
2.003 Engineering Dynamics 

Problem Set 5--Solution 

Problem 1:    

Use symmetry rules to find a set of principal axes that pass through the center of mass for each 
of the rigid bodies in the four figures below.   In each case cite the symmetry rule used to obtain 
the axes you have chosen.  

a) The x-z and y-z axes lie in planes of 
symmetry.  A perpendicular axis to each 
plane of symmetry is a principal axis.  The 
3rd principal axis need only be 
perpendicular to the first two.  The origin 
may be placed at the center of mass, but is 
not required to be at the mass center.  

b) The y-z and x-y axes lie in planes of symmetry.  
Perpendicular axes to each plane of symmetry are 
principal axes.  The 3rd principal axis need only be 
perpendicular to the first two. The origin may be 
placed at the center of mass, but is not required to be 
at the mass center.  

 

d) The y-z and x-y axes lie in planes of symmetry. 
Perpendicular axes to each plane of symmetry are 
principal axes.  The 3rd principal axis need only be 
perpendicular to the first two. The origin may be the 
center of mass.   

 

d) The y axis is an axis of symmetry.  The x and z axes 

need only be perpendicular to the y axis and to each 
other.  
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Problem 2:    

A block of mass M is constrained by rollers to motion in the x direction. A small mass m is 
attached at point B to the end of a massless rigid arm. The other end of the arm is attached at a 
point A which is fixed to the cart.  Together the arm and mass make up a rotor which rotates 
about an axis fixed at A to the cart.  The angle the arm makes with a horizontal reference passing 
through A is given by ( )t t  .  The length of the arm is ‘e’, the distance from A to B.  The 

position of the cart in the inertial frame is given by the coordinate ˆxi .  

 

 

 

 

 

 

 

 

In Problem Set 3 we found the forces that the arm must exert on the mass, m, to cause it to move 
in a circular path about point A.  These forces may be expressed as: 

2 2ˆ ˆ[ cos( )] [ sin( )]rodF m x e i m g e j         

a.  Find an equation of motion of the cart by using Newton’s third law to express the forces 
of the rod on the cart of mass M.  

 

Solution: 

The cart of mass ‘M’ is free to move only in the x direction.  Therefore, a direct application of 
Newton’s 2nd Law in the x direction will yield the EOM of the mass of the cart.   

,M xF Mx                                                                                        (1)  
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In this problem the only forces in the x direction are those that the rotating arm places on the 
mass, M, at point A.  This arm also places a force on the rotating mass, m, which was determined 
in Problem set 3 and is given above.  In order for the massless arm to be in force equilibrium, the 
force the arm places on ‘m’ must be equal and opposite to the force the arm places on ‘M’.   

 

2 2
,

2
, ,

ˆ ˆ[ cos( )] [ sin( )]  and the x
component is therefore simply:

ˆ[ cos( )]

rod M

rod M x

F m x e i m g e j

F m x e i

   

 

    

  

                                      (2) 

Putting the result from (2) into Equation (1) yields: 

2
,

2

[ cos( )], which may be rearranged to yield

( ) cos( )
M xF Mx m x e

M m x me

 

 

   

 



                       (3)
 

Although this completes the problem as asked, by solving for the acceleration, a useful insight is 
obtained.   

2 cos( )
( )
mx e t

M m
 

 , which can be integrated to find x(t).                                   (4) 

The system consisting of both masses and the arm has no external forces acting upon it.  
Therefore, as the arm rotates the center of mass of the system must not experience any 
acceleration. It does not move.   The distance that the mass M moves may be obtained by 

integrating equation (4), resulting in cos( )
( )
mx e t

M m
 


, 

The moment x(t) of the large mass, M, is exactly the amount needed to compensate for the 
motion of the small mass as it moves in the opposite direction with an amplitude ‘e’.  Thus the 
center of mass of the system does not move.  
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Problem 3:    

Two identical masses are attached to the end of massless rigid arms as shown in the figure. The 
vertical portion of the rod is held in place by bearings that prevent vertical motion, but allow the 
shaft to rotate without friction. The shaft rotates with angular velocity   with respect to the Oxyz 
inertial frame. The arms are of length L. The frame Ax1y1z1  rotates with the arms and attached 
masses.  Note that the angle    is fixed.  

 

a) Compute the angular momentum / AH  for this two-mass system with respect to point A.    
Point A is not moving and therefore is an inertial point.  The two mass particles in this 
system make a rigid body.  The only velocity components result from the rotation of the body 
about an axis passing through ‘A’.  Therefore: 
 

 / / / / / /

/ / 1̂Because point A does not move, 

A i A i O i A O i A i
i i

O A

H r P r r m

k

    

  

  

 

                                    (1) 

 
Let m1 be the mass to the left in the figure and m2 be the mass to the right.  Then, 

 1/ 1 2/ 1 1̂ˆ ˆ and cos( ) sin( )A Ar Li r L i k     .  Substituting into (1) yields: 

 
2 2 2

/ 1 1 2 1 1

1 2

2 2 2
/ 1 1

ˆ ˆ ˆ(cos ( ) sin( )cos( ) )
Since ,  then

ˆ ˆ(1 cos ( )) sin( )cos( )

A

A

H m L k m L k i
m m m

H mL k mL i

  

  

    

 

    
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b) Express the angular velocity ( )t  of the rotating system as a column vector using unit 
vectors in the rotating Ax1y1z1 frame.  

1

/ 1

1 1

0
0
ˆ

x

O y

z k



 



  
  

    
   

   

 

c) Express   /  = AH I  , where  I  is a 3 × 3 matrix and 
0
0

 
 

  
  

 .  

The most direct way to do this is to compute the elements of the inertia matrix from their basic 
definitions in terms of the summation of the moments of inertia of individual particles.  

      2 2 2 2 2 2,     ,     ,xx i i i yy i i i zz i i ii i i
I m y z I m x z I m y x          

 , , ,xy i i i yx xz i i i zx yz i i i zy
i i i

I m x y I I m x z I I m y z I             

In this case there are two particles.  From part a) the position vectors of the two particles are 

given by:   1/ 1 2/ 1 1̂
ˆ ˆ and cos( ) sin( )A Ar Li r L i k       

Therefore the location of m1 is at (x1, y1, z1) = (-L, 0, 0)  and m2 is located at (
2 2 2( , , ) ( cos( ), 0, sin( ))x y z L L   

Substitution into the expressions above for the individual elements of the inertia matrix yields: 

 

2 2 2

2
/

2 2 2

sin 0 sin cos
0 2

sin cos (1 cos )

xx xy xz

A yx yy yz

zx zy zz

I I I mL mL
I I I I mL

I I I mL mL

  

  

   
  

    
       

 

Just to check, compute the matrix product 

       

2
1

/ / /

2 2
1

ˆ0 sin cos
0 0

ˆ(1 cos )
A A A

mL i
H I I

mL k

   
  

     
        

 





 the same as was obtained in part a).  

d) Compute / AdH
dt

 and note that   is not assumed to be constant.  From part a) or d) the 

expression for / AH  is 2 2 2
/ 1 1

ˆ ˆ(1 cos ( )) sin( )cos( )AH mL k mL i        and therefore 
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2 2 2 2 2/
1 1 1
ˆ ˆ ˆ(1 cos ( )) sin( )cos( ) sin( )cos( )AdH mL k mL i mL j

dt
            

Note that the only time dependent terms in the expression for / AH  are 

1 1̂
ˆ and ;    does not rotate,i k  and therefore / AdH

dt
 has only three terms. 

e) Find the torque about A and express it as a vector  
1

/ 1

1

ˆ
ˆ

ˆ

x

A y

z

i
j

k



 



 
 

  
 
 

 , where 1 1 1
ˆˆ ˆ, ,  and ki j  are unit 

vectors in the rotating Ax1y1z1 system.  In general the sum of the external torques on a rigid body 
is given with respect to any fixed or moving point, ‘A’ is given by: 

/
/ / /

xyz

A
i A A O C Oi

O

dH
dt

 
   
 

 v P , where /C OP  is the linear momentum of the rigid body.  In this 

case 0
A/O

v ,  because A is a fixed point.  Therefore Euler’s law for the sum of torques on this 
rigid body with respect to the fixed point ‘A’ simplifies to:   

2 2 2 2 2/
/ 1 1 1

ˆ ˆ ˆ(1 cos ( )) sin( )cos( ) sin( )cos( )
xyz

A
i Ai

O

dH mL k mL i mL j
dt

 
        
 

        

f)  Where could you place a single additional mass, connected to a massless arm, such that / AdH
dt

 

would yield torque with a component only aligned with the z direction? 

This system is dynamically imbalanced because mass m2 on the right side in the figure creates 
torques about the x and y axes due to the offset of the mass in the z direction.  Conceptually, the 
easiest way to dynamically balance this rotor is to add mass to the system in such a way that the 
existing axes attached to the body, become principal axes(the axes referred to those in the Ax1y1z1 
frame).  This can be done by inspection by making the x1y1 plane a plane of symmetry for the 
rigid body.  The simplest way to do this is to add a third mass equal to m2 but offset the same 
distance in the –z direction.  The system would look like the following figure:  The z1x1 and x1y1 
planes are now both planes of symmetry.   Therefore the x1, y1, and z1 axes are all principal axes 
and the system is dynamically balanced for rotation about one of these axes.   In this case the 
rotation is about the z1 axis. 
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The system would be dynamically balanced but not statically balanced, because the center of 
mass of the system is not at the axis of rotation.   
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Problem 4:    

A motorized cart is carrying a box of mass m = 800 kg on its flat bed. The static coefficient of 
friction between the cart’s bed and the box is µs=0.3.  The center of mass of the box is 1.0m 
above the bed of the cart. The length of the box is 2b=0.2m and the center of mass of the box is 
located at a distance b=0.1 m from the edge of the crate.  The cart is travelling on a level floor 
and gravity is at work.    

 

a) Find the maximum horizontal acceleration of the cart that does not cause the box to slip 
nor tip.  

The acceleration of the cart that would result in slip would be given by  

 
box s s box

x

s

F M x N M g

x g .3g

    

   


  

The acceleration that would result in tipping of the box is when the torque with respect to the 
lower left corner of the box, produced by the truck’s acceleration of the center of mass of the 
box, exceeds the restoring torque provided 
by gravity.  Begin with a free body diagram 
of the box, as it begins to tip about its back 
corner.  The weight of the box acts at the 
center of mass.  The normal force on the 
box shifts to the back corner as the box 
begins to tip. The normal force exerts no 
torque about ‘A’ because the moment arm 
with respect to ‘A’ is zero.  The friction 
force produces no torque about ‘A’ because 
its line of action passes through ‘A’.  At 
this instant in time the free body diagram is 
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as shown in the figure above.  

 Euler’s law for a rigid body may be written as follows: 

/
/ / /

xyz

A
i A A O C Oi

O

dH
dt

 
   
 

 v P    In this case the momentum of the box, 

C/O A/O A/O C/OP mv  and therefore v P 0.  Therefore  

 
 

 

/ / // / /
/ /

/ /
/ / /

ˆ ˆˆ ˆ0

ˆ

xyz

C C A C OA C C O
i A C Ai

O

C C
C A A O C A

d H r PdH dH dPr
dt dt dt dt

dH dHr Ma r MXI bi hj MXI
dt dt
MhXk Mgbk

  
     
 

         

   

 

  

0 1Since  then  0 1
1 0

b . mˆMhXk Mgbk X g g . g
h . m

      If the acceleration of the truck is less than 

0.1g then the box will not tip.  If the acceleration of the truck is less than 0.3g then it will not 
slide.  In this case the box will tip before it slides.  

In the above the angular momentum of the box with respect to ‘A’ has been replaced by a very 
useful equivalent expression / / / /A C C A C OH H r P   .  Because the box has no angular velocity, 

the angular momentum about the mass center at ‘C’, / 0CH  .  In addition, because the position 
vector rC/A  is of fixed length and direction, its time derivative is zero and therefore 

 / / /
/ / /

C A C O C O
C A C A A O

d r P dPr r Ma
dt dt


     . 
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Problem 5:    

A pendulum consists of a 
rectangular plate (of thickness t) 
made of a material of density  , 
with two identical circular holes 
(of radius R). The pivot is at A.   

a) Find the location of C, the 
center of mass of the pendulum. 
b) Compute  and zz /C zz / AI I  the 
mass moments of inertia about C 
and A respectively with respect to 

the z axis.  Note: you can use the tables for Izz/C  given in many textbooks for various shapes.   
c) Derive the equations of motion for the system. (Note: do not assume small motions)  

Solution: 

a).  The center of mass of the rectangle is at x=a/2, z=0 and y =0.  The two holes are 
symmetrically placed with respect to the x axis.   Hence, removal of the two holes does not move 
the center of mass in the y direction.  The center of mass of the two holes in the x direction is at 
x=a/2, the same as the original rectangle.  Hence the removal of the two holes does not move the 
center of mass in the x direction either.  Therefore (xcm, ycm, zcm)=(a/2, 0, 0) 

b).    and zz /C zz / AI I may be computed by first finding zz / CI and then using the parallel axis 

theorem to obtain zz / AI . The simplest way to find zz / CI for the rectangle with holes is to realize 

that zz / CI for the rectangle without holes is the sum of the zz / CI for the rectangle with holes and  

zz / CI for the holes.  

2 2

2
2 2 2

12

2 2
2

Where the second term in the line above is from the 
application of the parallel axis theorem for the 

zz / C,with holes zz / C,without holes C,holes

C,holes

zz / C,holes

I I Izz /

( a b )abt I

RI R t R td

 


 

 



 

holes 
displaced by d from C.

  

 

The mass of the rectangle with holes is given by 
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22with holesM [abt R ]   . 

Putting it together yields the zz / A,with holesI  that we seek.  

2

2 2 2 2
2 2 2 2

2 2 2 2
2 2

4

2 2 2
12 2 4

2
12 3 2 4

zz / A,with holes zz / C,withholes with holes

zz / A,with holes

aI I M

( a b ) R aabt R t R td [ abt R t ]

b a R aI abt R t d

 


    

   
       

      

    

 

 

c).  To derive the equation of motion:  i.  first draw a free body diagram. 

 Then use Euler’s law for rotation about a fixed 
point.  This is a simple planar motion problem 
and we can use the simple form: 

/

/

ˆ ˆˆˆ sin sin
2 2

sin 0
2

zz A
external

zz A

a aI k r mg mg k

aI mg

   

 

    

  


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Problem 6:    

Two uniform cylinders of mass m1 and m2 and radius R1 and R2 are welded together. This 
composite object rotates without friction about a fixed point O. An inextensible massless string is 

wrapped without slipping around the larger cylinder. 
The two ends of the string are connected to the ground 
via, respectively, a spring of constant k and a dashpot 
of constant b. The smaller cylinder is connected to a 
block of mass mo via an inextensible massless strap 
wrapped without slipping around the smaller cylinder. 
The block is constrained to move only vertically.  

a) Draw a free body diagram for the system.  

b) Derive the equations of motion for the system.  

 

Solution: 

a)             

 

 

 

 

 

 

 

 

b) A single coordinate ( t )  is able to completely describe the motion of the system.  It is 
assumed that 0  is at the unstretched(zero force) position of the spring.  An Oxyz 
inertial frame is positioned at the axle.  It does not rotate.   Euler’s law may be applied to 
a system of rigid bodies as well as to an individual rigid body. By evaluating the angular 
momentum of the entire system with respect to point ‘O’ it is possible to avoid having to 
find the tension in the cord connected to the hanging mass. The cord exerts only an 
internal force in the system and need not be evaluated.  The following expression for the 
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angular momentum of the system is found:  

 

2
1 1 1

2 2
1 2

1 2

2 21 2
1 2

where  and therefore
2 2

2 2

o/ o i / o rotor B / o m / o
i

zz / o o zz / o o

zz / o

/ o o

H H H r P

ˆ ˆ ˆˆ ˆI k ( R i ( m R j )) I k m R k

R RI m m

m m ˆH [(m )R R ] k

   

      

 

  



   



  

 
Because the angular momentum is with respect to a fixed point then Euler’s law may be 
written as follows: 

  

2 2/ 1 2
1 2

2 2
1 2 1

2 2 2 21 2
1 2 2 1 1

/
ˆ[( ) ]

2 2

ˆ

Rearranging leads to the following equation of motion:

[( ) ]
2 2

xyz

O
o

O

o

o o

i o
dH m mm R R k
dt

m gR bR kR k

m mm R R bR kR m gR

 
    
 

    

    

 

 

  

.   

The static torque term on the right hand side will cause this system to have a static 
rotation which the above EOM could be solved to yield.  The rotor and mass will 
oscillate about this static equilibrium position if given an initial rotation and released.  
 

Problem 7:    

A wheel is released at the top of a hill.  It has a mass of 150 kg, a radius of 1.25 m, and a radius 
of gyration of kG =0.6 m.    

a) If the coefficients of static and kinetic friction 
between the wheel and the plane are µs =0.2 and µk 
=0.15 respectively, determine the maximum  angle, 
 , of the inclined plane so that the wheel rolls 
without slipping.  
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Solution:   First prepare a free body 
diagram.  Then assume there is no slip 
and find an equation of motion, which 
will have to involve the slope.   As long 
as the wheel does not slip there exists an 
instantaneous center of rotation at the 
point of contact, B, with the ground. 
Only one coordinate is needed to 
completely describe the motion when 
slip is not allowed, because translation 
and rotation are constrained by the 
relationship that x R .     

a) We begin by summing torques about ‘B’ the instantaneous center or rotation and apply 
Euler’s law for the sum of torques about a point that is not moving.  
 

   / /

2 2/ /

2 2

2 2

ˆˆ ˆ ˆ ˆ ˆsin cos sin cos sin

ˆ( ) ˆ( )     (note use of the parallel axis theorem)

( ) sin
sin

( )
Where we note t

B C B
i

B zz B
G

G

G

r mg i mg j Rj mg i mg j mgR k

dH d I k m mR k
dt dt
m mR mgR

gR
R

       

   

  

 


     


 

  






2
/

hat radius of gyration is defined as:

,  where G refers to the center of mass, the same as the meaning of C.I Gzz C m 

 

Nothing was learned about slip or the friction force.  A way to bring the friction force 
into the discussion is to apply Newtons’ 2nd law to the wheel.  
 

 

ˆˆ ˆ( sin ) ;  dropping i and solving for f.

sin cos

Because of the no slip condition, .  With this relationship 

and the expression found earlier for ,  the f

ext
x

s s

F mg f i mxi

f mg mx mg N

x R



   





  

   





ollowing is obtained.
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2

2 2

2

2 2

2

2 2

2 2 2 2

2 2

1

sin cos

sin
( )

sinsin cos
( )

tan

.6 1tan 0.2 0.7555
.6

tan (0.755) 37.07degrees

s

G

s
G

G
s

G

G
s

G

f mg mx mg

gRx R
R

gRmg m mg
R

R

R

  







  




 



 



 

  

 


  


 


  
    

  

 

  

 
If the slope exceeds 37.07 degrees the wheel will begin to slip. 
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