Response of 1st-order system to sinusoidal input

 $\begin{aligned} \tau \dot{x} + x &= f(t) \\ x(0) &= 0 \to \text{ initial condition} \\ f(t) &= f_0 \cos \omega_0 t \to \text{ periodic forcing function} \\ \omega_0 &= \text{angular frequency } \left[\frac{rad}{sec}\right] \\ \nu_0 &= \frac{\omega_0}{2\pi} = \text{frequency } [\text{Hz}] = \left[sec^{-1}\right] \\ f_0 &= \text{amplitude} \end{aligned}$

Solution: $x(t) = x_h(t) + x_p(t) =$ homogeneous + particular

$$x_h(t) = Ae^{-\frac{t}{\tau}}$$

Conjecture: $x_p(t) = \alpha f_0 \cos(\omega_0 t + \psi)$

Procedure: First calculate α , ψ , then A.

$$\begin{aligned} \tau \dot{x_p}(t) + x_p(t) &= f(t) \Rightarrow \\ &- \tau \omega_0 \alpha f_0 \sin \left(\omega_0 t + \psi\right) + \alpha f_0 \cos \left(\omega_0 t + \psi\right) = f_0 \cos \omega_0 t \Rightarrow \text{ trig substitution} \\ &- \tau \omega_0 \alpha f_0 [\sin \omega_0 t \cos \psi + \cos \omega_0 t \sin \psi] + \alpha f_0 [\cos \omega_0 t \cos \psi - \sin \omega_0 t \sin \psi] = f_0 \cos \omega_0 t \Rightarrow \\ &- \alpha f_0 (\omega_0 \tau \cos \psi + \sin \psi) \sin \omega_0 t + \alpha f_0 (-\omega_0 \tau \sin \psi + \cos \psi) \cos \omega_0 t = f_0 \cos \omega_0 t \Rightarrow \text{ must be true for all t} \end{aligned}$$

$$\begin{cases} \alpha f_0(-\omega_0\tau\sin\psi + \cos\psi) = f_0 \quad (1)\\ \omega_0 t\cos\psi + \sin\psi = 0 \quad (2) \end{cases}$$

From (2), $\Rightarrow \tan \psi = -\omega_0 t$

From (1)
$$\Rightarrow \tan \psi \sin \psi + \cos \psi = \frac{f_0}{\alpha f_0} \Rightarrow \frac{1}{\cos \psi} = \frac{1}{\alpha}$$

 $\Rightarrow \alpha = \cos \psi = \frac{1}{\sqrt{1 + \tan^2 \psi}} = \frac{1}{\sqrt{1 + (\omega_0 t)^2}}$
 $\therefore x_p(t) = \frac{f_0}{\sqrt{1 + \tan^2 \psi}} \cos (\omega_0 t - \tan^{-1} \omega_0 t)$

Back to the complete solution:

$$x(t) = Ae^{-\frac{t}{\tau}} + \alpha f_0 \cos(\omega_0 t - \psi)$$

$$x(0) = 0 = A + \alpha f_0 \cos\psi \Rightarrow A = -\alpha f_0 \cos\psi$$

Final Solution:

$$x(t) = \frac{f_0}{\sqrt{1 + (\omega_0 t)^2}} \left(-\frac{e^{-\frac{t}{\tau}}}{\sqrt{1 + (\omega_0 t)^2}} + \cos\left(\omega_0 t - \psi\right) \right)$$

Note that the first term here is the exponential decay, while the second is the steady-state solution. Long-term, we are interested in the steady-state response (i.e., $t \gg \tau$) when the exponential has decayed and the cosinusoidal is what remains.

$$x_{steady-state}(t) \simeq \frac{f_0}{\sqrt{1+(\omega_0 t)^2}} \cos(\omega_0 t - \psi)$$

More generally, for linear time-invariant systems, where $f(t) \rightarrow LTI \rightarrow x(t)$ [steady-state only!]:

If $f(t) = f_0 \cos(\omega_0 t - \alpha)$ then $x(t) = f_0 \cos(\omega_0 t - \alpha + \psi)$, since the system is linear $(\omega_0 t)$ and shift invariant (α) .

E.g.: 1st-order low-pass system, $\tau \dot{x} + x = f$

Figure 1: $\alpha(\omega) = \frac{1}{\sqrt{1+(\omega\tau)^2}}$

A graph showing the change in α as ω ranges from zero to ω_0 .

Figure 2: $\psi(\omega) = \tan^{-1}(-\omega\tau)$ A graph of ψ over the range of ω from zero to ω_0 .

It is convenient here to define a complex number, G:

 $G(\omega) = \alpha(\omega)e^{i\psi(\omega)}$

where $\alpha(\omega)$ is the magnitude of the function, and $\psi(\omega)$ is the phase. G therefore is the transfer function.

Why is it convenient?

We started this discussion by using the excitation:

 $f(t) = f_0 \cos \omega_0 t = f_0 \operatorname{Re}[e^{i\omega t}]$

We found that:

$$x(t) = f_0 \alpha \cos \omega_0 t + \psi = f_0 \operatorname{Re}[\alpha e^{i(\omega t + \psi)}]$$

In other words:

 $x(t) = f_0 \operatorname{Re}[H(\omega_0)e^{i\omega_0 t}] !!$

We will soon return to this point!

The representation of a sinusoid

 $\alpha \cos \omega_0 t + \psi$

by a complex number

 $\alpha e^{i\psi}$

is known as **phasor representation**.

Sometimes we use the notation

 $\alpha e^{i\psi} \equiv \alpha \angle \psi$

to denote the phasor in terms of its **amplitude** α and **phase** ψ .