MIT OpenCourseWare
http://ocw.mit.edu
2.004 Dynamics and Control II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.004 Dynamics and Control II
 Spring Term 2008

Lecture 4^{1}

Reading:

- Nise: Secs. 5.1-5.3

1 Block Diagram Algebra (Interconnection Rules)

a)Series (Cascade) Connection:

Since the output of the first block is $X(s)=H_{1}(s) U(s)$,

$$
Y(s)=H_{2}(s) X(s)=H_{1}(s) H_{2}(s) U(s)
$$

Note: This is only true if the connection of $H_{s}(s)$ to $H_{1}(s)$ does not alter the output of $H_{1}(s)$ - known as the "non-loading" condition.
b)Parallel Connection In this case the input $U(s)$ is applied to both inputs and the outputs are summed:

$$
Y(s)=H_{1}(s) U(s)+H_{2}(s) U(s)=\left(H_{1}(s)+H_{2}(s)\right) U(s)
$$

■ Example 1

Express

$$
H(s)=\frac{6}{s^{2}+5 s+6}
$$

[^0]as (a) a series connection, and (b) a parallel connection of first-order blocks
a) Series:
$$
H(s)=\frac{6}{s^{2}+5 s+6}=\frac{3}{s+3} \times \frac{2}{s+2}
$$

b) Parallel: Using partial fractions we find
$$
H(s)=\frac{6}{s+2}-\frac{6}{s+3}
$$

Notes:
a) These two systems are equivalent.
b) A partial fraction expansion is effectively a parallel implementation.
c) A factored representation of $H(s)$ is effectively a series implementation.
c)Associative Rule:

$$
Y(s)=\left(U_{1}(s)+U_{2}(s)\right) H(s) \equiv U_{1}(s) H(s)+U_{2}(s) H(s)
$$

d)Commutative Rule:

The order does not matter in a series connection.

2 The "Closed-Loop" Transfer Function

a) Unity feedback

Notes:

(a) The term unity feedback means that the actual output value is used to generate the error signal (the feedback gain is 1).
(b) In control theory transfer functions in the "forward" path are often designated by $G(s)$ (see below).
(c) It is common to use $R(s)$ to designate the reference (desired) input, and $\mathrm{C}(\mathrm{s})$ to designate the controlled (output) variable.

From the block diagram:

$$
C(s)=\left(G_{p}(s) G_{c}(s)\right) E(s)
$$

and

$$
E(s)=R(s)-C(s)
$$

or

$$
C(s)=G_{p}(s) G_{c}(s)(R(s)-C(s)
$$

Rearranging:

$$
G_{c l}(s)=\frac{C(s)}{R(s)}=\frac{G_{c}(s) G_{p} s}{1+G_{c}(s) G_{p} s}
$$

is the unity feedback closed-loop transfer function.

■ Example 2

Find the closed-loop transfer function for the automobile cruise control example:

For the car $m \dot{v}+B v=F_{p}=K_{e} \theta$ so that

$$
G_{p}(s)=\frac{V(s)}{\theta(s)}=\frac{K_{s}}{m s+B}
$$

For the controller $\theta(s)=K_{c} E(s)$

$$
G_{c}(s)=\frac{\theta(s)}{E(s)}=K_{c}
$$

Then from above

$$
\begin{gathered}
G_{c l}(s)=\frac{V(s)}{V_{d}(s)}=\frac{G_{c}(s) G_{p}(s)}{1+G_{c}(s) G_{p}(s)} \\
G_{c l}(s)=\frac{\frac{K_{c} K_{e}}{m s+B}}{1+\frac{K_{c} K_{e}}{m s+B}}=\frac{K_{c} K_{e}}{m s+\left(B+K_{c} K_{e}\right)},
\end{gathered}
$$

and by inspection the closed-loop differential equation is

$$
m \dot{v}+\left(B+K_{c} K_{e}\right) v=K_{c} K_{e} v_{d}
$$

Aside:

Use the Laplace transform final value theorem to find the steady state velocity to a step input $v_{d}(t)=v_{d}$
For the step input

$$
v_{d}(s)=\frac{v_{d}}{s}
$$

and in the Laplace domain

$$
v(s)=G_{c 1}(s) V_{d}(s)=\frac{K_{c} K_{e}}{m s+\left(B+K_{c} K_{e}\right)} \frac{v_{d}}{s}
$$

The F.V. theorem states $\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)$ so that

$$
\begin{gathered}
v_{s s}=\lim _{t \rightarrow \infty} v(t)=\lim _{s \rightarrow 0} s \frac{K_{c} K_{e}}{m s+\left(B+K_{c} K_{e}\right)} \frac{v_{d}}{s} \\
v_{s} s=\frac{K_{c} K_{e}}{B+K_{c} K_{e}}
\end{gathered}
$$

which is same as we obtained before.

3 Closed-Loop Transfer Function With Sensor Dynamics:

Until now we have assumed that the output variable $y(t)$ is measured instantaneously, and without error. Frequently the sensor has its own dynamics - for example the sensor might be temperature measuring device modeled as a first-order system:

where τ_{s} is the sensor time constant.
The closed-loop block diagram is

where $H(s)$ is the transfer function of the sensor. In this case:

$$
C(s)=\left(G_{c}(s) G_{p}(s)\right) E(s)
$$

but now $E(s)$ is the indicated error (as opposed to the actual error):

$$
E(s)=R(s)-H(s) C(s)
$$

so

$$
C(s)=G_{c}(s) G_{p}(s)(R(s)-H(s) C(s))
$$

or

$$
\begin{gathered}
C(s)\left(1+G_{e}(s) G_{p}(s) H(s)\right)=G_{e}(s) G_{p}(s) H(s) \\
G_{c l}(s)=\frac{C(s)}{R(s)}=\frac{G_{c}(s) G_{p}(s)}{1+G_{c}(s) G_{p}(s) H(s)}
\end{gathered}
$$

is the modified closed-loop transfer function.

■ Example 3

Suppose that velocity sensor in the cruise control is "noisy", and a simple electrical filter is used to smooth the output. Find the effect of the filter on the closed-loop dynamics.

Using Kirchoff's Voltage Law (KVL) we find

$$
R C \dot{v}_{\text {out }}+v_{\text {out }}=v_{\text {sensor }}
$$

so that

$$
H(s)=\frac{V_{\text {out }}(s)}{V_{\text {sensor }}(s)}=\frac{1}{R C s+1}
$$

Then the closed-loop transfer function is

$$
\begin{aligned}
& G_{c l}(s)=\frac{V(s)}{V_{a}(s)}=\frac{G_{c}(s) G_{p}(s)}{1+G_{c}(s) G_{p}(s) H(s)}=\frac{\frac{K_{c} K_{e}}{m s+B}}{1+\frac{K_{c} K_{e}}{(m s+B)(R C s+1)}} \\
&=\frac{K_{c} K_{e}(R C s+1)}{(m s+B)(R S s+1)+K_{c} K_{e}} \\
& G_{c l}(s)=\frac{K_{c} K_{e}(R C s+1)}{m R C s^{2}+(B R C+m) s+\left(B+K_{c} K_{e}\right)}
\end{aligned}
$$

and the differential equation relating the speed of the car to the desired speed command is now

$$
m R C \ddot{v}+(B R C+m) \dot{v}+\left(B+K_{c} K_{e}\right) \dot{v}=K_{c} K_{e} R C \dot{v}_{d}+K_{c} K_{e} v_{d}
$$

and we note:

1) we now have a second-order system - the dynamics may change significantly,
2) we have derivative action on the RHS of the differential equation.

[^0]: ${ }^{1}$ copyright © D.Rowell 2008

