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PROFESSOR: OK, let's get started. Can we get them up? So this is our thing spinning. What are

the units of the generalized force in this problem, which is going to be related to the

torque at the bottom. So most people said Newton meters, which is the units of

torque. And that would be correct.

So you're going to get some i theta double dot kind of equation of motion with this,

as units of moment or torque. And any external non-conservative force on it would

in this case have units of torque. OK, next.

So we have a pendulum, kind of an odd shape. That is, does it have symmetries?

Name a symmetry that this thing has.

AUDIENCE: [INAUDIBLE].

PROFESSOR: You mean axial then, or a plane, or what?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Axis or a plane, OK. So this thing has symmetries. You could convince yourself

pretty quickly that the principal axes with one big break down the center of it. And

the other two would be perpendicular to that. So is it appropriate to use the parallel

axis theorem to find an equation of motion of this thing for when it's pinned at the

top?

And most people said yes if you said no. I think parallel axis theorem works just

great in this problem. It's planar motion, and the, for example, kinetic energy you

can write as 1/2i about o up there, the hinge point. i with respect to that point theta

double dot. And to do i about that point, you'd use the parallel axis theorem. So i

about g plus the distance l squared times m.
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This one. Do you expect a centripetal acceleration term to show up in your

equations of motion? And some said yes, some said no. So the equation of motion

for this, I would probably write in terms of some rotation theta of the big disk. And

that will cause the mass on the string to move up and down.

But for the rotating parts of the system, are there-- I'll think of a clear way to word

this. Let's ignore the little mass going up and down for a moment. The axis of

rotation of that double disk and hub and the bigger disk, does the axis of rotation go

through the center of mass of that disk?

AUDIENCE: [INAUDIBLE].

PROFESSOR: OK. Is it statically balanced? We haven't talked about balancing in a while. Good

review question for thinking about a quiz next Tuesday. So what does it take for

something which is rotating to be considered statically balanced? The axis of

rotation must what?

AUDIENCE: [INAUDIBLE].

PROFESSOR: He says pass through the center of mass. Anybody else have a suggestion,

different suggestion? If the axis of rotation passes through the center of mass, is it

statically balanced?

AUDIENCE: It has to be a principal axis?

PROFESSOR: Does it have to be a principal axis? What do you think? Is that axis passing through

g have to be a principal axis in order for it to be statically balanced? Let's see. I

don't have a little-- no, it's too big. This is just a wheel. And this is my axle going

through the center of mass. And it goes through the center of mass, and it'll have no

tendency to swing down to a low point because the weight, its weight, is acting right

on its center of mass. And with respect to this axle, there's no moment arm.

So there's no torque caused by gravity that could cause this to put its center of

mass below the axle. So it doesn't matter, even if I had the axis going through here.

2



As long as that axis passes through g, there is no tendency for this thing to swing to

a low side because the mass mg is acting right on the axle. No moment arm. So the

only condition for static balance for a rotor of any kind, something rotating, to be

statically balanced is for the axis of rotation to pass through the mass center.

So the rotating part of this system, the axis of rotation passes through the mass

center, that big disk. Does the little mass, m, rotate? So it can't be statically or

dynamically in balance. It's not a rotating system. It's just a little translating mass

that happens to be pulled up and down by the action of this thing.

So the question was, do you expect a centripetal acceleration term to show up? The

answer's no. So let's get back to that. If you have a static imbalance-- let's say my

axis of rotation is here. This is definitely statically imbalanced now. Its mass center

is down here. The force of gravity pulls it down until it hangs straight. That's how

you can just test to see if you're passing through the mass center.

So if you have an axis that does not pass through g, then you're statically

imbalanced. And if you rotate about that axis, is there a net centripetal force

required as it goes around? Why?

AUDIENCE: Because the center of mass is on the outside.

PROFESSOR: So the center of mass is some distance away. And you're swinging it around and

around and make that center of mass go in a circle. You're applying a centripetal

acceleration to the center of mass, and that takes a force, which you sometimes

think of as a centrifugal force pulling out. That's what you're going to have to pull in,

some m r omega squared.

So no centripetal term would be expected in this problem. Let's go to the next one.

This one, you had two different conditions. Either rolling without slip or rolling with

slip. And the question is, for which conditions are the generalized forces associated

with a virtual displacement of delta theta, the rotation of the wheel, equal to zero?

So remember, generalized forces are the forces that account for the non-

conservative forces in the problem. So if it's rolling down the hill without slip, are
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there any non-conservative forces acting on it? Is there a friction force acting on it?

Yeah, but does it do any work? No, because there's no delta r at the point of

application of the force. There's no motion.

So for which condition does the generalized forces equal to zero? Certainly for the

condition when it does not slip. What about if it does slip? Would you expect a non-

conservative force to do work on it? What force would that be? The friction force.

So now, as the wheel turns, that point of application where it's sliding, you're

actually getting a little delta omega, delta theta rather. You move a little distance r

delta theta, dotted with the force. You get a certain little bit of virtual work done, r

delta theta times f. So the only case a is where you get zero.

Oh, this one. What's the generalized force associated with f? That's this applied

force. It's applied to the rolling thing going down the hill. The force is horizontal. And

you're asked what's the generalized force associated with f due to the virtual

displacement delta x? And x is the motion of the main cart.

So when you're doing generalized forces, you think in terms of virtual work. Can you

imagine that that cart's moving a little distance delta x, the main x in the xyo

system? It shifts a little distance delta x. That force, does it move-- does the point of

application of that force move with that delta x? That's really what the question

comes down to.

This one. So this is your inertial system, and it's going to account for the motion of

this object. And then up here, got your wheel. And we have some coordinate system

attached to this object, noting the position of the wheel as it goes up and down the

hill. So this coordinate's relative to the moving cart. This coordinate's inertial.

The question's only asking then, what is the virtual work done that's associated

width delta x here, some motion of the cart. And it's going to be what we're looking

for, the Qx delta x. And when we say, OK. At the point of application of the force,

there's literally F here. And it's in the horizontal direction, which is exactly the same

direction as capital X. So this is equal to the force.
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And in the problem it's called-- this is just called F. It's a vector. And we're trying to

deduce the deflection at the point of application. I'm going to call it some-- it can be

many forces. I'm going to call it F sub i so that we think of it as one of many. Times

the displacement delta ri due to delta x. So this is a vector. This is a displacement.

This is a force. The amount of work done as this force moves through that

displacement is some F dot delta r, the movement at this point i where it's applied,

due to this motion. So what is the delta r at this point due to that motion?

So another concept here, when you're doing this, you think of these mentally one at

a time. How many degrees of freedom do we have in this problem? Takes two to

completely describe the motion. x and this one attached to the cart. And you think of

these one at a time.

So right now, we're asking what's the virtual work done by that force due to

movement of this coordinate only, assuming this one is frozen? So this one is not

allowed to move. So if this is not allowed to move, does the position of this change

relative to this cart as you move the cart? No. That one is held fixed. It moves with

the cart. So if you move the cart a little distance here, delta x in this frame, then this

wheel moves with the cart that distance.

So how much work gets done? So this delta ri in this case is equal to delta x. And

the amount of work that gets done is delta w at point i due to delta x here is F dot

delta x, but F is in the capital I direction. This is in the capital I direction. So it's just F

delta x. is the work done. And that's Qx delta x. So the generalized force is just F.

All right. What else we got? OK, wait a minute. Oh, this is due to the dashpot. What

is generalized force associated with the dashpot due to a virtual deflection x1? Now

x1's the coordinate, that thing rolling up and down the hill. So now the same thing,

the dashpot force. Here's your cart. Here's your dashpot. And a free body diagram

of the cart would show a dashpot force here, bx dot in that direction. And if we move

the cart, again, a little bit delta x, how much work gets done?

AUDIENCE: [INAUDIBLE].

5



PROFESSOR: This is not the question asked up there. Just first this. How much virtual work gets

done by that in a deflection delta x? Well, it's some Fi dot delta r due to delta x,

which is just delta x. So this is some minus bx dot in the I direction times delta x in

the I again. It's just in this case it's minus. So this virtual work done this time due to

just the dashpot.

I don't know how to write that. I don't have a subscript. So this dashpot only here, bx

dot, is bx dot minus in the I direction-- that's the force-- dotted with the dr that it

moves. And the dr that it moves is just delta x. So this would be minus bx I dot delta

x I is your virtual work that's done.

And this is equal to Qx delta x. But this is a part of Qx due only to the dashpot. And

you get minus bx dot delta x. So now we've gotten both parts of the total

generalized force associated with the motion delta x is F minus bx dot.

In general, this expression Qx delta x is the summation over all of the applied forces

i dot delta r at i due to, in this case, the motion in the x direction. And we have two

contributions here. They come from the applied force F and this. So Qx in this

problem is going to turn out to be F minus bx dot.

Now, what about the other-- what's really asked in this problem is how much--

what's the generalized force associated with the motion of the wheel down the hill?

This is in the x1 direction. So now you have a little virtual deflection delta x1. How

much virtual work gets done by the dashpot?

AUDIENCE: Zero.

PROFESSOR: I hear zero. So a little virtual displacement of delta x1, does it move the main cart?

That's really what's going on here. Does the main cart move because the wheel and

the main cart change relative position a little bit?

AUDIENCE: No.

PROFESSOR: No. I hear no here. I mean, that's the-- the coordinate x1 is the relative motion

between the cart and the wheel. And it's independent of the motion of the cart with
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respect to the inertial frame. So any motion of the little wheel does not affect the

main cart. So there's no virtual work done by that dashpot because the wheel

moves up and down the hill. And it makes sense, physical sense, right? The wheel

can sit and roll up and down the hill all day long. It's not going to move that dashpot.

Next. This problem. I just realized this problem's harder than I thought it was. It's

one of those things that you look at it, oh, that looks straightforward. Then I looked

at Audrey's solution and said, oh, she did it right. And this is a little trickier than you

might think. So are the Axyz axes, which rotate with the hub-- so there's a rotating

there-- definitely principal coordinates of that rod? That's not a problem. But are

they principal coordinates for that disk out on the end?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Pardon?

AUDIENCE: Depends if it's slipping or not.

PROFESSOR: Depends if it's--

AUDIENCE: Slipping or not.

PROFESSOR: Actually, I don't think so. Let's just talk about-- principal coordinates need to be

attached to the body, right? So problems like this do-- let's say we're using

Lagrange, and we want to calculate the total kinetic-- you need to calculate the total

kinetic energy of the system. So how would you go about breaking this thing down

to compute the total kinetic energy? Would you break it into more than one part?

What would be the natural things to break it into?

AUDIENCE: The disk and the rod.

PROFESSOR: The disk and the rod, right? So the kinetic energy of the rod, that's pretty

straightforward. It's 1/2i with respect to the center, theta dot squared, omega

squared. But the kinetic energy of that disk out there, you need to account for its

rotation and its movement of its center of mass in the circle.
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So let's-- I'm winging it now, so bear with me if I make any mistakes. You can help

me out. T rod would be-- and our coordinate system is an A at the center. There

actually isn't a-- oh yeah, there's the A. So T of the rod, I would argue, is 1/2M of

the rod omega squared ML squared over 3. Because it's rotating about one end. So

apply the parallel axis theorem. The kinetic energy of the rod is 1/2M i with respect

to that central axis, omega squared. And so that gets you from ML squared over 12

to ML squared over 3 because you're swinging around one end.

But now we need T of the disk. And to do T of the disk, I would do it by saying 1/2M

of the disk velocity of this center of mass of the disk in o dot VGo-- so that takes

care of its kinetic energy due to motion of its center of mass-- plus 1/2 omega dot H

with respect to G. With respect to G, can you express H for the disk in terms of a

mass moment of inertia and some rotations, rotation rates? Is it legitimate?

Remember, I started-- a few days ago, I started the top and said, here's the general

expression for kinetic energy. Full 3D, right? And it basically was that expression.

That works full 3D. And then when you fix a point about which something is rotating,

a rigid body, then you can simplify it.

But in this case, H, you could represent the angular momentum around G as some I

omega. And then you have to multiply it by-- so this inside of here will be-- you can

represent this in here as some I omega dotted with omega, and you will get the

kinetic energy due to the rotation of the disk.

What makes this problem a little trickier than I thought-- I wasn't thinking really

clearly-- is that omega is in-- what frame do you express omega in when you're

computing H in terms of mass moments of inertia? In order to compute I, you have

to use what coordinate system?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Body fixed. And when you compute I omega, what's the omega? What unit vectors

is the omega expressed in?

AUDIENCE: [INAUDIBLE]. It's rotating, but it's [INAUDIBLE].
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PROFESSOR: But in what-- so the unit vector's associated with what coordinate system are the

ones that you use to define omega?

AUDIENCE: [INAUDIBLE].

PROFESSOR: The one attached to the body or not? Generally in terms of the one attached to the

body. And the disk gets-- that means they're rotating. It gets a little messy. So I'm

not going to do it because I can't do it in my head. So this one you need to do the

kinetic energy of that. You need to use this approach. And you have to be careful

with those. Food for thought at office hours and in recitation.

All right. I had meant to start today-- we're well in, and I haven't even started where

I was going to really go today. So I have kind of a broken play. I have to decide what

to drop. Give me a moment.

So the principal thing I wanted to talk about today was to dig a little deeper into

finding generalized forces. And the way we've been doing it is what I would call kind

of an intuitive approach. So let's imagine we've got a rigid body. And I have some

forces acting on it, F1.

And at the point of application of each of these forces, I can have a position vector

that goes there. So there's R1, R2, R3. And they're all with respect to my o frame

here, but I'm going to not write in all the o's.

Let's say that this is a body in planar motion. So it's confined to a plane. It's a rigid

body. It's like my disk there. So how many degrees of freedom at most would it have

if there's no constraints? Three, right? It could move in the x, in the y, and it can

rotate in the z. So potentially three degrees of freedom. So it'll take, let's say, G is

maybe here.

So we need three generalized coordinates. And they would be, say, x, y, and some

rotation of theta. And with them, we have virtual displacements delta x, delta y, and

delta theta. And we use those to figure out the amount of non-conservative work

that happens when you make those little small motions occur.
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And we're trying to find-- we need to find Qx, Qy, and Q theta, the generalized

forces associated with these small variations, virtual reflections in R3 coordinates.

So the jth one. I have a bunch of forces maybe up to here, someone here that's

some Fj. So the generalized force-- I don't mean that. These are Fi's. The j's

referred to are generalized coordinates.

So generalized force Qj delta qj. This is the little bit of work done in the virtual

deflection delta qj. And there's work done by all of these applied forces in the

system, possibly. Every one, if I cause there a little delta x of this body, it moves

over an amount delta x.

All of those points of application of those forces move a little bit. And therefore, at

every location a little bit of work gets done. So in order to account for all of the work,

I have to do a summation of the Fi dot delta r at i. And now this is associated with

the virtual displacement of generalized coordinate j.

So the total virtual work done by a displacement of one of these is a summation of

all the little bits of work done at all the points of application of forces dotted with the

amount that the point of application of that force moves caused by delta qj. So in

general, that's what the total qj would be. Now, we've done problems like that more

or less intuitively. We figured it out and said, OK, if it moves this much, then it's

going to move over that much. And if there is an angle between them, we take the

component, and we just figure it out.

Is there a more mathematical way of doing this? And so I'm going to show you that.

So we've been doing this kind of the intuitive approach here, the reasoning out each

of the deflections and calculating the result. That there's a kinematic-- there's an

explicit kinematic way of doing this.

AUDIENCE: I have a question.

PROFESSOR: Yeah.

AUDIENCE: What is it at the right corner? [INAUDIBLE]?
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PROFESSOR: Yeah, OK, I'm sorry. It says-- this is a delta ri. It has double subscripts here. This is

the displacement at the point of application of force i due to the virtual displacement

of generalized coordinate j. So that an example might be, if that's delta x over here,

the summation is over i, is over F1 F2 to Fi. And the deflection is the deflection at

the point of application i due to-- in this case I'm talking about delta x-- due to the

virtual displacements delta x. And so that's-- we'd work each one of these out and

add them up, and we'd have the answer.

But there is a more explicit mathematical way of saying this. And that is to say that

Qj delta qj is the summation over i equals 1 to N, however many there are, of Fi dot

the derivative of ri with respect to qj delta qj. What's that mean?

So let's look at one of these. So force one, there's a position vector R1. If I move in

the x direction a little delta x, this point moves over delta x in that direction, in the x

direction horizontally. Our position vector R1 has potentially components in the y as

well as components in the x. But I'm only changing it in the x direction.

So that portion of the possible movement of R1 due to changes in just one of the

coordinates-- in this case, I was doing qx-- the derivative of R1 with respect to qx,

so only a part of its total possible movement is due to x. This gives us that portion.

Times delta qx is the total movement in the direction of qx dotted with the force. You

get the work done.

So I find this-- if I were you, this is highly abstract. I think we need-- let's do an

example of this and see how it works out. And since we were talking about that

problem, I'll do this cart by this method. So I need a position vector to the point of

application of this external non-conservative force. Because I'm calling this force

one, I'll call that position vector R1. And it goes from here to there.

But we know that the total motion of this point is made up of the motion of the main

cart plus the motion of the wheel relative to the main cart. And so we fall back on

our notation. So I'll say this is R1 and zero. Here's my point A. It's R is the vector.

This is R of A with respect to o plus-- and we'll better give this a name. What have I-

- so this is my point one here.
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So this is plus R1 with respect to A. So we've done that lots of times, this term.

That's just how-- that point is the sum of this vector plus this vector. So you have an

R-- this is R1 with respect to A from here to here. And the sum of those two is this

one. So this is R1 here.

OK, so let's see if we can come up with an expression for that. Well, this point A is

just x in the I plus some Y in the J. That's this term. Then I need this one.

So I want-- because I'm going to take some derivatives and things, I want to get

everything in terms of unit vectors and one system. So I know this one, this is my

x1, and it will have a unit vector i, lowercase i, in this direction. So the unit vector i

here has components in the capital IJ system. And this is theta, and that's theta.

So this has-- i has a component here, which is cosine theta cap I, and then this

piece is minus sine theta J. So this should be x1, the distance this thing moves,

broken into two pieces, cos theta I minus sine theta J. So that's now-- the position of

this thing is the position of the cart at A plus the vector that goes from A to point

one, which is the distance x1 to here, broken into two pieces, an I piece and a J

piece.

So now we're almost done. So I would like to find Qx. And Qx then should be the

summation-- well, let's see. So I'm only going to compute the part of the generalized

force in the Qx direction due to just this one force. Now, remember we have other

forces, non-conservative forces, acting on this. We've got a bx dot too.

But I'm just going to do the contribution to Qx that comes from this force F1. And so

Qx delta x is the virtual work done, is F1I dot partial of R1 with respect to x delta x.

But the derivative of R1 with respect to capital X, there's no capital X's over here. So

nothing comes from that. There's one right here. So the derivative of x with respect

to x gives me 1. I just get 1 times I back here.

F1 I hat dot I hat delta x. So it's just F1 delta x, which we knew intuitively when we

worked this problem earlier, when we were talking about it. The amount of virtual
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work that gets done by this particular force in a deflection, virtual displacement delta

x, it's just F1 delta x. But we've proven it-- we've done it in a very precise, kinematic

way where we found the position vector, worked the whole thing out.

So that's the simple one. Let's now find the harder one, but not much now. So we'd

like to find Qx1 due to just this F1 only delta x1. Well, that should be F1I dot partial

of R1 with respect to x1 delta x1. So the derivative of R1 with respect to x1-- this

stuff has nothing to do with x1. The x1 only appears over here. And the derivative of

this expression, just cosine I minus sine theta J.

So I dot I is the only part you get back. This is-- and I need a delta x1. F1I dot I is

cosine theta delta x1. So Qx1 and F1 only here equals F1 cosine theta. So this time

the motion delta x1, only part of it is in the direction of F1. And that portion, by

taking this derivative here, we get the contribution to this that comes from x1.

And then dotted with the force, we only take that component of that motion in the

direction of the force. And that gives us our total virtual work. So here is then the

total virtual work done by F1 due to the little motion delta x1. So now we've got the

contribution here to the generalized force that is associated with deflections of

coordinate x1.

Is that the total generalized force associated with generalized coordinate x1 in this

problem? Are there Any other non-conservative forces in the problem that move

when delta x1 is moved?

AUDIENCE: What about friction?

PROFESSOR: Well, let's see. Friction. Friction, you're presuming, on the wheel? OK. So he asked

about friction on the wheel. Well, let's say that there's no slip in this case. Then does

the friction at the point of contact with the wheel do any work? No. So do we have to

account for it as a generalized force? No.

So how about the dashpot? So a little virtual deflection, delta x1, does it make the

big cart move? No. So are there any other forces in the problem that move when

you cause a small movement in x1? No.
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So in this case, this is the total Qx1. Up here, we found Qx, the generalized force

due to the motion of a cart, the contribution by F1. But is there another contribution?

AUDIENCE: Yes.

PROFESSOR: And it is?

AUDIENCE: The dashpot.

PROFESSOR: The dashpot. So we get additionally the total Qx here total would be the summation

of two pieces, an F1 and an F2, which I'd call minus bx. It's in the same direction as

delta x. So you're going to get a minus bx dot plus F1 would be the total generalized

force in the capital X direction, the movement of the main cart.

So any time you can actually specify a position vector to the point of application of

an external non-conservative force, then you can just plug it into this. You do it at

each force that's applied. You take the derivative with respect to that to coordinate

qj, delta qj. That is the virtual work done by each of these forces.

And you add up to get the total virtual work done due to a deflection at that

particular coordinate, j. So in the case of capital of Qx, we had two contributions

because we had two forces on the main cart, F1 and minus bx dot. And so the

summation in that problem, when this is capital X, delta X, you have two

contributions, F1 and F2.

Now, what else can I do in the length of time? Actually, let me stop for a moment

there, think about this. Would you have any questions about this? So we've

described two ways of getting generalized forces. One's kind of the intuitive one,

figure out how much it moves in the direction and do the dot product. The other one

is straight mathematical way. Kinematics. Plug it in, take the derivative, same thing

will come out. So while you're thinking about a question, I'll look and think what I

was going to do next.

I know what I'll do next, but do you have any questions on this? I'm going to do
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another example of this.

AUDIENCE: I have a question.

AUDIENCE: I have a question.

PROFESSOR: Ah, Christina, yeah.

AUDIENCE: So I still don't understand how if you're going to grab the wheel and move it, how

that doesn't move the disk. Because they're attached, so I don't get it.

PROFESSOR: Is the wheel-- it's all in how you specify your generalized coordinates. So in this

problem, the two generalized coordinates are this capital X in the inertial system

which describes the motion of the cart, and little x1 describes the motion of the

wheel relative to the cart. And actually that allows you to write this statement. This is

only relative to the cart.

So the motion of the cart plus the motion of the point relative to the cart gives you

the total motion. And you've picked two coordinates that allow you to describe those

two things. So if you can-- in this problem, if this is the cart, this is the wheel, I even

have a spring hooked to it here, if I move this a little bit, the cart doesn't have to

move. This going back and forth accounts for x1 relative to this table. And the

table's the cart.

AUDIENCE: [INAUDIBLE].

PROFESSOR: You mean dynamically because you're putting forces on it? Yeah, well it might. But

that's not-- in a way, you're asking the question, is the cart capable of moving

because you put a force in the wheel? You move the wheel, which puts more spring

force, which maybe that causes the cart to move. Yeah, that could happen. But

that's not the problem you're solving when you're trying to find the generalized

forces. You're, in fact, allowing a single motion at a time.

So if you're talking about this motion, you have frozen the motion of the main cart.

And you figure out what the consequence of that is. It does a little virtual work

because there's a force. And you get one of the generalized forces. Then if you
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move the cart, you fix the wheel, and the whole cart moves. But the amount that this

wheel moves is exactly equal to the amount that the cart moves because you've

now fixed this relative position.

And that's where you get the first-- that's where you get the capital Qx term. Even

know this force F1 is applied here on the wheel, this wheel moves when the table

moves. But the table doesn't move when this relative coordinate between the table

and here changes. It doesn't have to. This is free to move when the table is frozen.

Remember we talked about complete and independent coordinates? x1 is

independent of capital X. If I freeze x1, and I make capital X change, just the whole

thing moves like that. If I freeze capital X, x1 can still move. So you have to pick

independent coordinates. Yeah.

AUDIENCE: [INAUDIBLE] mass of the whole thing is much larger than the mass of the wheel?

PROFESSOR: Not at all.

AUDIENCE: Because [INAUDIBLE] if you have two massed connected by a spring, you pull the

first one, they kind of pull each other along. So why don't you get the pull-along

effect over here?

PROFESSOR: That's a good question. It's similar-- it's essentially the same question that Christina

asked. He asked basically-- let's think about it. Let's do a problem like that. Let's

have two carts and a spring in between them, and they're both on wheels.

This is a planar motion problem. Each of these bodies is capable in planar motion

can have x and y and a rotation. But because of constraints, how many degrees of

freedom does body one have? I hear one, right? I don't allow it to rotate. It's got two

wheels. I don't allow it to go up because it's on the ground. I only allow it to move in

this direction. Same thing to be said for this. Only one there.

How many degrees of freedom do I have in this problem? One for each mass,

right? So I have two degrees of freedom. How many generalized coordinates do I

need? So my generalized coordinate for this one will be x1, and for this one will be
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some x2.

If you're going to do this problem by Lagrange, and let's see. Let's put a force now

to get back to your question. Let's put a force here on one. And we'll call it F1. And

the potential energy-- actually, no, I don't want to do that.

So the potential energy for this is some 1/2k times the amount that you stretch the

springs, right? So you're going to-- the difference between x1 and x2 minus the

unstretched length. So x1 minus x2 minus the unstretched length. We'll call it l0. So

this would be the stretch of the springs. If the spring had no length, then it would just

be the difference in these two positions squared. So my potential energy looks

something like that.

Now we want to compute the general-- and you could use Lagrange, and you could

figure out two equations of motion for this taking your derivatives. But the point of

the question was about getting to the generalized forces, right? So now the

generalized force Qx1 delta x1 is F1 times the derivative of R1 with respect to x1

delta x1.

So how much does the position vector from marking the position of this cart, which

would be R1-- so R1 is in effect x1, right? It's a pretty trivial problem. So the

derivative of R1 with respect to x1 is just 1, and the amount that it then moves is

delta x1. So the virtual work done by this force on that first cart is just Qx1 equals

F1. That's the generalized force caused by this first mass on the cart.

What's the generalize force Qx2? Well, it's some F1. Actually, there's a dot here.

This would be some x2 with respect to x1 delta x1. But how much does x2 move

when you cause a little virtual deflection of-- the virtual work done if I cause a little

deflection of this one is equal to the summation of the forces that act through delta

x2. Now, if you move this a little delta x1 here, we figured out that that Qx1, the

generalized force due to that, is indeed this.

But what's the generalized force associated with motion delta x2? Let's move this

one now a little bit. When you move that a little bit, how much work does F1 do? So
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we need to get two equations of motion, right? And you're going to get 1 by taking

derivatives with respect to coordinate x1. You're going to get an equation of motion,

which-- so EOM x1 associated with x1 double dot here is going to have on the right

hand side some Qx1.

And we figured out what that is. It's just F1. And we're going to get a second

equation of motion associated with x2 double dot, the mass acceleration of the

mass of the second one. And it's going to be equal to some external forces. And

there's other terms in here, right? We have kx. You have your k terms and so forth

in here.

But on the right hand side are the external non-conservative forces. So are there

any non-conservative forces on the second mass? None. So what do you expect

Qx2 to be? So to get back to your point, when you're computing the generalized

forces, you freeze all of the movements except one and figure out the work done.

Even though in the real system, force will result in this whole system-- that whole

system will move to the right.

If I put a steady force F1 on there, the whole system will go off to the right hand

side. That would be the solution to the equations of motion that you end up with. But

for the purpose of computing the generalized force on each mass, you only fix

where the masses are at some instant in time. And then one coordinate at a time

cause a little virtual deflection and figure out how much work gets done.

So see the distinction between the solution to the full equation to motion? Yes,

indeed. Everything's going to move because of that force. And a little bit of work that

gets done due to the motion of just one coordinate and then the other coordinate

through all of the non-conservative forces that are applied. Did that get to your

question? All right.

Now, I'll set up-- I don't think I'll have time to finish this. So last time we had this

problem, this is this rod. It's got a sleeve, and it's got a spring. And we figured out

the potential and kinetic energy equation to motion. This is a planar motion problem.

It pivots. Thing can slide up and down. Requires an angle theta and a deflection x
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with respect to the rod. And we figured out t and v, and we found the equations of

motion for it.

So here's my system. Point A here, spring, sleeve, theta, x1, y1. And the distance

x1 was measured from here to G, to the center of mass. That's x1. This is in the

direction here. This is the i1 unit vector direction. And the coordinate system is my

x1, y1. So x1, it's down the axis like that.

And this problem is a planar motion problem. There's two rigid bodies, the rod and

the sleeve. And we can completely describe the motion of the system with it has two

degrees of freedom. Theta defines the position of the rod, and x1 defines the

position of the sleeve on the rod. So we have two degrees of freedom.

And when we work this out, we end up with two equations of motion. And this was

called M2. This was M1. So one equation of motion was M2 x1 double dot That was

one equation of motion. And I'm just leaving the generalized force out of this for a

minute. We'll figure it out. And the second equation of motion. This is the rod.

So you get two equations of motion. We worked it out in the last lecture. And we can

see this accounts for the mass moment inertia of the rod, mass moment of inertia of

the sleeve with respect to G. So parallel axis theorem adds another piece to it. The

whole thing, theta double dot. And then this is just due to gravity, gravity acting on

the rod, gravity acting on the sleeve.

And on the right hand side, you need to get these Qx, your generalized forces for

generalized coordinate x1 and generalized coordinate theta. So we did it, in fact

worked it out last time doing the intuitive approach. And what if we were to try to do

this then by the kinematic approach that I described here?

The force was applied here. It was horizontal. We called it F2 because it was

applied to mass two. And in order to use this technique, we want now to compute

Qx1. We have a force F2, and it is in the-- which way do I want to do it? We'll have

an inertial system. So we need to describe a vector in-- I better not draw it out here.

So I'll just set this problem up, and we'll finish it next time. I have an inertial system y
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and x. So that in this system, this force would be F2 capital J dotted with the

derivative of some vector that runs here to this point. And I'll call that R2 in o. So the

derivative of R2 with respect to x1 delta x1.

And if you can work this out, then you're done. The key to this is figuring out what is

R2, and doing it in unit vectors such that you can complete this dot product. So how

would you describe what is this position to here, and what are its unit vectors that

break it down? Take this R2, and you express it in terms of unit vectors in the

inertial capital I capital J system. And once you've done that, you can take the

derivative, dot it with that, and you're done.

So we'll finish that next time. You might go off and think about it in your notes from

last time. We already figured this out. We just did it the intuitive way. Drew the F and

figured out which part's in the direction of x1, which part's in the direction of delta

theta. And we figured it out. So you actually already have the answer. So go see if

you can do that.
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