Last week: analysis of pinion-rack w velocity feedback

Today

- Analysis of steady-state errors
- Definition for step, ramp, parabola inputs
- Steady-state error in unity feedback systems
- System type and static error constants
- The role of integrators
- Steady-state error in the presence of disturbances
- Controller gain and step disturbance cancellation
- Wednesday \& Friday: Root locus

Inserting an integrator

We've changed our mind!
Now the output is the rack position $x(t)$.
The feedback to the diff-amp must also change to measure position

Since $\quad v(t)=\frac{\mathrm{d} x(t)}{\mathrm{d} t} \Leftrightarrow x(t)=\int_{0}^{t} v\left(t^{\prime}\right) \mathrm{d} t^{\prime}$
we don't need to re-compute the plant TF.

$$
X(s)=\frac{1}{s} V(s)
$$

where $V(s)$ is the output velocity of the previous system
that we have already analyzed.

Inserting an integrator

Generalizing: different system inputs

Images removed due to copyright restrictions.
Please see: Table 7.1 and Fig. 7.1 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

Generalizing: steady-state error for arbitrary input

Images removed due to copyright restrictions.
Please see Fig. 7.2 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

- Unit step input: Steady-state error = unit step - output as $t \rightarrow \infty$
- Ramp input: Steady-state error = ramp - output as $t \rightarrow \infty$

Generally, the steady-state error is defined as

$$
e(\infty)=\lim _{t \rightarrow \infty}[r(t)-c(t)]=\lim _{s \rightarrow 0} s[R(s)-C(s)],
$$

where the last equality follows from the final value theorem.

Generalizing: steady-state error for arbitrary system, unity feedback

From the definition of the steady-state error,

$$
e(\infty)=\lim _{s \rightarrow 0} s[R(s)-C(s)]=\lim _{s \rightarrow 0} s E(s)
$$

From the block diagram we can also see that

$$
\frac{C(s)}{E(s)}=G(s) \Rightarrow E(s)=\frac{C(s)}{G(s)}
$$

Generalizing: steady-state error for arbitrary system, unity feedback

Recall the closed-loop TF of the unity feedback system

$$
\frac{C(s)}{R(s)}=\frac{G(s)}{1+G(s)} \Rightarrow C(s)=\frac{R(s) G(s)}{1+G(s)}
$$

Substituting into the two formulae from the previous page,

$$
E(s)=\frac{R(s)}{1+G(s)} \Rightarrow e(\infty)=\lim _{s \rightarrow 0} s E(s)=\lim _{s \rightarrow 0} \frac{s R(s)}{1+G(s)}
$$

Steady-state error and static error constants

Image removed due to copyright restrictions.
Please see: Table 7.1 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

$$
\begin{aligned}
& e(\infty)=\lim _{s \rightarrow 0} \frac{s R(s)}{1+G(s)} . \\
& e(\infty) \quad=\lim _{s \rightarrow 0} \frac{1}{s} \times \frac{s}{1+G(s)} \\
& =\lim _{s \rightarrow 0} \frac{1}{1+G(s)} \\
& =\frac{1}{1+\lim _{s \rightarrow 0} G(s)} \equiv \frac{1}{1+K_{p}} \\
& \text { where } \quad K_{p}=\lim _{s \rightarrow 0} G(s) \text {. } \\
& e(\infty) \quad=\lim _{s \rightarrow 0} \frac{1}{s^{2}} \times \frac{s}{1+G(s)} \\
& =\lim _{s \rightarrow 0} \frac{1}{s+s G(s)} \\
& =\frac{1}{\lim _{s \rightarrow 0} s G(s)} \equiv \frac{1}{1+K_{v}} \\
& \text { where } \quad K_{v}=\lim _{s \rightarrow 0} s G(s) \text {. } \\
& e(\infty) \quad=\lim _{s \rightarrow 0} \frac{1}{s^{3}} \times \frac{s}{1+G(s)} \\
& =\lim _{s \rightarrow 0} \frac{1}{s^{2}+s^{2} G(s)} \\
& =\frac{1}{\lim _{s \rightarrow 0} s^{2} G(s)} \equiv \frac{1}{1+K_{a}} \\
& \text { where } \quad K_{a}=\lim _{s \rightarrow 0} s^{2} G(s) \text {. }
\end{aligned}
$$

Note: the system must be stable (i.e., all poles on left-hand side or at the origin) for these calculations to apply

System types and steady-state errors

Table removed due to copyright restrictions.
Please see: Table 7.2 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

$$
\begin{array}{cc}
\mathcal{L}[u(t)]=\frac{1}{s} & K_{p}=\lim _{s \rightarrow 0} G(s) \\
\mathcal{L}[t u(t)]=\frac{1}{s^{2}} & K_{v}=\lim _{s \rightarrow 0} s G(s) \\
\mathcal{L}\left[\frac{1}{2} t^{2} u(t)\right]=\frac{1}{s^{3}} & K_{a}=\lim _{s \rightarrow 0} s^{2} G(s)
\end{array}
$$

Disturbances

disturbance

From the I-O relationship of the plant,

$$
C(s)=E(s) G_{1}(s) G_{2}(s)+D(s) G_{2}(s)
$$

From the summation element,

$$
E(s)=R(s)-C(s)
$$

Substituting $C(s)$ and solving for $E(s)$,

$$
E(s)=R(s) \frac{1}{1+G_{1}(s) G_{2}(s)}-D(s) \frac{G_{2}(s)}{1+G_{1}(s) G_{2}(s)}
$$

Equivalent block diagram with $D(s)$ as input and $-E(s)$ as output.

Disturbances

disturbance

$$
e(\infty)=\lim _{s \rightarrow 0} s E(s)=\lim _{s \rightarrow 0} s\left[R(s) \frac{1}{1+G_{1}(s) G_{2}(s)}-D(s) \frac{G_{2}(s)}{1+G_{1}(s) G_{2}(s)}\right] \equiv e_{R}(\infty)+e_{D}(\infty),
$$

$$
\begin{aligned}
e_{R}(\infty) & =\lim _{s \rightarrow 0} \frac{s R(s)}{1+G_{1}(s) G_{2}(s)} \\
e_{D}(\infty) & =-\lim _{s \rightarrow 0} \frac{s G_{2}(s) D(s)}{1+G_{1}(s) G_{2}(s)}
\end{aligned}
$$

Unit step disturbance

disturbance

Special case: unit step disturbance $\quad D(s)=\frac{1}{s}$.

$$
\begin{aligned}
e_{D}(\infty) \quad & =-\lim _{s \rightarrow 0} \frac{s G_{2}(s) \times(1 / s)}{1+G_{1}(s) G_{2}(s)} \\
& =-\frac{\lim _{s \rightarrow 0} G_{2}(s)}{1+\lim _{s \rightarrow 0} G_{1}(s) G_{2}(s)} \\
=- & \frac{1}{\frac{1}{\lim _{s \rightarrow 0} G_{2}(s)}+\lim _{s \rightarrow 0} G_{1}(s)}
\end{aligned}
$$

If K_{1}, K_{2} are the gains of the controller and plant, respectively, then

$$
e(\infty) \downarrow \quad \text { if } \quad K_{1} \uparrow \quad \text { or } \quad K_{2} \downarrow .
$$

Unit step disturbance: example

DC motor with rack-pinion load, position feedback,
subject to unit step disturbance $\quad D(s)=\frac{1}{s}$.

$$
\begin{gathered}
e_{D}(\infty)=-\frac{1}{\frac{1}{\lim _{s \rightarrow 0} G_{2}(s)}+\lim _{s \rightarrow 0} G_{1}(s)} \\
=-\frac{1}{\lim _{s \rightarrow 0} \frac{s(s+2)}{0.3162}+\lim _{s \rightarrow 0} K} \\
=-\frac{1}{K} .
\end{gathered}
$$

