MIT OpenCourseWare
http://ocw.mit.edu
2.004 Dynamics and Control II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.004 Dynamics and Control II
 Spring Term 2008

Lecture $\mathbf{2 6}^{1}$

Reading:

- Nise: Chapter 6
- Nise: Chapter 8

1 Determining Stability Bounds in Closed-Loop Systems

Consider the closed-loop third-order system with proportional controller gain K with openloop transfer function

$$
G_{f}(s)=\frac{K}{s^{3}+3 s^{2}+5 s+2}
$$

shown below.

The closed loop transfer function is:

$$
G_{c l}(s)=\frac{N(s)}{D(s)+N(s)}=\frac{K}{s^{3}+3 s^{2}+5 s+(2+K)}
$$

Let's examine the closed-loop stability by using the pzmap() function in MATLAB:

```
    sys = tf(1,[\begin{array}{llll}{1}&{5}&{2}\end{array}]);
pzmap(sys);
hold on;
for K = 2:2:30
    sys = tf(K,[1 3 5 2+K]);
    pzmap(sys);
end;
```

which superimposes the closed-loop pole/zero plots for $K=0 \ldots 30$ on a single plot:

[^0]

From the plot we note the following:

- This system always has two complex conjugate poles and a single real pole.
- When $K=0$ the poles are the open-loop poles.
- As K increases, the real pole moves deeper into the l.h. plane, and the complex conjugate poles approach and cross the imaginary $(j \omega)$ axis, and the system becomes unstable.
- Close examination of the plot shows that the system becomes unstable at a value of K between $K=12$ and $K=14$.

We now look at three methods for determining the stability limit of the proportional gain K for this system.

■ Example 1

Use the Routh-Hurwitz method to find the range of proportional controller gain K for which the above system will be stable.
The first two rows of the Routh array are taken directly from $D(s)$:

s^{3}	1	5	0
s^{2}	3	$2+K$	0

and the next two rows are computed as above

$$
\begin{aligned}
& b_{1}=-\frac{1}{a_{n-1}}\left|\begin{array}{ll}
a_{n} & a_{n-2} \\
a_{n-1} & a_{n-3}
\end{array}\right|=-\frac{1}{3}\left|\begin{array}{lc}
1 & 5 \\
3 & 2+K
\end{array}\right|=-\frac{1}{3}(K-13) \\
& b_{2}=-\frac{1}{a_{n-1}}\left|\begin{array}{ll}
a_{n} & a_{n-4} \\
a_{n-1} & a_{n-5}
\end{array}\right|=-\frac{1}{3}\left|\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right|=0
\end{aligned}
$$

Similarly, the s^{0} row is computed

$$
\begin{aligned}
& c_{1}=-\frac{1}{b_{1}}\left|\begin{array}{cc}
a_{n-1} & a_{n-3} \\
b_{1} & b_{2}
\end{array}\right|=-\frac{3}{K-13}\left|\begin{array}{cc}
3 & 24 \\
-(K-13) / 3 & 2+K
\end{array}\right|=2+K \\
& c_{2}=--\frac{1}{b_{1}}\left|\begin{array}{cc}
a_{n-1} & a_{n-3} \\
b_{1} & b_{3}
\end{array}\right|=-\frac{3}{K-13}\left|\begin{array}{cc}
3 & 0 \\
-(K-13) / 3 & 0
\end{array}\right|=0
\end{aligned}
$$

and the complete Routh array is

s^{3}	1	5	0
s^{2}	3	$2+\mathrm{K}$	0
s^{1}	$-(\mathrm{K}-13) / 3$	0	
s^{0}	$(2+\mathrm{K})$	0	

We now examine the first column to determine the range of proportional gain for which this system will be stable. In order for there to be no sign changes we require

$$
-2<K<13
$$

We conclude that if $K<-2$ there will be one (therefore real) unstable pole, while if $K>13$ there will be two unstable poles. When $K=13$ the denominator is

$$
D(s)=s^{3}+3 s^{2}+5 s+15=(s+3)(s+j 2.236)(s-j 2.236)
$$

so that the closed-loop system has a pair of poles on the imaginary axis. The system will be marginally stable (a pure oscillator at a frequency of $\omega=2.236$ r/s).

■ Example 2

Use the stability criterion for third-order systems developed in Example 3 of Lecture 25 to determine the stability bounds for the above system.
In Lecture 25 we showed that for a third-order system with characteristic equation:

$$
D(s)=a_{3} s^{3}+a_{2} s^{2}+a_{1} s+a_{0}=0
$$

the system is stable only if

$$
a_{1} a_{2}>a_{0} a_{3}
$$

In this case

$$
D(s)=s^{3}+3 s^{2}+5 s+(2+K)
$$

and therefore for stability we require

$$
15>2+K
$$

or $K<13$.

■ Example 3

Use the characteristic equation directly to find the closed-loop stability limits for the above system. There are three closed-poles. We conjecture that at the stability boundary (marginal stability) there will be a pair of poles on the imaginary axis at $s= \pm j \omega$, and a single real pole at $s=-a$.
The closed-loop characteristic polynomial will therefore be

$$
D(s)=(s+a)\left(s^{2}+\omega^{2}\right)=s^{3}+a s^{2}+\omega^{2} s+a \omega^{2}
$$

Comparing coefficients with the actual closed-loop characteristic polynomial

$$
D(s)=s^{3}+3 s^{2}+5 s+(2+K)
$$

we determine

$$
\begin{aligned}
a & =3 \\
\omega^{2} & =5 \quad \rightarrow \quad \omega=\sqrt{5} \\
a \omega^{2} & =K+2 \quad \rightarrow \quad K=13
\end{aligned}
$$

2 Root Locus Methods

We have seen that the closed-loop poles change as controller parameters vary. A root-locus is is an s-plane plot of the paths that the closed-loop poles take as a controller parameter varies. Let's start with some simple examples.

■ Example 4

Consider the first order plant under proportional control, as shown below:

The closed-loop transfer function is

$$
G_{c l}(s)=\frac{K}{s+(a+K)}
$$

with a single pole $p_{c]}=-(a+K)$. The root-locus is simply the path of this pole as K varies from $K=0$ to $K=\infty$. Clearly as $K \rightarrow 0$, the closed-loop pole approaches the open-loop pole $(s=-a)$, and as $K \rightarrow \infty$, the closed-loop pole $p \rightarrow-\infty$. This is all the information we need to construct the root-locus for this system.

■ Example 5

Construct the root-locus plot for the first-order system under P-D control with $G_{c}(s)=K_{p}+K_{d} s:$

If we write

$$
G_{c}(s)=K_{d}\left(s+\frac{K_{p}}{K_{d}}\right)
$$

we have a open-loop pole at $s=-a$ and an open-loop zero at $s=-K_{p} / K_{d}=-b$. The closed-loop transfer function is

$$
G_{c l}(s)=\frac{K_{d}(s+b)}{\left(K_{d}+1\right) s+\left(a+K_{d} b\right)}
$$

with a single pole

$$
p_{c l}=-\frac{a+b K_{d}}{1+K_{d}} .
$$

We now construct the root-locus as K_{d} varies from 0 to ∞. Clearly as $K_{d} \rightarrow 0$, the closed-loop pole $p_{c l} \rightarrow-a$ approaches the open-loop pole at $(s=-a)$, and as $K_{d} \rightarrow \infty$, the closed-loop pole $p_{c l} \rightarrow-b$, in other words the closed-loop pole approaches the open-loop zero. There are two possibilities for the root locus based on the relative positions of the open-loop pole and zero:

(a) $b>a$

(b) $a>b$

While the root locus always originates at the pole and terminates at the zero, if $b>a$ the closed-loop pole will move to the left, while if $a>b$ the pole will move to the right. In addition we can note:

- There is a closed-loop zero at $s=-b$.
- This is a case when the order of the numerator is equal to the order of the denominator, and there will be direct feed-through from the input to the output, as discussed in Lecture 22.
- As K is increased, and the closed-loop pole approaches the zero, the strength of the component $e^{p_{c l} t}$ in the response will be diminished (Lecture 23).

Example 6

Determine the root locus for the second-order system

$$
G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

under proportional control.

The closed-loop transfer function is

$$
G(s)=\frac{K \omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}(1+K)}
$$

with closed-loop poles

$$
p_{1}, p_{2}=-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-(1+K)}
$$

which will be real only if $\zeta \geq 1$ and $K \leq \zeta-1$, otherwise they will be complex conjugates. We note the following:

- As $K \rightarrow 0$, the closed-loop poles approach the open-loop poles $-\zeta \omega_{n} \pm$ $\omega_{n} \sqrt{\zeta^{2}-1}$.
- If the open-loop poles are real, the closed-loop poles will move together as $K \rightarrow \zeta^{2}-1$, and then become complex.
- If the closed-loop poles are complex, $p_{1}, p_{2}=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{(1+K)-\zeta^{2}}$, only the imaginary part is affected by K, and as $K \rightarrow \infty$ the closed-loop poles $p_{1}, p_{2} \rightarrow-\zeta \omega_{n} \pm j \infty$.

This behavior is summarized in the following root locus plots:

(a) $\zeta>1$

2.1 Some Basic Properties of Root Locus Plots

2.1.1 The Number of Branches in the Plot

By definition there will be one branch of the plot for each closed-loop pole. For a system with open-loop transfer function

$$
G_{o l}(s)=K \frac{N_{o l}(s)}{D_{o l}(s)}
$$

The closed-loop characteristic polynomial is

$$
D_{c l}(s)=D_{o l}(s)+K N_{o l}(s)
$$

and provided the order of $N_{o l}(s)$ does not exceed that of $D_{o l}(s)$, the order of $D_{c l}(s)$ will be the same as that of $D_{o l}(s)$. In other words, the number of closed-loop poles equals the number of open-loop poles, and the number of branches equals the number of open-loop poles..

2.1.2 Symmetry of the Root Locus Plot

Because all closed-loop poles are either real or complex conjugate pairs, the root locus is symmetrical about the real axis. The implication of this is that when we discuss rules for generating a root locus, we only have to consider half of the s-plane.

2.1.3 The Origins of the Branches $(K=0)$

The closed-loop characteristic polynomial is

$$
D_{c l}(s)=D_{o l}(s)+K N_{o l}(s) .
$$

As $K \rightarrow 0, D_{c l}(s) \approx D_{o l}(s)$, with the result that the n branches of the root locus always originate at the open-loop poles.

2.1.4 The Terminal Points of the Branches $(K \rightarrow \infty)$

As K becomes large

$$
D_{c l}(s) \approx K N_{o l}(s)
$$

with the result that m of the n closed-loop roots approach the m open-loop zeros. This leaves $n-m$ roots to be accounted for, and we will investigate this later. For now we simply state that these branches diverge away from the origin along a set of $n-m$ straight-line asymptotes, and as $K \rightarrow \infty$ these poles approach a distance $r=\infty$ from the origin.

[^0]: ${ }^{1}$ copyright © D.Rowell 2008

