Summary: Root Locus sketching rules

Negative Feedback

- Rule 1: \# branches = \# poles
- Rule 2: symmetrical about the real axis
- Rule 3: real-axis segments are to the left of an odd number of real-axis finite poles/zeros
- Rule 4: RL begins at poles, ends at zeros
- Rule 5: Asymptotes: real-axis intercept σ_{a}, angles θ_{a}

$$
\sigma_{a}=\frac{\sum \text { finite poles }-\sum \text { finite zeros }}{\# \text { finite poles }- \text { \#finite zeros }} \quad \theta_{a}=\frac{(2 m+1) \pi}{\# \text { finite poles }- \text { \#finite zeros }} \quad m=0, \pm 1, \pm 2, \ldots
$$

- Rule 6: Real-axis break-in and breakaway points

Found by setting $\quad K(\sigma)=-\frac{1}{G(\sigma) H(\sigma)} \quad(\sigma$ real $) \quad$ and solving $\quad \frac{\mathrm{d} K(\sigma)}{\mathrm{d} \sigma}=0 \quad$ for real σ.

- Rule 7: Imaginary axis crossings (transition to instability)

Found by setting $K G(j \omega) H(j \omega)=-1 \quad$ and solving $\left\{\begin{array}{l}\operatorname{Re}[K G(j \omega) H(j \omega)]=-1, \\ \operatorname{Im}[K G(j \omega) H(j \omega)]=0 .\end{array}\right.$

Sketch the Root Locus

Images removed due to copyright restrictions.
Please see: Problem 8.2 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

Are these Root Loci valid? If not, correct them

Images removed due to copyright restrictions.
Please see: Problem 8.1 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

