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Reading: 

• Nise: Chapter 8 

1 Root Locus Development 

In Lecture 26 we saw some simple examples of root locus plots. We now look at the general 
method of generating root loci. 

Recall that the closed-loop characteristic equation is: 

1 + KG(s) = 0 

where G(s) = Gc(s)Gp(s)H(s) is the open-loop transfer function. We now ask ourselves: 
how can we tell if an arbitrary point s = σ + jω lies on the root locus? In other words 
we seek conditions that determine whether s is a root of the characteristic equation. From 
above, s is a root if 

KG(s) = −1 + j0. 

In polar form this may be expressed as 

KG(s) = KG(s) ej � (KG(s))|
j(2n

|
+1)π = 1 × e for n = 0, 1, 2, . . . 

= cos((2n + 1)π) + j sin((2n + 1)π) 

= −1 + j0. 

This tells us that for any point s = σ + jω on the root locus 

|KG(s)| = 1 and � (G(s)) = (2n + 1)π 

which generates two important conditions: 
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The Angle Condition: � (G(s)) = (2n + 1)π 

The Magnitude Condition: KG(s) = 1 | | 
In practice, the angle condition is used to determine whether a point s lies on the root locus, 
and if it does, the magnitude condition is used to determine the gain K associated with that 
point, since K = 1/ G(s) .| |

Example 1 

Given the open-loop system 

1 
G(s) = 

(s + 2)(s + 4) 

determine whether the points s = −1, s = −3.5, s = −3 + j5 are on the root 
locus. 

For s = −1: 
K K 

KG(s) = 
(−1 + 2)(−1 + 4) 3 

KG(s) =� −1 for any K > 0, so we conclude s = −1 is not on the root-locus. 

For s = −3.5: 
K K 

KG(s) = 
(−3.5 + 2)(−3.5 + 4) −0.75 

KG(s) = −1 for K = 0.75, so we conclude s = −3.5 lies on the root-locus. 

For s = −3 + j5: 

K K K 
KG(s) = = = 

((−3 + j5) + 2)((−3 + j5) + 4) (−1 + j5)(1 + j5) −26 

KG(s) = −1 for K = 26, so we conclude s = −3+ j5 lies on the root-locus. 

1.1 Geometric Evaluation of the Transfer Function 

The transfer function may be evaluated for any value of s = σ + jω, and in general, when s 
is complex the function G(s) itself is complex. It is common to express the complex value 
of the transfer function in polar form as a magnitude and an angle: 

G(s) = G(s) ej � G(s),| | 
with a magnitude G(s) and an angle G(s) given by 

|G(s)| = 
� 
�{G(s)} 2 + �{G(s)} 2 , 

G(s) = tan−1 

��{G(s)}� 

�{G(s)} 
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where �{} is the real operator, and �{} is the imaginary operator. 
If the numerator and denominator polynomials are factored into terms (s−pi) and (s−zi), 

G(s) = C 
(s − z1)(s − z2) . . . (s − zm−1)(s − zm) 

,
(s − p1)(s − p2) . . . (s − pn−1)(s − pn) 

(where C is a constant), each of the factors in the numerator and denominator is a complex 
quantity, and may be interpreted as a vector in the s-plane, originating from the point zi or 
pi and directed to the point s at which the function is to be evaluated. Each of these vectors 
may be written in polar form in terms of a magnitude and an angle, for example for a pole 
pi = σi + jωi, the magnitude and angle of the vector to the point s = σ + jω are 

|s − pi| = 
�

(σ − σi)2 + (ω − ωi)2 , 

(s − pi) = tan−1 

�
ω − ωi 

� 

σ − σi 

as shown below. 

Because the magnitude of the product of two complex quantities is the product of the 
individual magnitudes, and the angle of the product is the sum of the component angles, 
that is if a and b are complex, that is 

|ab| = |a| |b| , |a/b| = |a| / |b| 
� (ab) = � a + � b, � (a/b) = � a − � b 

the magnitude and angle of the complete transfer function may then be written 
�m

i=1 (s − zi)|G(s)| = C �
i
n 
=1 

|
(s − pi)

| 

m

| | 
n

� G(s) = 
� 

� (s − zi) − 
� 

� (s − pi). 
i=1 i=1 

The magnitude of each of the component vectors in the numerator and denominator is the 
distance of the point s from the pole or zero on the s-plane. Therefore if the vector from the 
pole pi to the point s on a pole-zero plot has a length qi and an angle θi from the horizontal, 
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and the vector from the zero zi to the point s has a length ri and an angle φi, as shown 
above, the value of the transfer function at the point s is 

r1 . . . rm |G(s)| = C
q1 . . . qn 

� G(s) = (φ1 + . . . + φm) − (θ1 + . . . + θn) 

The transfer function at any value of s may therefore be determined geometrically from the 
pole-zero plot, except for the overall “gain” factor C. The magnitude of the transfer function 
is proportional to the product of the geometric distances on the s-plane from each zero to 
the point s divided by the product of the distances from each pole to the point. The angle of 
the transfer function is the sum of the angles of the vectors associated with the zeros minus 
the sum of the angles of the vectors associated with the poles. 

The angle condition then states that for a point s = σ + jω to be on the root locus, 

m n

� G(s) = 
� 

φi − 
� 

θi = (2n + 1)π, 
i=1 i=1 

and once it has been established that s lies on the locus, the magnitude condition may be 
used to determine the value of K: 

1 
K = |G(s)| 

Example 2 

For open-loop system 
s + b 

G(s) = 
s + a 

use the angle condition to determine whether the points labeled A, B, C and D 
lie on the root locus. 

27–4




x
P

s

j w

oq  =  0 f  =  0

x
P

s

j w

o
q  =  p f  =  p

x
- a

A

BC
s

j w

q o fD
- b

For an arbitrary point s 
� G(s) = φ − θ. 

At Point A: φ − θ = (2� n + 1)π, therefore A is not on the root locus.


At Point B: φ = 0, θ = 0, φ − θ = 0, therefore B is not on the root locus.


At Point C: φ = π, θ = 0, φ − θ = π, therefore C is on the root locus.


At Point D: φ = π, θ = φ, φ − θ = 0, therefore D is not on the root locus.


The only one of these four points that satisfies the angle condition, and therefore

lies on the root locus, is point C.


1.2 Regions of the Real Axis on the Root Locus 

We note that for a point s = σ that lies on the real axis: 

(a)	 Poles and zeros on the real axis that lie to the left of the point s contribute zero to the 
angle condition. 

(b)	 Poles and zeros on the real axis that lie to the right of the point s contribute ±π to the 
angle condition. 
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(c) A complex conjugate pole or zero pair contributes a total of zero (2π)to the angle 
condition along the real axis. 

These observations combine to generate the condition: 

A point on the real axis lies on the root locus only if there are an odd 
number of poles and/or zeros to its right. 

Example 3 

Define the regions of the real axis that will lie on the root locus for the following 
open-loop pole-zero plot with 4 poles and 3 zeros, and then qualitatively fill in 
the rest of the plot. 

The real axis regions are shown below: 
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Since we know that (1) branches must originate from open-loop poles, and (2) 
terminate on open-loop zeros or go to infinity, we have enough information to 
sketch the form of the root locus: 

where we note that branches must originate from the complex conjugate pole 
pair and terminate on the r.h. plane zeros. 

1.3 Behavior of the Root Locus for Large Values of K 

Let the closed-loop transfer function be 

KG(s) KN(s)
Gcl(s) = = 

1 + KG(s) D(s) + KN(s) 

where N(s) is of order m, and D(s) is of order n. We can see from the above expression 
that provided n ≥ m the closed-loop system will also be of order n. When K becomes large 
we can approximate the closed-loop characteristic equation as 

KN(s) = 0 

(which is of order m) and so we can state: 

As the value of K → ∞, m of the closed-loop poles approach the m 
open loop zeros. 

This leaves n − m closed-loop poles unaccounted for. Let’s assume that for large K, where 
m of the poles are very close to the zeros, pole-zero cancellation has taken place and the 
characteristic equation becomes 

K K 
1 + KG(s) ≈ 1 + 

(s − pi) 
≈ 1 + = 0 �

i sn−m 
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where the pi are the n − m uncancelled poles. With this approximation 

s n−m = −K, or s = K1/(n−m)(−1)1/(n−m) 

The n − m roots of −1 are complex with values 

sk = ej(2k+1)π/(n−m) k = 0, 1, . . . n − m − 1 

that is, they lie equally spaced around the unit circle at angles 

(2k + 1)π 
θk = , k = 0, 1, . . . n − m − 1. 

n − m 

and as K becomes large, the n − m closed-loop poles approach a set of radial asymptotes at 
these angles. The asymptotic angles are summarized in the following table: 

n − m Asymptote Angles 
1 180◦ 

2 90◦, 270◦ 

3 60◦, 180◦, 300◦ 

4 45◦, 135◦, 225◦, 315◦ 

As the gain K becomes large, n − m branches of the root locus diverge 
away from the origin and approach n − m radial asymptotes, at angles 
θk = (2k + 1)π/(n − m), for k = 0 . . . (n − m − 1). 

This is not quite the full picture. We will investigate this further in the next lecture. 
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