MIT OpenCourseWare
http://ocw.mit.edu
2.004 Dynamics and Control II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.004 Dynamics and Control II

Spring Term 2008

Lecture 7^{1}

Reading:

- Nise: Sec. 2.4

1 Transfer Function Generation by Simplification

■ Example 1

Find the transfer function for a "lead-lag" compensator

Draw as

(c)
where

$$
\begin{aligned}
Z_{1} & =\frac{1}{C_{1} s} \| R_{1}=\frac{R_{1}}{R_{1} C_{1} s+1} \\
Z_{2} & =\frac{1}{C_{2} s} \| R_{2}=\frac{R_{2}}{R_{2} C_{2} s+1}
\end{aligned}
$$

[^0]Using the voltage divider formed by Z_{1} and Z_{2}

$$
\begin{aligned}
V_{o} & =\frac{Z_{2}}{Z_{1}+Z_{2}} V_{s} \\
& =\frac{\left(\frac{R_{2}}{R_{2} C_{2} s+1}\right)}{\left(\frac{R_{2}}{R_{1} C_{1} s+1}\right)+\left(\frac{R_{2}}{R_{2} C_{2} s+1}\right)} V_{s} \\
& =\frac{R_{2} R_{1} C_{1} s+R_{2}}{R_{1} R_{2}\left(C_{1}+C_{2}\right) s+\left(R_{1}+R_{2}\right)} V_{s} \\
H(s) & =\frac{V_{o}(s)}{V_{s}(s)}=\frac{R_{2} R_{1} C_{1} s+R_{2}}{R_{1} R_{2}\left(C_{1}+C_{2}\right) s+\left(R_{1}+R_{2}\right)}
\end{aligned}
$$

■ Example 2

Find the transfer function

$$
H(s)=\frac{V_{L}(s)}{I(s)}
$$

for the circuit:

We note that

$$
V_{L}(s)=Z_{L} i_{2}(s)=L s i_{2}(s)
$$

Combine elements to let

$$
\begin{aligned}
Z_{1} & =\frac{1}{Y_{1}}=R_{1}+\frac{1}{C s} \\
Z_{2} & =\frac{1}{Y_{2}}=R_{2}+L s
\end{aligned}
$$

and use the current divider relationship at node (a).

$$
i_{2}(s)=\frac{Y_{2}}{Y_{1}+Y_{2}}
$$

where

$$
\begin{aligned}
Y_{1} & =\frac{1}{Z_{1}}=\frac{s C}{s C R_{1}+1} \\
Y_{2} & =\frac{1}{Z_{2}}=\frac{1}{s L+R_{2}} .
\end{aligned}
$$

Then

$$
i_{2}(s)=\frac{R_{1} C s+1}{C s\left(R_{2}+L s\right)+\left(R_{1} C s+1\right)} I(s)
$$

and

$$
V_{L}(s)=L s i_{2}(s)=\frac{L C R_{1} s^{2}+L s}{L C s^{2}+C\left(R_{1}+R_{2}\right) s+1} I(s)
$$

so that the transfer function is

$$
H(s)=\frac{V_{L}(s)}{I(s)}=\frac{L C R_{1} s^{2}+L s}{L C s^{2}+C\left(R_{1}+R_{2}\right) s+1}
$$

2 Transfer Function Generation through Mesh (Loop) Currents

This method expresses the system dynamics as a set of simultaneous algebraic equations in a set of internal mesh (or loop) currents. It is useful for complex circuits containing a voltage source.

The following example sets out the method in a series of steps.

■ Example 3

Find the transfer function of a "bridged-T" filter:

Note: This is a difficult example to solve using impedance reduction methods. It is, however, well suited to the mesh current method.

Draw the system as an impedance graph:

Define a set of (clockwise) loops as shown, ensuring that every graph branch is covered by at least one loop. The loops 1,2 and 3 are somewhat arbitrary. We assume hypothetical continuous mesh currents i_{1}, i_{2}, and i_{3} that flow around each loop.

Step 1: Write loop (compatibility) equations for each loop (using the arrows on the graphs branches to define the direction of the voltage drop):

$$
\begin{array}{r}
V_{Z_{1}}+V_{Z_{3}}-V=0 \\
V_{Z_{2}}+V_{Z_{4}}-V_{Z_{3}}=0 \\
V_{Z_{5}}+V_{Z_{2}}-V_{Z_{1}}=0
\end{array}
$$

Step 2: Define the mesh currents i_{1}, i_{2}, and i_{3} and write the current in each branch in terms of the mesh currents (use the arrows on the loops to define the signs):

$$
\begin{aligned}
i_{Z_{1}} & =i_{1}-i_{3} \\
i_{Z_{2}} & =i_{2}-i_{3} \\
i_{Z_{3}} & =i_{1}-i_{2} \\
i_{Z_{4}} & =i_{2} \\
i_{Z_{5}} & =i_{3}
\end{aligned}
$$

Step 3: Write the mesh equations in terms of the mesh currents

$$
\begin{aligned}
Z_{1}\left(i_{1}-i_{3}\right)+Z_{3}\left(i_{1}-i_{2}\right) & =V \\
Z_{2}\left(i_{2}-i_{3}\right)+Z_{4} i_{2}-Z_{3}\left(i_{1}-i_{2}\right) & =0 \\
Z_{5} i_{3}-Z_{2}\left(i_{2}-i_{3}\right)-Z_{1}\left(i_{1}-i_{3}\right) & =0
\end{aligned}
$$

which is a set of 3 simultaneous algebraic equations in the loop currents i_{1}, i_{2}, and i_{3}.
Step 4: We note that the output is $V_{Z_{4}}=i_{2} Z_{4}$, therefore solve for i_{2} and create the transfer function in terms of the impedances.

■ Example 4

Use the mesh current method to find the transfer function

$$
H(s)=\frac{V_{o}(s)}{V(s)}
$$

in the "lead" network:

Let $Z_{1}=1 / C s, Z_{2}=R_{1}$, and $Z_{3}=R_{2}$.
Step1: The loop equations are:

$$
\begin{aligned}
V_{Z_{2}}+V_{Z_{3}}-V & =0 \\
V_{Z_{1}}-V_{Z_{2}} & =0
\end{aligned}
$$

Step 2: The mesh currents are i_{1} and i_{2}, and

$$
\begin{aligned}
i_{Z_{1}} & =i_{2} \\
i_{Z_{2}} & =i_{1}-i_{2} \\
i_{Z_{3}} & =i_{1}
\end{aligned}
$$

Step 3: Rewrite the loop equations

$$
\begin{aligned}
& Z_{2}\left(i_{1}-i_{2}\right)+Z_{3} i_{1}=V \\
& Z_{1} i_{2}-Z_{2}\left(i_{1}-i_{2}\right)=0
\end{aligned}
$$

or

$$
\begin{aligned}
\left(Z_{2}+Z_{3}\right) i_{1}-Z_{2} i_{2} & =V \\
-Z_{2} i_{1}+\left(Z_{1}+Z_{2}\right) i_{2} & =0
\end{aligned}
$$

In matrix form

$$
\left[\begin{array}{cc}
Z_{2}+Z_{3} & -Z_{2} \\
-Z_{2} & Z_{1}+Z_{2}
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2}
\end{array}\right]=\left[\begin{array}{c}
V \\
0
\end{array}\right]
$$

Step 4: $V_{o}=i_{1} Z_{3}$, so we solve for i_{1} (using any method). Using Cramer's Rule:

$$
i_{1}=\frac{\left|\begin{array}{cc}
V & -Z_{2} \\
0 & Z_{1}+Z_{2}
\end{array}\right|}{\left|\begin{array}{cc}
Z_{2}+Z_{3} & -Z_{2} \\
-Z_{2} & Z_{1}+Z_{2}
\end{array}\right|}=\frac{Z_{1}+Z_{2}}{Z_{1} Z_{2}+Z_{1} Z_{3}+Z_{2} Z_{3}} V
$$

so that

$$
V_{o}=\frac{\left(Z_{1}+Z_{2}\right) Z_{3}}{Z_{1} Z_{2}+Z_{1} Z_{3}+Z_{2} Z_{3}} V
$$

and

$$
\begin{gathered}
H(s)=\frac{V_{o}(s)}{V(s)}=\frac{\left(R_{1}+1 / C s\right) R_{2}}{R_{1} / C s+R_{2} / C s+R_{1} R_{2}} \\
H(s)=\frac{R_{1} R_{2} C s+R_{2}}{R_{1} R_{2} C s+\left(R_{1}+R_{2}\right)}
\end{gathered}
$$

Note that this problem could have be done using a voltage-divider approach

■ Example 5

A common full-wave wave rectified dc power supply for electronic equipment is:

Typical waveforms in the circuit are

The filter acts to "smooth" the full-wave rectified waveform at (2) to produce a dc output at (3) with a very much reduced "ripple".
We use a linearized model of the transformer/rectifier circuit, with a voltage source (with a waveform as at (2) above) and a series resistor R (a Thévenin source) - see Lecture 8 - as below:

The task is to find the transfer function

$$
H(s)=\frac{V_{o}(s)}{V(s)} .
$$

Solution: Combine series and parallel impedances to simplify the structure. Draw as an impedance graph

(d)
where

$$
\begin{aligned}
Z_{1} & =R_{1} \\
Z_{2} & =s L \\
Z_{3} & =\frac{1}{s C_{2}} \| R_{L}=\frac{R_{L} / s C_{2}}{R_{L}+1 / s C_{2}} \\
Z_{4} & =\frac{1}{s C_{1}}
\end{aligned}
$$

The system output is $V_{Z_{3}}=i_{Z_{3}} Z_{3}$.
Choose mesh loops to contact all branches as below.

The loop equations are:

$$
\begin{aligned}
v_{Z_{1}}+v_{Z_{4}}-V & =0 \\
v_{Z_{2}}+v_{Z_{2}}-v_{Z_{4}} & =0
\end{aligned}
$$

and the branch currents (in terms of the mesh currents) are:

$$
\begin{aligned}
i_{Z_{1}} & =i_{1} \\
i_{Z_{2}} & =i_{2} \\
i_{Z_{3}} & =i_{2} \\
i_{Z_{4}} & =i_{1}-i_{2}
\end{aligned}
$$

Rewrite the loop equations in terms of the mesh currents:

$$
\begin{aligned}
Z_{1} i_{1}+Z_{4}\left(i_{1}-i_{2}\right) & =V \\
Z_{2} i_{2}+Z_{3} i_{2}-Z_{4}\left(i_{1}-i_{2}\right) & =0
\end{aligned}
$$

or

$$
\begin{aligned}
\left(Z_{1}+Z_{4}\right) i_{1}-Z_{4} i_{2} & =V \\
-Z_{4} i_{1}+\left(Z_{2}+Z_{3}+Z_{4}\right) i_{2} & =0
\end{aligned}
$$

giving a pair of simultaneous algebraic equations in the mesh currents.
Solve for $i_{Z_{3}}=i_{2}$

$$
\left[\begin{array}{cc}
Z_{1}+Z_{4} & -Z_{4} \\
-Z_{4} & Z_{2}+Z_{3}+Z_{4}
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2}
\end{array}\right]=\left[\begin{array}{l}
V \\
0
\end{array}\right]
$$

and using Cramer's Rule:

$$
i_{2}=\frac{\left|\begin{array}{cc}
\left(Z_{1}+Z_{4}\right) & V \\
-Z_{4} & 0
\end{array}\right|}{\left|\begin{array}{cc}
\left(Z_{1}+Z_{4}\right) & -Z_{4} \\
-Z_{4} & Z_{2}+Z_{3}+Z_{4}
\end{array}\right|}=\frac{Z_{4} V}{\left(Z_{1}+Z_{4}\right)\left(Z_{2}+Z_{3}+Z_{4}\right)-Z_{4}^{2}}
$$

and since $V_{o}=Z_{3} i_{2}$

$$
H(s)=\frac{V_{o}}{V(s)}=\frac{Z_{3} Z_{4}}{Z_{1} Z_{2}+Z_{1} Z_{3}+Z_{1} Z_{4}+Z_{2} Z_{4}+Z_{3} Z_{4}}
$$

Substituting the impedances of the branches

$$
H(s)=\frac{R_{L}}{L C_{1} C_{2} R_{o} R_{1} s^{3}+L\left(C_{1} R_{1}+R_{o} C_{2}\right) s^{2}+R_{o} R_{1}\left(C_{1}+C_{2}\right) s+\left(R_{1}+R_{2}\right)}
$$

[^0]: ${ }^{1}$ copyright © D.Rowell 2008

