# 1.053/2.003 Dynamics and Control I Fall 2007

# **Problem Set 10**

Out: Tuesday, December 4<sup>th</sup>, 2007 Due: Wednesday, December 12<sup>th</sup>, 2007

# Free and forced system response

### **Problem 1. Rack and pinion**

Consider the rack and the pinion system shown in Fig.1 below as in Problem 1 of Pset 8. The axis of the pinion is fixed in frictionless bearings. A massless rocket is attached to the circular massless pulley of radius a at a point along its edge as shown in the figure. It exerts a thrust F(t) which remains tangential to the pulley at all times. Assume that the pinion can be modeled as a uniform cylinder of mass  $m_2$  and radius b and that the friction between the rack and the horizontal surface can be modeled as viscous damping having a dashpot constant c.

- a. Find the equilibrium of the system, and linearize the equations of motion about it.
- b. Reduce the system to the canonical form with equivalent mass, spring, dashpot, and generalized force. Identify the values of parameters  $\omega_n$  and  $\zeta$ .
- c. Determine the conditions on the values of  $m_1$ ,  $m_2$ , k and c for which the system is under-damped, critically damped and over-damped.
- d. For  $F(t) = F_o cos(\omega t)$ , determine the particular solution to the ODE. Determine the value of the driving frequency at which the resonance occurs (when  $\zeta = 0$ ).



Figure by MIT OpenCourseWare.

# Figure 1. Rack and pinion

### Problem 2. Design the rack and pinion system

Constraints on the operation of the system in Problem 1 (about equilibrium) require that the system operates in the underdamped mode, with a maximum overshoot of 15% and a peak time of 1 ms. The mass of the rack is  $m_1 = 50$  kg, and that of the pinion is  $m_2 = 20$  kg.

- a. Find k and c required to meet the above specifications.
- b. Approximately how long will it take the system to settle?

#### **Problem 3. Gear train**

Consider the gear train shown in Fig. 2 below, which consists of three gears,  $G_1$ ,  $G_2$ , and  $G_3$ , having radii  $R_1$ ,  $R_2$ , and  $R_3$ , and moments of inertia  $I_1$ ,  $I_2$ , and  $I_3$  about their centers, respectively.  $G_1$  is connected to a bearing via a shaft having a torsional stiffness k such that, when  $G_1$  rotates by an angle  $\theta_1$ , an opposing torque k $\theta_1$  develops about its center.  $G_2$  is connected to a bearing which has an angular viscous coefficient c such that, when  $G_2$  rotates by an angle  $\theta_2$ , an opposing torque c $\theta_2$  develops about its center.  $G_1$  and  $G_2$  mesh without backlash (no slipping), and  $G_2$  and  $G_3$  are connected by a rigid, massless shaft. A driving counterclockwise torque T(t) is applied to  $G_1$ .

- a. Find the equation of motion of the system.
- b. Find the equilibrium of the system, and linearize the equation of motion about it.
- c. Reduce the system to the canonical form with equivalent mass, spring, dashpot, and generalized force. Identify the values of parameters  $\omega_n$  and  $\zeta$ .
- d. Determine the conditions on the values of  $I_1$ ,  $I_2$ ,  $I_3$ , k and c for which the system is under-damped, critically damped and over-damped.
- e. Determine the conditions on the values of  $I_1$ ,  $I_2$ ,  $I_3$ , k and c for which the system is under-damped with a settling time of 1 s and a maximum overshoot of 10%.
- f. For  $T(t) = T_o cos(\omega t)$ , determine the particular solution to the ODE. Determine the value of the driving frequency at which the resonance occurs (when  $\zeta = 0$ ).





### Problem 4. Mass-spring-dashpot in rotating frame

A mass *m* lies in a frictionless groove, on a disk that lies on the horizontal plane and rotates at a constant angular velocity  $\Omega$ , as shown in Fig. 3 below. The mass is attached to the center of the disk by a spring and dashpot system, with constants *k* and *c* respectively.

- a. Find the equation of motion of the system.
- b. Find any equilibrium point(s).
- c. Reduce the system to the canonical form with equivalent mass, spring, and dashpot. Identify the values of parameters  $\omega_n$  and  $\zeta$ .
- d. For what values of  $\Omega$  are the equilibrium points unstable?
- e. Assuming  $\Omega$  is chosen so that the equilibrium is stable, determine the conditions on the values of *m*, *k* and *c* for which the system is under-damped, critically damped and over-damped.



Figure 3. Mass-spring-dashpot in rotating frame

#### **Problem 5. Automobile suspension**

A car's suspension system can be modeled as shown in the figure below. Assume the car is made of two equal masses m attached via a spring of constant k and a dashpot of constant c. The vertical position of the lower mass,  $y_2(t)$ , is a known function determined by the terrain on which the car rides. Note that gravity acts.

- a. Find the equation of motion of the system.
- b. Find the equilibrium position and examine whether it is stable. Linearize the equation of motion if necessary.
- c. Determine the conditions on the values of *m*, *r*, *k* and *c* for which the system is under-damped, critically damped and over-damped.
- d. Assume the vehicle travels horizontally at a constant speed over a sinusoidal terrain, such that  $y_2(t) = h \sin(\Omega t)$ . Determine the particular solution to the ODE. For what value of  $\Omega$  will resonance occur (when  $\zeta = 0$ )?



#### **Figure 4. Automobile suspension**