MIT OpenCourseWare
http://ocw.mit.edu
2.004 Dynamics and Control II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.004 Dynamics and Control II
 Spring Term 2008

Lecture 6^{1}

Reading:

- Nise: Sec. 2.4 (pages 45-55)
- Class Handout: Modeling Part 1: Energy and Power Flow in Linear Systems

Sec. 1 (Introduction)
Sec. 4 (Electrical System Elements)

1 Modeling Electrical Systems (continued)

In Lecture 5 we examined the primitive electrical elements (capacitors inductors and resistors), and sources (voltage source and current source). We now look at how these elements behave when connected together in a circuit.

Interconnection Laws:

(a) Kirchoff's Current Law (KCL): The sum of currents flowing into(or out of) a junction is zero. In the figure below, at the circled junction we sum the currents into the junction to find

$$
i_{1}-i_{2}-i_{3}=0
$$

We will define a junction as a node, and if there are n circuit branches attached to a node

$$
\sum_{i=1}^{n} i_{n}=0
$$

where we define the convention that positive current flow is into the node.

[^0]

Kirchoff's Voltage Law (KVL): The sum of voltage drops around any closed loop in a circuit is zero. The assumed sign convention for the voltage drop on each element must be defined. Two clockwise loops are shown in the figure below. For loop (1)

$$
v_{R}+v_{C}-V_{s}(t),
$$

while for loop (2)

$$
v_{L}-v_{C}(t)=0
$$

Loop 1: $v_{R}+v_{C}-V_{s}=0$
Loop 2: $\quad v_{L}-v_{C}=0$
Note: The + and - on the diagram shows the direction of the assumed voltage drop.

Electrical Impedance:

Define the impedance of an element or passive circuit as a transfer function relating current $I(s)$ to voltage $V(s)$ at its terminals:

$$
Z(s)=\frac{V(s)}{I(s)}
$$

In addition we can define the admittance $Y(s)$ as the reciprocal of the impedance:

$$
Y(s)=\frac{1}{Z(s)}=\frac{I(s)}{V(s)}
$$

The Impedance of Passive Electrical Elements
(a) The Capacitor:

For the capacitor

$$
i=C \frac{d v}{d t}
$$

Taking the Laplace Transform:

$$
\begin{gathered}
I(s)=C s V(s) \\
Z_{C}(s)=\frac{V(s)}{I(s)}=\frac{1}{s C}
\end{gathered}
$$

or the admittance $Y_{C}(s)=s C$.
(b) The Inductor:

$$
\begin{aligned}
& \text { For the inductor } \\
& \qquad v=L \frac{d i}{d t} \\
& \text { Taking the Laplace Transform: } \\
& \qquad V(s)=L s I(s) \\
& Z_{L}(s)=\frac{V(s)}{I(s)}=s L
\end{aligned}
$$

or the admittance $Y_{L}(s)=1 / s L$.
(c) The Resistor:

For the resistor

$$
v=R i .
$$

Taking the Laplace transform

$$
\begin{gathered}
V(s)=R I(s) \\
Z_{R}(s)=\frac{V(s)}{I(s)}=R
\end{gathered}
$$

or the admittance $Y_{R}=1 / R$.

Impedance Nomenclature: We now introduce a graphical representation that will be used to denote systems in many energy domains.

The impedance is drawn as a graph branch between two nodes. Nodes represent junctions between the elements in the circuit. The arrow on the branch indicates both the assumed direction of voltage drop across the element, and the assumed current direction.

■ Example 1

The electrical circuit, consisting of a capacitor C, an inductor L, and a resistor R is shown below:

The impedance graph is shown on the right. The nodes on the graph represent points of distinct voltage in the circuit.

Impedance Connection Rules

(a) Series connection: Two or more elements are defined to be connected in series if they share a common current. For the two elements Z_{1} and Z_{2} in series below: Using KCL at the junction between Z_{1} and Z_{2} :

$$
i_{Z_{1}}=i_{Z_{2}}=i
$$

Using KVL around the loop: $v_{Z_{1}}+v_{Z_{2}}-V_{s}=0$

$$
\begin{gathered}
V_{s}=i Z_{1}+i Z_{2} \\
Z_{e q}=\frac{V(s)}{I(s)}=Z_{1}+Z_{2}
\end{gathered}
$$

In general with n impedances $Z_{i}(i=1, \ldots, n)$ in series:

$$
Z_{e q}=\sum_{i=1}^{n} Z_{i}
$$

■ Example 2

For the tree elements in series below:

$$
Z_{e q}=Z_{C}+Z_{L}+Z_{R}=\frac{1}{s C}+s L+R
$$

or expressing the impedance as a transfer function (a ratio of polynomials):

$$
Z_{e q}=\frac{V(s)}{I(s)}=\frac{L C s^{2}+R C s+1}{C s}
$$

(b) Parallel connection: Two or more elements are defined to be connected in parallel if they share a common voltage. For the two elements Z_{1} and Z_{2} in parallel below:

Using KVL:

$$
v_{Z_{1}}=v_{Z_{2}}=V_{s}
$$

Using KCL at the node:

$$
\begin{gathered}
i_{s}=i_{Z_{1}}+i_{Z_{2}} \\
\frac{1}{Z_{e q}}=\frac{I}{V}=\frac{i_{Z_{1}}+i_{Z_{2}}}{V} \\
\frac{1}{Z_{e q}}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}
\end{gathered}
$$

In general for n impedances $Z_{i}(i=1, \ldots, n)$ in parallel, the equivalent impedance is:

$$
\frac{1}{Z_{e q}}=\sum_{i=1}^{n} \frac{1}{Z_{i}}
$$

Alternatively, using admittances $Y=1 / Z$

$$
y_{e q}=\frac{1}{Z_{e q}}=\sum_{i=1}^{n} Y_{i} .
$$

Note: For $N=2$ we can write

$$
\frac{1}{Z_{e q}}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}=\frac{Z_{1}+Z_{2}}{Z_{1} Z_{2}}
$$

which leads to the very common representation

$$
Z_{e q}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}
$$

- Example 3

Find the impedance of a capacitor C, and inductor L and a resistor R connected in parallel:

$$
\begin{aligned}
\frac{1}{Z} & =\frac{1}{1 / s C}+\frac{1}{s L}+\frac{1}{R} \\
& =s C+\frac{1}{s L}+\frac{1}{R} \\
& =\frac{L C R s^{2}+L s+R}{R L s}
\end{aligned}
$$

$$
Z=\frac{V(s)}{I(s)}=\frac{R L s}{L C R s^{2}+L s+R}
$$

■ Example 4

Find the impedance of the following circuit, assuming we should include resistance and inductance of the coil:

$$
\begin{aligned}
Z & =Z_{1}+Z_{4} \|\left(Z_{2}+Z_{3}\right) \\
& =Z_{1}+\frac{Z_{4}\left(Z_{2}+Z_{3}\right)}{Z_{4}+Z_{2}+Z_{3}} \\
& =R+\frac{(1 / s C)\left(R_{L}+L s\right)}{1 / s C+R_{L}+L s} \\
& =R+\frac{R_{L}+L s}{L C s^{2}+R_{L} C s+1}
\end{aligned}
$$

$$
Z=\frac{V(s)}{I(s)}=\frac{R L C s^{2}+\left(R R_{L} C+L\right) s+\left(R+R_{L}\right)}{L C s^{2}+R_{L} C s+1}
$$

The Voltage Divider: Consider two impedances in series with voltage V across them:

$$
I(s)=\frac{V(s)}{\left(Z_{1}+Z_{2}\right)}
$$

and

$$
V_{Z_{2}}(s)=I(s) Z_{2}=V_{Z_{2}}(s)=\frac{Z_{2}}{Z_{1}+Z_{2}} V(s) .
$$

Similarly

$$
V_{Z_{1}}(s)=\frac{Z_{1}}{Z_{1}+Z_{2}} V(s) .
$$

The voltage divider relationship may be used to find the transfer function of many simple systems.

■ Example 5

Find the transfer function relating V_{0} to V_{s} in the following circuit

Use the voltage divider relationship

$$
\begin{gathered}
V_{0}=\frac{Z_{2}}{Z_{1}+Z_{2}} V_{s}=\frac{1 / s C}{R+1 / s C} V_{s} \\
H(s)=\frac{V_{0}(s)}{V(s)}=\frac{1}{R C s+1}
\end{gathered}
$$

■ Example 6

Find the transfer function relating V_{0} to V_{s} in the following circuit:

Reduce the impedance graph to a series connection of two elements

$$
V_{0}=\frac{Z_{5}}{Z_{1}+Z_{5}} V_{s}
$$

where

$$
\begin{aligned}
Z_{5} & =Z_{4} \|\left(Z_{2}+Z_{3}\right)=\frac{Z_{4}\left(Z_{2}+Z_{3}\right)}{Z_{4}+Z_{2}+Z_{3}} \\
& =\frac{(1 / s C)\left(R_{L}+L_{s}\right)}{1 / s C+R_{L}+L s}
\end{aligned}
$$

Using the voltage divider relationship, the transfer function is

$$
\begin{aligned}
& H(s)=\frac{V_{0}(s)}{V_{s}(s)}=\frac{Z_{5}}{Z_{1}+Z_{5}}=\frac{\frac{R_{L}+L s}{L C s^{2}+R_{L} C s+1}}{R_{1}+\frac{R_{L}+L_{s}}{L C s^{2}+R_{L} C s+1}} \\
& H(s)=\frac{R_{L}+L s}{R_{1} L C s^{2}+\left(R_{1} R_{L} C+L\right) s+\left(R_{1}+R_{L}\right)}
\end{aligned}
$$

The Current Divider: Consider two impedances in parallel:

Using KCL at the top node (a),

$$
I-i_{1}-i_{2}=0 \quad \text { or } \quad i_{1}+i_{1}=I
$$

But $i_{1}=V / Z_{1}$, and $i_{2}=V / Z_{2}$ so that

$$
\begin{gathered}
\frac{V}{Z_{1}}+\frac{V}{Z_{2}}=I \quad \text { or } \quad V=\frac{1}{1 / Z_{1}+1 / Z_{2}} I \\
i_{1}=\frac{V}{Z_{1}}=\frac{1 / Z_{1}}{\left(1 / Z_{1}+1 / Z_{2}\right)} I=\frac{Y_{1}}{Y_{1}+Y_{2}} I
\end{gathered}
$$

Similarly

$$
i_{2}=\frac{Y_{2}}{Y_{1}+Y_{2}} I
$$

The current divider may be used to find transfer functions for some simple circuits.

■ Example 7

Find the transfer function

$$
H(s)=\frac{V_{o}(s)}{I(s)}
$$

in the following circuit:

Draw the system as an impedance graph:

Let $Z_{1}=1 / s C, Z_{2}=R$, and $Z_{3}=s L$. We will use $V_{o}(s)=I_{2}(s) Z_{3}$ (at node (b)), and find $I_{2}(s)$ from the current division at node (a):

$$
\begin{aligned}
I_{2}(s)= & \frac{1}{Z_{2}+Z_{3}} \\
\frac{1}{Z_{1}}+\frac{1}{Z_{2}+Z_{3}} & I(s)=\frac{1}{\left(1 / Z_{1}\right)\left(Z_{2}+Z_{3}\right)+1} I(s) \\
= & \frac{1}{C s(R+L s)+1} I(s)=\frac{1}{L C s^{2}+R C s+1} I(s) \\
& V_{o}(s)=I_{2}(s) L s=\frac{L s}{L C s^{2}+R C s+1} I(s)
\end{aligned}
$$

or

$$
H(s)=\frac{V_{o}(s)}{I(s)}=\frac{L s}{L C s^{2}+R C s+1}
$$

[^0]: ${ }^{1}$ copyright © D.Rowell 2008

