MIT OpenCourseWare
http://ocw.mit.edu
2.004 Dynamics and Control II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.004 Dynamics and Control II
 Spring Term 2008

Lecture 30^{1}

Reading:

- Nise: 10.1

1 Sinusoidal Frequency Response

1.1 Definitions

Consider a sinusoidal waveform

$$
f(t)=A \sin (\omega t+\phi)
$$

where
A is the amplitude (in appropriate units)
ω is the angular frequency ($\mathrm{rad} / \mathrm{s}$)
ϕ is the phase (rad)
In addition we can define
T the period $T=2 \pi / \omega$ (s)
f the frequency, $(f=1 / T=\omega / 2 \pi)(\mathrm{Hz})$

[^0]The Euler Formulas: We will frequently need the Euler formulas

$$
\begin{aligned}
e^{j \omega t} & =\cos (\omega t)+j \sin (\omega t) \\
e^{-j \omega t} & =\cos (\omega t)-j \sin (\omega t)
\end{aligned}
$$

or conversely

$$
\begin{aligned}
\cos (\omega t) & =\frac{1}{2}\left(e^{j \omega t}+e^{-j \omega t}\right) \\
\sin (\omega t) & =\frac{1}{2 j}\left(e^{j \omega t}-e^{-j \omega t}\right)
\end{aligned}
$$

1.2 The Steady-State Sinusoidal Response

Assume a system, such as shown above, is excited by a sinusoidal input. The total response will have two components a) a transient component, and a steady-state component

$$
y(t)=y_{h}(t)+y_{p}(t) .
$$

We define the steady-state component as the particular solution $y_{p}(t)$. Let the system differential equation be

$$
a_{n} \frac{d^{n} y}{d t^{n}}+a_{n-1} \frac{d^{n-1} y}{d t^{n-1}}+\ldots+a_{1} \frac{d y}{d t}+a_{0} y=b_{m} \frac{d^{m} u}{d t^{m}}+b_{m-1} \frac{d^{m-1} u}{d t^{m-1}}+\ldots+b_{1} \frac{d u}{d t}+b_{0} u
$$

with a complex exponential input

$$
u(t)=e^{j \omega t} .
$$

Assume a particular solution $y_{p}(t)$ to be of the same form as the input, that is

$$
y_{p}(t)=A e^{j \omega t}
$$

and since

$$
\frac{d^{k} y_{p}}{d t^{k}}=A(j \omega)^{k} e^{j \omega t}
$$

substitution into the differential equation gives:

$$
\begin{aligned}
\left(a_{n}(j \omega)^{n}\right. & \left.+a_{n-1}(j \omega)^{n-1}+\ldots+a_{1}(j \omega)+a_{0}\right) A e^{j \omega t} \\
& =\left(b_{m}(j \omega)^{m}+b_{m-1}(j \omega)^{m-1}+\ldots+\left(b_{1} j \omega\right)+b_{0}\right) e^{j \omega t}
\end{aligned}
$$

or

$$
A=\frac{b_{m}(j \omega)^{m}+b_{m-1}(j \omega)^{m-1}+\ldots+b_{1}(j \omega)+b_{0}}{a_{n}(j \omega)^{n}+a_{n-1}(j \omega)^{n-1}+\ldots+a_{1}(j \omega)+a_{0}}
$$

Examination of this equation shows its similarity to the transfer function $H(s)$, in fact

$$
A=\left.H(s)\right|_{s=j \omega}=H(j \omega)
$$

so that the steady-state response $y_{s s}(t)$ is

$$
\begin{equation*}
y_{s s}(t)=y_{p}(t)=A e^{j \omega t}=H(j \omega) e^{j \omega t} \tag{1}
\end{equation*}
$$

or in other words, the steady-state response to a complex exponential input is defined by the transfer function evaluated at $s=j \omega$, or along the imaginary axis of the s-plane. Note that $H(j \omega)$ is in general complex.

We now extend this argument to a real sinusoidal input, for example $u(t)=\cos (\omega t)=$ $\left(e^{j \omega t}+e^{-j \omega t}\right) / 2$. The principle of superposition for linear systems allows us to express the response as the sum of the two responses to the complex exponentials:

$$
y_{s s}(t)=\frac{1}{2}\left(H(j \omega) e^{j \omega t}+H(-j \omega) e^{-j \omega t}\right)
$$

We now proceed as follows:

- We show that $H(-j \omega)=\overline{H(j \omega)}$ where $\overline{H(j \omega)}$ denotes the complex conjugate (see the Appendix), so that

$$
\begin{equation*}
y_{s s}(t)=\frac{1}{2}\left(H(j \omega) e^{j \omega t}+\overline{H(j \omega)} e^{-j \omega t}\right) \tag{2}
\end{equation*}
$$

- We break up $H(j \omega)$ into its real and imaginary parts,

$$
\begin{aligned}
H(j \omega) & =\Re\{H(j \omega)\}+j \Im\{H(j \omega)\} \\
H(j \omega) & =\Re\{H(j \omega)\}-j \Im\{H(j \omega)\}
\end{aligned}
$$

and use the Euler formula to write

$$
\begin{aligned}
e^{j \omega t} & =\cos (\omega t)+j \sin (\omega t) \\
e^{-j \omega t} & =\cos (\omega t)-j \sin (\omega t)
\end{aligned}
$$

- We combine the real and imaginary parts of Eq. (2) to conclude

$$
\begin{equation*}
y_{s s}(t)=\Re\{H(j \omega)\} \cos (\omega t)-\Im\{H(j \omega)\} \sin (\omega t) \tag{3}
\end{equation*}
$$

- We then use the trig. identity

$$
a \cos \theta-b \sin \theta=\sqrt{a^{2}+b^{2}} \cos (\theta+\phi)
$$

to write Eq. (3) as

$$
\begin{equation*}
y_{s s}(t)=|H(j \omega)| \cos (\omega t+\angle H(j \omega)) \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
|H(j \omega)| & =\sqrt{\Re^{2}\{H(j \omega)\}+\Im^{2}\{H(j \omega)\}} \\
\angle H(j \omega) & =\arctan \left(\frac{\Im\{H(j \omega)\}}{\Re\{H(j \omega)\}}\right)
\end{aligned}
$$

Equation (4) states the answer we seek. It shows that

- The steady-state sinusoidal response is a sinusoid of the same angular frequency as the input,
- The response differs from the input by (i) a change in amplitude as defined by $|H(j \omega)|$, and (ii) an added phase shift $\angle H(j \omega)$.
$H(j \omega)$ is known as the frequency response function. $|H(j \omega)|$ is the magnitude of the frequency response function, and $\angle H(j \omega)$ is the phase.

Note that if $|H(j \omega)|>1$ the sinusoidal input is amplified, while if $|H(j \omega)|<1$ the input is attenuated by the system.

■ Example 1

The mechanical system

has a transfer function

$$
H(s)=\frac{v_{m}(s)}{F(s)}=\frac{1}{m s+B}
$$

where $m=1 \mathrm{~kg}$, and $B=2 \mathrm{Ns} / \mathrm{m}$. Find the steady-state response if $F(t)=$ $10 \sin (5 t)$.

$$
H(s)=\frac{1}{s+2}
$$

so that the frequency response function is

$$
H(j \omega)=\left.H(s)\right|_{s=j \omega}=\frac{1}{j \omega+2}=\frac{2-j \omega}{\omega^{2}+4}
$$

Then

$$
|H(j \omega)|=\frac{1}{\sqrt{\omega^{2}+4}}, \quad \angle H(j \omega)=\arctan \left(-\frac{\omega}{2}\right) .
$$

With $\omega=5 \mathrm{rad} / \mathrm{s}$,

$$
\begin{aligned}
v_{s s}(t) & =10|H(j \omega)| \sin (5 t+\angle H(j \omega) \\
& =\frac{10}{\sqrt{29}} \sin (5 t-\arctan 2.5) \\
& =1.857 \sin (5 t-1.1903)
\end{aligned}
$$

■ Example 2

Plot the variation of $|H(j \omega)|$ and $\angle H(j \omega)$ from $\omega=0$ to $10 \mathrm{rad} / \mathrm{s}$.
From above

$$
|H(j \omega)|=\frac{1}{\sqrt{\omega^{2}+4}}, \quad \text { and } \quad \angle H(j \omega)=\arctan \left(-\frac{\omega}{2}\right) .
$$

These functions are plotted below:

Note that

- As the input frequency ω increases, the response magnitude decreases.
- At low frequencies the phase is a small negative number, but as the frequency increases the phase lag increases and apparently is tending toward -90° at high frequencies.

Appendix: Evaluation of $H(-j \omega)$.

We start with

$$
H(j \omega)=\frac{b_{m}(j \omega)^{m}+b_{m-1}(j \omega)^{m-1}+\ldots+b_{1}(j \omega)+b_{0}}{a_{n}(j \omega)^{n}+a_{n-1}(j \omega)^{n-1}+\ldots+a_{1}(j \omega)+a_{0}}
$$

so that

$$
H(-j \omega)=\frac{b_{m}(-j \omega)^{m}+b_{m-1}(-j \omega)^{m-1}+\ldots+b_{1}(-j \omega)+b_{0}}{a_{n}(-j \omega)^{n}+a_{n-1}(-j \omega)^{n-1}+\ldots+a_{1}(-j \omega)+a_{0}}
$$

Note that

$$
\begin{array}{rlrl}
(j \omega)^{k}= & (-1)^{k / 2} \omega^{k} & k \text { even } \\
j(-1)^{(k-1) / 2} \omega^{k} & & k \text { odd } \\
(-j \omega)^{k}= & (-1)^{k / 2} \omega^{k} & & k \text { even } \\
-j(-1)^{(k-1) / 2} \omega^{k} & k \text { odd }
\end{array}
$$

Thus in both $H(j \omega)$ and $H(-j \omega)$

- The terms with even powers of $\pm j \omega$ in the numerator and denominator of $H(j \omega)$ and $H(-j \omega)$ generate real terms, while
- the terms with odd powers of $\pm j \omega$ generate imaginary terms.

With these substitutions, comparison of $H(j \omega)$ and $H(-j \omega)$ shows

- The real terms (even powers of $\pm j \omega$) are the same, while
- The imaginary terms (odd powers of $\pm j \omega$) have opposite signs
leading to the conclusion

$$
H(-j \omega)=\overline{H(j \omega)}
$$

[^0]: ${ }^{1}$ copyright (c) D.Rowell 2008

