Introduction

- What is MATLAB?
 - MATLAB (MATrix LABoratory) is an interactive program for scientific and engineering **numeric** calculation. Applications include:
 - · matrix manipulation
 - finding the roots of polynomials
 - · digital signal processing
 - x-y and polar plotting
 - 3-dimensional graphics
 - Combines:
 - · The mathematics of linear algebra
 - C++ programming environment
 - The UNIX command shell
 - · High-level functions
 - This combination makes MATLAB ideal for signal processing applications.

MATLAB Navigation

- Getting help from within MATLAB
 - >> help <functionname>

Shows help document for a give function

>> lookfor <keyword>

Searches all the help documents for a given keyword

>> demo

- Navigation within MATLAB is done using regular UNIX commands
 - >> cd (change directory)
 - >> pwd (show the path)
 - >> ls (list contents of directory)
 - >> ! <unix command> (access the UNIX shell)
- Useful MATLAB Commands
 - >> path <directory>
 - >> what (lists MATLAB specific files)
 - >> info (gives information about toolboxes)

Getting Started

- There are a couple of different ways to start MATLAB on Athena:
 - From Dash
 - Numerical/Math//Analysis and Plotting//MATLAB
 - To use software designed for 6.003
 Courseware//EECS//6.003//6.003MATLAB
 - From *Athena prompt*
 - athena% add matlab athena% matlab
 - athena% add 6.003 athena% ~6.003/startup
- · Getting Help
 - MATLAB on MIT server

http://web.mit.edu/matlah/www/

Mathworks website

http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.shtml

- 6.003 MATLAB pico-course
 - Run picocrse.m script in ~6.003/picocouse directory

Variables

Real Scalars

Complex Scalars

Row Vector (1 x 3)

>>
$$x = [1 \ 2 \ 3]$$

 $x =$

Column Vector (3 x 1)

Matrix (3 x 3)

Note: Variable Names are case sensitive

Matrices & Vectors

Generating Vectors (Useful for time axis)

```
>> x = [0:0.2:1] %0 to 1 in incr. Of 0.2

x =

0  0.20  0.40  0.60  0.80  1.00

0 to 1 in increments of 0.2

>> x = linspace(0,1,6)

x =

0  0.20  0.40  0.60  0.80  1.00

6 points from 0 to 1 on a linear scale

>> x = logspace(0,1,6)

x =

1.0000  1.5849  2.5119  3.9811

6.3096  10.0000

6 points from 10° to 10¹ on a log scale
```

Accessing Matrix Elements

Programming in MATLAB

M-Files

- Sets of MATLAB commands can be executed via scripts
- Scripts are written into files with extensions *.m
 Ex. filename.m
- These scripts are executed in MATLAB by entering the name of .m file
 - >> filename

Functions

- Commonly performed operations can be written into functions
- In a file named functionname.m

```
Function [output]=functionname(input)
Command 1
Command 2
```

Flow Control operations and operators

- Similar to C can use for, while, if, do statements with &, /, ~ operators
- Also have <, <=, >, >=, ==, ~= operators available for programming

Matrix Operations

Complex Number Operations

Other Matrix operations

Math Functions

```
sin(x), cos(x), tan(x), atan(x), exp(x), log(x), log10(x), sqrt(x)
```

Operators

```
Usual operators +, -, *, ^,

>> M = A' %Conjugate transpose of matrix

>> M = A.' %Unconjugated transpose

>> y = A\b %left division is soln to A*y=b

>> y = b/A %right division is soln to y*A=b

Element-by-Element Operators (.*,.^,./)

>>A = [ 1 2; 3 4]

A =

1 2
3 4

>> B=A*A

B =

7 10
15 22

9 16
```

Plotting and Output

Simple plotting commands

Printing

Saving variables

Plotting Example

```
>> t = linspace(0,8, 401);
>> x = t.*exp(-t).*cos(2*pi*4*t);
>> figure(1)
>> subplot(2,1,1)
>> plot(t,x);
>> xlabel('Time (s)');
>> ylabel('Amplitude')
>> subplot(2,1,2)
>> stem(t,x);
>> axis([0 1 min(x) max(x)])
```


Other Examples

• Polynomials factorization Find the roots of the following expression

$$13x^3 + 25x^2 + 3x + 4$$