function
force case is the new equilibrium position under a constant load of 5 pounds. The initial
velocity in the step-function force case is zero (displacement response starts with zero slope),
while the initial velocity in the ball-impact case is large due to the impact (displacement
response starts with a steep slope). For the particular magnitudes of the excitations given
the oscillation in the ball-impact case is more intense than the oscillation due to the suddenly
applied force.
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16.25 Plate On Springs Damped 4

Due to the application of a 1.0 Newton step-force, the system oscillates at its damped natural
frequency wy about the new equilibrium position y; = A. From the given Displacement Response
plot, the equilibrium offset A can be estimated to be A = 4.4 x 10~* meters. The damped natural
frequency can be estimated by counting the cycles, 10, in 2.0 seconds, which gives a damped
period Ty = 0.2 seconds, and wg = 27 /Ty = 31.4 rad/sec. The logarithmic decrement LDR can
be estimated by measuring the ratios of successive peak amplitudes. This is generally a difficult
measurement to make accurately. One way to increase the accuracy is to make a large number of
measurements based on different pairs of successive peaks, and average the results. Draw a line
across the plot at ¥y = A and measure the amplitudes of several peaks. Since only the ratio of
successive peaks will be used, the measurements can be in terms of any convenient length unit.
The measurements below are in millimeters.

Station Amplitude Ratio

0 6.22 —

1 4.86 0.781
2 4.00 0.823
3 3.08 0.770
4 2.56 0.831
5 1.94 0.758
6 1.68 0.866

The average of these first six ratios is 0.805, so the estimate for the LDR is in 0.805 = —0.217.

(a) The estimated stiffness is

k= % = ﬁ?()—‘l = 2270 Newtons/meter
(b) To estimate the mass m, when the stiffness k is known, it is necessary to know the undamped
natural frequency w,. At this point we know only the damped natural frequency wy. We
can postpone estimation of the mass m until the damping ratio ¢ is estimated in (c) below,
or we can assume, since more than ten cycles of oscillation are visible, that the damping is
sufficiently light to permit us to make the approximation that w, ~ wq, in which case

k 2270
me— = = 2.30 kg
wq

(31.4)2

(c) To estimate the damping parameter b, we need to know the damping ratio (. The damping

ratio follows from the log decrement ratio, LDR, according to the formula:
2= LDR?

w2+ LDR?

Insertion of the estimation LDR = —0.217 yields ¢ ~ 0.069. (Note: With this value of ¢ the
undamped natural frequency is estimated as follows
_ wd 31.4
S V1- /1 (0.069)
With this estimate for w, the mass m, previously estimated in (b) above at 2.30 kg, would
now be estimated to be 2.29 kg. The damping parameter b is then estimated as

b = 2¢wym ~ 2(0.069)(31.5)(2.29) = 9.95 kg/sec, or 9.95 N/m/sec

Wo = 31.5 rad/sec
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16.26 Plate On Springs Damped 5

With two plate-on-springs units face-to-face, the effective stiffness of the combined system is k =
1000 N/m, and the effective damping parameter is b = 10 N/m/sec. For free vertical motion of
the mass m = 2.0 kg, the displacement g, from the equilibrium position of the model satisfies the

equation

Pye  dyg
L AL Ly A
Mgz T TR

(a) The undamped natural frequency w, for the model is

k 1000
Wo = {/ — =/ —— = 22.4 rad/sec, or f, = Yo _ 356 Hz
m 2 27

(b) The damping ratio ¢ for the model is
b 10

= = =0.1116
¢ 2wom  2(22.4)(2)
(¢) The decay time constant for the model is
1 1
=———— = 0.400sec

T

T (wo  (0.1116)(22.4)
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16.27 Plate On Springs Damped 6

To obtain a state-determined system, introduce the vertical velocity v of the plate. The geometrical
compatibility requirement is

dy
bt A
dt
The constitutive equations are
fspm'ngs = ky and fdamping =bv
and the force balance requirement is
fm = _fsprings - fdamping

The dynamic state equations are two first-order differential equations for y and v

& _ o,

at

dv 1 k b
2= f() = gy = =
dt mf() my mv

(a) The deflection A under the weight mg is A = mg/k so the mass m is given by

o A (3000)(0.007)

— 214k
g 9.81 &

The undamped natural frequency is w, = \/k/m = 1/3000/2.14 = 37.4 rad/sec, and the
damping parameter is

b = 2Cw,m = 2(0.5)(37.4)(2.14) = 80.0 N/m/s

(b) The dynamic state equations can be rewritten in matrix form

(v 0 1 y . 0
dt | kb v Ja
m m m
or
d
S X=Ax+Bf,
where
y 0 1 0
x = A= k b B=q ,
! “m T m m

where f, is the magnitude of the constant applied force. These equations can be integrated,
from prescribed initial values of y and v at ¢ = 0 by the MATLAB command ”ode45”. A
possible script for doing this is displayed at the end of the problem.

(¢) When the scripts above are run with the following inputs

m = 2.14 kg
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k = 3000 N/m
b = 80.0 N/m/s
fa = mg = (2.14)(9.81) = 21.0 Newtons

the following three plots are obtained for a time interval of T = 0.35 seconds. There is very
little activity in the interval between ¢ = 0.35 and ¢ = 2.0 seconds.

R x10° Time History of Displacement
T T
8r i
7k
6 [ 4
w
9]
5]
Es B
€
[
£
o
2
a
3r i
2r i
1 [ 4
0 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Time [Seconds]

Figure 16.27.1: Plot of Position vs. Time
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Time History of Velocity
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Figure 16.27.2: Plot of Velocity vs. Time
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Figure 16.27.3: Plot of Velocity vs. Position

eqpossol.m
Download

% ’eqpossol.m’ Provides equation of motion for plate on springs
% to be integrated by script POS_sol.m
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function Xdot = eqgpossol(t,X)
global m k b fa
Xdot = [0 1 ; -k/m -b/m I1*X + [ 0 ; fa/m 1;

possol.m
Download

% ’possol.m’ A MATLAB script for Plate On Springs. Produces plots of

% (i) position vs. time

% (ii) velocity vs. time

% (iii) velocity vs. position

% for the response of a steel plate on springs, with mass m, stiffness k,

% and damping parameter b, when the plate starts from initial conditions

% y = y0 and v = vO under the action of a suddenly applied force fa at t = 0.

clear variables

global m k b fa

% Input parameters

m = input (’Enter the mass "m" in kilograms ’);

k = input (’Enter the stiffness "k" in Newtons/meter ’ );

b = input (’Enter the damping constant "b" in kilograms/sec ’);

fa= input (’Enter the magnitude "fa" of the suddenly applied force in Newtons ’);
% Input initial conditioms.

yO= input (’Enter the initial displacement from equilibrium, in meters ’);
vO= input (’Enter the initial velocity, in meters/second ’);

tspan = input(’Enter the duration "T" of the desired time history, in seconds ’);
X0=1[y0; vO 1;

% Integrate equations of motion

[t,X] = ode45(’egpossol’, tspan, X0);

% Plot results

plot(t,X(:,1)), title(’Time History of Displacement’),

xlabel(’Time [Seconds]’), ylabel(’Displacement [meters]’), pause
plot(t,X(:,2)), title(’Time History of Velocity’),

xlabel(°Time [Seconds]’), ylabel(’Velcity [meters/second]’), pause
plot(X(:,1), X(:,2)), title(’Velocity vs. Displacement’),

xlabel (’Displacement [meters]’), ylabel(’Velcity [meters/second]’)
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16.28 Shipping Crate 1

Let = be the displacement of the engine with respect to the stationary crate. The effective stiffness
of the two end elements is 2k, and the effective damping parameter is 2b.

(a) The equation of motion for the engine is

d?x dx
— +2b— + 2kx =
mdt2 + 7t +2kx =0

(b) The engine weight is W = 500 pounds. Its mass is m = W/g. The values of k and b can
be deduced from the given values of damped natural frequency wy = 27 and damping ratio
¢ = 0.707 from the equations

9 w3 2k

Wo =1 z Wiy and 2b = 2¢w,W/g

The undamped natural frequency is

2
Wo = L rad/sec
1 (0,707)2
" 2 (500)(8:89)°
Ww 500)(8.88
k= ° = =51.2 ds/inch
% 3(356) 51.2 pounds/inc

The damping parameter is

w 0
b= Cwog = (0.707)(8.88)% = 8.13 pounds/in/sec
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16.29 Shipping Crate 2

Fig. 16.29.1 shows an idealized model of the engine of mass m = W/g with shock-absorbing
packaging, represented by the springs with stiffness £ and damping parameter b, in a crate which
is fixed to a truck. The velocity of the truck, with respect to an inertial reference frame, is vypyck,
and the velocity of the engine, with respect to an inertial reference frame, is vengine. The relative
displacement of the engine with respect to the crate is .. The origin for x,.; is taken to be the
equilibrium position of the engine in the motionless crate. In problems like this, where relative
motion is involved, it is important to remember that Newton’s law only applies to motions with
respect to an inertial reference frame

Viruck Vengi ne

Xrel

O 000000

Figure 16.29.1: Model of Engine in Crate on Moving Truck

(a) The geometric compatibility conditions are

AT el o d o
dr Urel an Vengine = Utruck T Urel
The constitutive equations are
AVengi
gine
fm =m fspring = kXper, and fdamping = buyg

dt '
and the force balance condition is
fm = _2fspm'ng - 2fdamping

The six preceding equations constitute a mathematical model for the longitudinal motion of
the engine with respect to the crate.

(b) A single differential equation in terms of z,¢ can be derived by inserting the spring force
fspring = kxre and the damping force fggmping = bdxre/dt in the force-balance equation,
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along with f,, expressed as f,, = m(dvipyck/dt + d*x,e;/dt?). The result is

d? d d
Lrel + 2b x;el + 2er6l = —m UZ:Ck

dt? d

The form of this equation is similar to that for the equation for the displacement of the steel
plate on springs. Here the unknown response is a relative displacement and the driving force
is the negative of the force that would be required to give the engine the same acceleration
as the truck. A single differential equation for the relative velocity of the engine with respect
to the crate is obtained by differentiating every term in the preceding equation.

dzvrel dvrel d2vt1"UCk
m 72 + 2b 7t +2kvrel:—m7dt2

A state-determined system for the state variables x,¢ and ve,y can be obtained by expressing
the forces in the force-balance equation of (a) in terms of ¢ and vye; = Veng — Viruck. The
two first-order differential equations for the state-determined system are

dTye o
dt = Veng — Vtruck
Beng k b b
= ——Trel — —Veng + —Vtruck
dt m m m

and the desired output is obtained from

Urel = Veng — Vtruck

In matrix form

dX
with
Trel 0 1 -1
X = A= B=4 | C={01} D=[-]

3=
3=
3

Veng

and Yy = vy and u = Vypyck-
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17 Quiz Problems

17.1 Fun with Block Diagrams
(a)

K
)= a5 1 &
wn = VK
2Wwp = 2VK = 20
K =100
(b)
Vout (s+3)(6s+1)
Vi (s+3)(6s+ 1)+ (8s+T7)
V:)ut o (68 + 1)

Vo (s+3)(6s+1)+ (8s+7)
(¢) Solve using superposition

Vout (652 + 275 + 10) = V3 (65% 4 195 4 3) + Vo (65 + 1)
6Vut + 27Vout + 10V = 61 + 19V4 + 3V + 6(V)g + Vi
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17.2 Complex Translation

The solution for this problem is not available.

600



17.3 Cylinder Step Response

The transfer function for this system is

z(s) 1
f(s)  megs2+es+k
k
Wy, =
Meg
2Cwy, = ¢

(a) From graph, we measure the following

2
T~ 1.08 = wy= % = 6.28r/s

wg = wpV1-—¢2

0.75 - 0.5

M, ~ 100 = 50
P 0.5
¢ = A o5
V2 + A2 '
100
A=In— =0.693
Mp
wp, = 6.43r/s
2
o % = 4.8 ~ Bkyg

¢ = 2CwpMmeq = 13.8Ns/m ~ 14Ns/m
Alternately, you could determine ¢ using the log decrement method.

(b)

1
meq:m—}—r—2
I =0.5kgm?
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17.4 JKC Frequency Response 1

The transfer function for this system is

w(s) k
#(s)  Js2+ces+k
k
Th n =1/ —=
us w 5
c
Wwn = =
Cw 7

(a) There are a couple of ways to solve this part of the problem. First, you can read w, =9r/s
and M, = 5dB from the bode plot and use the following relationships

1
My = 2¢y/1— (2
wr = wpV/1—2¢2

to find ¢ ~ 0.3 and w,, ~ 107/s. Or you can read w, = 10r/s directly from the phase plot
(0 = —90°)

(b) k= 1500 Nm/r, ¢ =90 Nms/r
()

w=1.1r/s 6(t) ~sin (1.1t + 0)
w=107r/s 6(t) = 1.58sin (10t — 7/2)
w=20r/s 6(t) = 0.3sin (20t — 2.75)
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17.5 Mass Spring Damper Dynamics

The solution for this problem is not available.
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17.6 Op-Amp Analysis

(a)
Vo RyCis

v (RaCas +1)(RiCys + 1)

M(w) _ RlClw
\/(1 — R1R20102w2)2 + ((R1(3’1 -+ RQCQ)W)2
_ RiCy + RQCQ)CU
¢(w) = 90"~ tan ((1 - R1R20102w2))

(c) Figure 17.6.1 shows the Bode plot for this system.

Bode Diagram

20

N
ol

w
o

w
ol

Magnitude (dB)

~
o

Phase (deg)

Ll L ol L ol L ol L ol

9Ok ..
10 ' 10 10 10° 10° 10

Frequency (rad/sec)

T

Figure 17.6.1: Bode Diagram

(d) Figure 17.6.2 shows the pole-zero plot for this system.
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Figure 17.6.2: Pole-Zero Plot
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17.7 RLC Circuit Analysis

(a)

v, 1
Vi LCs2+RCs+1

1
wp =2%xm%x5000=31,400r/s = —
» /s=Jic
1

w2C

n

= 2Cw, = 2% 0.707 % 31,400

=0.001 H=1mH

oSl R=o R

=44.4Q

(c) There are no zeros, poles at roots of

Amplitude

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

2

1000 1 B
0001 " Te—6xle—3
s1 ~ —1leb6

0

s9 &~ —1e3 dominant pole

Tes = 1

Step Response

T

T

T

T

T T T T

System: sys
Time (sec): 0.001
Amplitude: 0.633

L L L L L

1 2 3 4 5

Time (sec)

Figure 17.7.1: Step Response for part (c)
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(d) The bode plot is shown in Figure 17.7.2

Magnitude (db)

Phase (deg)

Vo RyCs+1
V; - LCs? + (Rl + RQ)CS +1
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100 e o 1 o 1 o N
10° 10" 10° 10° 10" 10° 10° 10’
O T T T H¥ T “? R
50 4
100} : 8
10° 10" 10° 10° 10" 10° 10 10’
Frequency (r/s)
Figure 17.7.2: Bode plot for part (d)
=—led =39
(i)
Yo _ R
v;  RoLCs?+ (RiRyC + L)s + Ry + Ry
(ii)



17.8 Sailing for Engineers

The solution for this problem is not available.
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17.9 Second Order Step Response

The solution for this problem is not available.
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17.10 Spring Damper Dynamics

The solution for this problem is not available.
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17.11 Derive Blocks for Op-amp Circuit

The solution for this problem is not available.
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17.12 Automobile Fender Spring/Damper System

The solution for this problem is not available.
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17.13 Cu Flywheel with Eddy Current Damper

The solution for this problem is not available.
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17.14 Current Driven RC Circuit

The solution for this problem is not available.
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17.15 Driven Mass Spring System

The solution for this problem is not available.
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17.16 Flywheel Driven by Hanging Mass

The solution for this problem is not available.
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17.17 Homogeneous Second Order DE

The solution for this problem is not available.
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17.18 Match Pole/Zero Plots with Step Response

The solution for this problem is not available.
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17.19 Opamp Block Transfer Functions

The solution for this problem is not available.
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17.20 Piston with 2nd Order Translation

The solution for this problem is not available.
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17.21 Pole Zero Bode Matching

The solution for this problem is not available.
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17.22 Power Semiconductor Thermal Problem

The solution for this problem is not available.
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17.23 Submersible Capsule Hoist System

The solution for this problem is not available.
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17.24 Transfer Function from Pole Zero Plot

The solution for this problem is not available.
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17.25 Vaccine Cooler

The solution for this problem is not available.
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17.26 Voltage Driven RRC Circuit

The solution for this problem is not available.
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17.27 Linear Mechanical System with Position Input

The solution for this problem is not available.
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17.28 Tank with Pump Inlet Lower than Outlet

The solution for this problem is not available.
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17.29 Thermal Power Chip Analysis

The solution for this problem is not available.
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18 Math Techniques

18.1 Complex Expression Reduction
(a)

(2 4 3i)(4 — 5i) = 23 + 2i
2431 _ 01707 + 0.5366i
4 — 5
(—6 + 74) % (3 + 7i) = —67.0000 — 21.0000
—64Ti
347

= 0.5345 4 1.08621

(b) First write the complex numbers in

9 4 3j — \/13eiarctan 15 | /13,0.0828i

4 -5 = \/Zﬁeiarctanfl.% ~ \/zﬁe*0~8961i

—6 + Ti = \/85etarctan(=7/6)+m) | /g5 ,2.2794i
3+ 7i = /HRetarctan(7/3) | /5g,1.1659

To compute products of complex numbers in polar form, we can use the mnemonic MMA A,
Moduli Multiply Arguments Add, where the modulus of z = re*® is r and the argument is ¢.

We find

(2 4 3i)(4 — 5i) = 23.0868¢-0867

2+ 3i .
1-5i c
(—6 4 7i) * (3 4 7i) = 70.2140¢ 2837
—6+T7i 1.1135:
= 1.2106e!113%
3+ 7i €
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18.2 Complex Expressions

(1+2i)(3 — 4i) = 11 + 2i (22)

142 142344 1 2
- — 42y 23
5 4 3-4i3+4i 55 (23)
(=6 + 40)(5 + 7i) = —58 — 22 (24)

6+ 4 1 31
+ i (25)

517 37 37

Now we wish to write the complex numbers a + bi in polar form re’® using

r= \/m (26)

b
¢ = arctan . (27)

When computing the angle ¢, one must make sure that proper angle is cal-
culated based on which quadrant of the complex plane contains the complex
number (In Matlab, one may prefer to use the command atan?2 instead of
atan.).

1+ 2i = /Beiarctan2 | /5,1.1071i (28

3 — 44 = Hetarctan(—4/3)  5,—0.9273i (29
— 6+ 4i = 21/13¢ arctan(=2/3) , 9, /1325536 (30
5 — 7i = /7detarctan(=7/5) /74 0-95051 (31

~— — — —

To compute products of complex numbers in polar form, we can use the
mnemonic MMA A, Moduli Multiply Arguments Add, where the modulus
of z = re’® is r and the argument is ¢. We find

(1 +2i)(3 — 4i) = 5151798 (32)
1+2i V5 5050 (33)
3—4i 5 ¢

(—6 + 44) (5 + Ti) = 21/962¢! 49317 (34)

—6 + 4 13 27701
W 35
5+ Ti 74" (35)

Figure 18.2.1:
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18.3 Matrix Operation Practice

Part (a)
1 -5
—5(2|=1[-10
3 ~15
Part (b)
9
(1 2 3)(8]|=25
0
Part (c)
1 9 8 0
21(9 8 0)=(18 16 0
3 27 24 0
Part (d), the roots of s2 4 2s + 3 are
s=—14+2i

Figure 18.3.1:
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19 Recitation Problems

19.1 Recitation 1 Problem
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19.2 Recitation 2 Problem

(a) From class notes the characteristic equation is:
mZ +bx +kxr =0
The roots/eigenvalues of this equation are at (using a shorter notation than class):

B ij: b2 — Amk
51,2 = 2m 2m

A simple check shows that the roots are distinct and imaginary (b?> — 4mk = —4 x 10%), so
we can write the solution in the form:

z(t) = c1e®t + e’ = 2e7 7 (a cos wgt — Bsinwgt)

Evaluating the homogeneous response at ¢ = 0 we have:

1
z(0) =20 = 2« or a = ;x
Differentiating the homogeneous response and evaluating at ¢ = 0 (see Chapter 1 for all the
details):
(0) = &g = 2(—oa — fwq) or 8= _TotoTo
2wy

Case 1: g = 0 and ¢ = 1 Plugging in values we get « =0 and § = —ﬁ which leads to:

1 —ot :

z(t) = —e 7 sinwgt

wq
Case 1: g = 1 and ¢ = 0 Plugging in values we get a = .5 and § = —2\/14_? which leads
to:

z(t) =e 7 (cos wqt +

¢ :
Nﬁ Sin L/Jdt)

b 1
= = — =707
¢ Wkm V2

W = \/E = 2v/2 = 2.8242 [rad/sec]
wqg = wpV/1 -2 =2V2(v/1—.5) =2 [rad/sec]

o= C(wp = \22\/5 = 2 [rad/sec]
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0, v(0)=

x(0)=

(s1eyoW) JUswaoe|dsip

time (seconds)

0, &9 = 1, ¢ = 0.707

Figure 19.2.1: Nominal case, zg

0, v(0)=1

Scaled View of x(0)

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

pe=1_

SR T T
~— o o o
(s4o10W) JUBWBOER|dSIP

1.5

1

0.5

time (seconds)

= 0.707 show that the initial velocity is

1<

0, i

Figure 19.2.2: Close up Nominal case, xg

equal to the slope
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1.2

©c o ©°o 9
M A o @

displacement (meters)

o

time (seconds)

Figure 19.2.3: Close up Nominal case, g = 1, £g = 0, { = 0.707 showing non-zero initial position,
zero initial velocity

()

The damping ratio ¢ = .707 is between zero and one so by definition the system is under-
damped. Professor Dubowsky jokes that the value of .707 is “just right” because it is the
best compromise between speed of response and overshoot.

The exponential envelope term is e °¢. The attenuation o is always greater than zero, so

this decaying exponential is stable and will not increase without bounds, which matches our
physical intuition that a shock absorber’s purpose is to decrease motion.

See the following plots, which all have the same mass and spring constant, but different
dampers b. Initial conditions are xg = 0, £o = 1. All the following curves are drawn to the
same scale.
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Nominal Case: x(0)=0, v(0)=1

*********************************************************

displacement (meters)

0z

time (seconds)

Figure 19.2.4: Nominal case, 29 = 0, 29 = 1, ( = 0.707, b = 2 x 10®> [Ns/m]. Replotted to show the
same scale as the other plots with varying damper b.

Underdamped, b=1/4 * nominal b, x(0)=0, v(0)=1
0.4 ””””””” r----T- - T T T T T T T T T T T T T T T T - - - - T T T T T T al

displacement (meters)

time (seconds)

Figure 19.2.5: Smaller damping than nominal case, g = 0, 29 = 1, {( = 0.18, bpew = 256 = 500
[Ns/m].
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Undamped, b=0, x(0)=0, v(0)=1
0_4 ””””””” r----T- - T T T T T T T T T T T T T T T T - - - - T T T T T T al

displacement (meters)

time (seconds)

Figure 19.2.6: Undamped case, g = 0, £9 = 1, ( =0, bpew = 0 [Ns/m)].

Critically damped, b = 2 * sqrt(k * m), x(0)=0, v(0)=1
0.4 ””””””” r---T-- T T T T T T oo JL HL al

displacement (meters)

time (seconds)

Figure 19.2.7: Critically damped case, zo = 0, 9 = 1, ¢ = 1, bepitical = 2V km = 2.83 x 10® [Ns/m].
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Overdamped, b =2 * b critical, x(0)=0, v(0)=1

””””””” e e Sttt |

©
N

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

©
w

o
N

*********************************************************

o
NN

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

S
-

displacement (meters)
o

time (seconds)

Figure 19.2.8: Overdamped case, 7o = 0, 79 = 1, { = 1, bpew = 2beritical = 5-66 x 103 [Ns/m].

(f) A pothole acts as an impulse, so the forced response is the impulse response.

(g) Sports car: Want a fast response and tight handling.
Grandma’s Caddy: Want a soft, cushy ride, could accept slower response.
Pickup Truck: The load (mass) may increase, so pick a damping ratio that still gives a good
response if the mass is larger. Could do some calculations...
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19.3 Recitation 3 Problem

(a) The second-order differential equation for this system is:
JO+ b0 + k0 =T
The characteristic equation is the unforced part:
JO + b0 + k0 =0

This can also be written in the standard form (from class):

2¢ T(t)
—0+ —=+0=f(t)=—=
20 Ft) = —
(b)
= b
2V EkJ
k
Wn =1/ =
J
wg =wpy'1 §2
(c¢) Shown below is the MATLAB plot, using 7y = 10 [Nm]
200p T T T T T
Y l l l l l
‘\ I I I I I
» AN l l l l l
c \\ | | | | |
®© “\ l l l l l
8150/ S S I [
5 BN 1 1 1
: 1 s 1 1
8 100" | W N e asaEsr—amas
(_u | [ | | |
Q. l gt l l l
2 l - l l l l
O v l l l l
®© -~ l l l l
S 90— o R HE T
o) 4 l l l l l
C ,, | | | | |
© ¢ l l : l l
0 : | | | |
0 5 10 15 20 25

time (seconds)

Figure 19.3.1: Angular displacement vs time for the swinging door.
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(d) For this class, M, is overshoot (not percent overshoot as elsewhere). Could calculate by
finding derivative and looking for first zero, but too complicated for everyday use.

¢
M, = e~ 7™/wa = ¢ "VI-& = 53

Compare to M, approximation (valid because 0 < ¢ < 0.6)

My~1-=> —067

[an)

6
ty= — =323

Wd

(e) Rise time is the time it takes for the response to go from 10% to 90% of the final value.

1.8

tp = — = 1.8
o 1sl
(f) For this figure, the 1% settling time is
4.6
te 0 =923
o [s]
(g)
0(t) = Op(t) + On(t)
To
(1) = ~Lus(t)
T T n .
Op(t) = ~ 20t [ cos wqt + 2 sin wgt | = _ 0ot (Pgin wgt +
k wd k Wq
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19.4 Recitation 4 Problem

(a)

Just one. We say this system has one degree-of-freedom (DOF). There are multiple choices
for the independent variable such as hi, ho or the pressure at the bottom of tank 1 P;.

Answers will vary.

The volume of fluid V' is constant, so h1A 4 hoA =V = 2Ah., where h, is the equlhbrlum
position of the fluid. We can rewrite this as ho = 2hey — h1. Note also that h1 + h2 =0.

The pressure at the bottom of the tank 1is Py — P, = pghi. Again for tank 2 P, — P, = pghso.
Note that atmospheric pressure P, has a slightly different notation than Pascals, the SI units
for pressure are [N/m?].

Define ¢ positive inward, ¢; flowing into tank 1, ¢o flowing into tank 2. Flow into and out of
tube is conserved q; + g2 = 0. Resistance in the tube is modeled as

1
=P - P) = %(hl — ho)

Q1=R

Change in volume in tank 1 V4 = h1A equals flow ¢; = hiA. The same is true for tank 2
q2 = hoA. Is the sign correct? Yes, if ¢; goes up, so does h;. Combining;:

RA.
——h1+ h1 = he
2pg !

Could also define hy = hey + ha which leads to ha = hy — heg and ha = hy Or

—hA-l-hA =0
2pg

First-order system so no oscillations.

Time constant 7 = RA/2pg doesn’t depend on height, so initial amount of fluid doesn’t
change how quickly the system responds.

To double 7, double resistance in tube or double area of tanks, or change the fluid to one that

has half the density (or move experiment to another planet and reduce g).

This system has a dissipative element R and a spring-like element due to the potential energy,
but even though some mass moves quickly through the tube the bulk of the mass moves very
slowly, kinetic energy is small, and we essentially have a spring-damper first-order system.

All the liquid in the tube in class moved together, so that system was an equivalent spring-
mass-damper.
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19.5 Recitation 5 Problem

(a) = R0

(b) The results are summarized below.

Spring PE = %kth F. =k

Mass KE = imi? | F=mi

Inertia KE=131J0*> | T=J0
Translational Damper P = b2 Fy, =bx
Rotational Damper P = b,6? Ty, = b0

1 1. 1 . 1. 1 . 1
KE = -mi?>+ =J0> = —mR%0* + ~J0?> = = (mR>+ J) 6% = =
2mx +2 2m +2 2( +) 5
1 1 1 1
PE = —k2® = ~k;R*0%? = = (k,R?) 0 = Zk,,0°
gl T ht 5 (k) 9 vea

P = byi? 4 b,0% = b R*0% + b,6° = (b, + b;R*)0% = by6”

Jeogd = —begf — ey + T
(J +mR?)0 + (b, + b R*)0 + (kR0 =T

Jeqg = J + mR?
beq = by, + by R
keq = ki R
2
20 _ be
wWn  keg
(- beg by + by R

2 kqueq N 2\/ktR2(J+ mRQ)

(g) For large R, translational terms dominate

w ke and ¢— b
" m 2\/ k:tm
Jeg.. beq. ke
gy Mgy =T

R R R

wy, and ¢ remain the same.
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(i) The response is shown in Figure 19.5.1.

T/k

angle

time

Figure 19.5.1: Underdamped Step Response
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19.6 Recitation 6 Problem

(a) Start by redrawing the circuit with current definitions and node names.

+
V., | Node B
Vin <> B l . O -
> L

<

g' R,

A

Figure 19.6.1: RC Circuit with node names

Elemental Equations:

) VR1 . Cdvc
iRl = —— ic=0——=
R1 Ry c gt
Lo vm o vms
R2 R2 R3 R3
Voltages:
Vo = VO UB = UR3
VC =4 — VB VRl = Vg2 = Vin — V4
Node Equations:
. . . UR1 | VR2 e
ipl +ige —ic =0 — —/—+—->--C——=0
Rl T tR2 — iC R R 0t
dv v
ic —igs =0 c=<_MB_

After the algebra:

RlRQ dUo
Ry + ———|C o= "Vin
( 3+R1—|—R2> + v

__t
'Uo(t) = Vin + Ae Fea®
Uo(o):%n+A:0 — A:_‘/zn

Vo(t) = Vin (1 + e‘ch)
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R

= R3 +
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19.7 Recitation 7 Problem
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19.8 Recitation 8 Problem
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19.9 Recitation 9 Problem
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19.10 Recitation 10 Problem
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20 Recitation Quizzes

20.1 Recitation 1 Quiz
(a) Combining and rearranging the 4 given equations, we get

ARG h—o
Py

(b) The form of the equation is 7/ + h = 0. Therefore

_ AR
P9

T

(¢) The form of the solution is h(t) = hoe~*/7. Remembering that e~! = .37 and e~23 = .1, after
one time constant h(t = 7) = .37hy, after 2.3 time constants h(t = 2.37) = .1hy.
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20.2 Recitation 2 Quiz
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Figure 20.2.1: Second Order Response

. The natural frequency w, = wy, particularly for this
= 20 mm.

m. The damping ratio is found from the time constant of
, where 7 =~ 6.25 seconds taken from the graph, leading to

27
T
1

system which is underdamped, so w,

the exponential envelope, T

Cwn
.05. The initial position is read directly from the graph, x(0)

1
o

1

The period T &~ 2 seconds, S0 wy

The system is underdamped.
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20.3 Recitation 3 Quiz

(a) The sketch is shown below.

FO/b

=
§ 0.63 FO/b
©
>

0 tau 2 tau 3 tau 4 tau

time
Figure 20.3.1: Plot of velocity vs time
(b) v(o0) = Fo/b
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20.4 Recitation 4 Quiz

(a) The free body diagram for the pulley is shown below (along with the free body diagrams for
the rest of the system). Note that as drawn, Fy = —kx and Fj, = —ba.

Spring-Damper Pulley
FY YF, TN __ VT,
Support Hanging Mass
F F
xp K b v T,
mg
F

Figure 20.4.1: Free body diagrams

(b) y =2z
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20.5 Recitation 5 Quiz

(a) The free body diagrams are shown below.

Pinion

Rack

(b) x = RO

b0 T

—> T=RF,

X
F, <
4—
< —>
bX kex

Figure 20.5.1: Free body diagrams

(c) Start with the standard force balancing equations.

and

JO=T —b,0 — RF,

mx—l—btx—i-ktx = Ft

use part (b) to modify this equation

mRO + bRO + kRO = F,

Combine this and the first equation to obtain

(J +mR%6 + (b, + b;R*)0 + (kRO =T
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20.6 Recitation 6 Quiz

Elemental Equations:

. VR1 . Cdvo
ipl = — ic=0——
RL= o c a
o VR
R =g
Voltages:
Vo = VO

VR1 = VR2 = Vin — Vo
Node Equations:

. . . VR1 VR2
tpl +ipo —tc =0 — —/— 4 —/7—
Ry Ry

After the algebra:

R1R2 dvo
B o o= Vin
<R1 +R2> a T
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20.7 Recitation 7 Quiz
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20.8 Recitation 8 Quiz
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20.9 Recitation 9 Quiz

659



20.10 Recitation 10 Quiz Spring 2005
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