Today's goals

- So far
 - Frequency domain
 - Bode plots
 - Stability
 - Transient and steady-state characteristics from frequency response
 - Proportional control in the frequency domain
- Today
 - Simultaneous control of transient and steady-state error characteristics: Proportional-Integral-Derivative (PID) controller
 - Design using root locus
- Friday
 - The PID controller in the frequency domain

Reminder #1: PI control

Image removed due to copyright restrictions.

Please see: Fig. 9.5 and 9.6 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

2.004 Fall '07

Lecture 33 – Wednesday, Nov. 28

Reminder #2: PD control

Improving both transient response & steady-state error

Example

proportional gain *K*=121 achieves overshoot target;

- (2) T_p =0.297sec, must be reduced to ~0.2sec
- (3) $e(\infty)=0.156$, must be reduced to 0

Figure by MIT OpenCourseWare.

We begin by compensating the system transient. Since we seek to make the system <u>faster</u>, we muse use <u>PD compensation</u>. The desired dominant pole location is found from the two requirements:

(1) peak time requirement \Rightarrow imaginary part

$$\omega_d = \frac{\pi}{T_d} \Rightarrow \omega_d = \frac{\pi}{0.2} \approx 15.87$$

(2) overshoot requirement \Rightarrow diagonal to *s*-plane's origin

$$\sigma_d = \frac{\omega_d}{\tan \theta_{OS}} = \frac{\omega_d}{\tan 117^\circ} = -8.13.$$

We find the necessary location of the compensator's zero by requiring that the resulting angular contributions to the desired

dominant pole at $-8.13 \pm j15.87$ add up to 180° . The contributions from the system's open–loop poles and zeros add up to 198.37° ; therefore, the compensator zero's contribution must be 18.37° . From the geometry (see figure on right)

$$\frac{15.87}{z_c - 8.13} = \tan 18.37^\circ \Rightarrow z_c = 55.92.$$

PD compensator design sketch

Image removed due to copyright restrictions.

Please see: Fig. 9.33 in Nise, Norman S. *Control Systems Engineering*.4th ed. Hoboken, NJ: John Wiley, 2004.

Example

uncompensated system

Figure by MIT OpenCourseWare.

Figure 9.31

Images removed due to copyright restrictions.

Please see: Fig. 9.34 and 9.36 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

Root locus for PD-compensated system

New root locus after cascading an integral compensator to eliminate the steady-state error

$$K(s+55.92) \times \frac{(s+8)}{(s+3)(s+6)(s+10)} \qquad \qquad K(s+55.92) \frac{s+0.5}{s} \times \frac{(s+8)}{(s+3)(s+6)(s+10)}$$

2.004 Fall '07

Lecture 33 – Wednesday, Nov. 28

Figure 9.30

Please see: Fig. 9.35 and 9.36 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

Final PID compensated system root locus