Response of 1st-order system to sinusoidal input

$$
\begin{aligned}
& \tau \dot{x}+x=f(t) \\
& x(0)=0 \rightarrow \text { initial condition } \\
& f(t)=f_{0} \cos \omega_{0} t \rightarrow \text { periodic forcing function } \\
& \omega_{0}=\text { angular frequency }\left[\frac{\mathrm{rad}}{\mathrm{sec}}\right] \\
& \nu_{0}=\frac{\omega_{0}}{2 \pi}=\text { frequency }[\mathrm{Hz}]=\left[\mathrm{sec}^{-1}\right] \\
& f_{0}=\text { amplitude }
\end{aligned}
$$

Solution: $x(t)=x_{h}(t)+x_{p}(t)=$ homogeneous + particular

$$
x_{h}(t)=A e^{-\frac{t}{\tau}}
$$

Conjecture: $x_{p}(t)=\alpha f_{0} \cos \left(\omega_{0} t+\psi\right)$
Procedure: First calculate α, ψ, then A.

$$
\begin{aligned}
& \tau \dot{x_{p}}(t)+x_{p}(t)=f(t) \Rightarrow \\
& -\tau \omega_{0} \alpha f_{0} \sin \left(\omega_{0} t+\psi\right)+\alpha f_{0} \cos \left(\omega_{0} t+\psi\right)=f_{0} \cos \omega_{0} t \Rightarrow \text { trig substitution } \\
& -\tau \omega_{0} \alpha f_{0}\left[\sin \omega_{0} t \cos \psi+\cos \omega_{0} t \sin \psi\right]+\alpha f_{0}\left[\cos \omega_{0} t \cos \psi-\sin \omega_{0} t \sin \psi\right]=f_{0} \cos \omega_{0} t \Rightarrow \\
& -\alpha f_{0}\left(\omega_{0} \tau \cos \psi+\sin \psi\right) \sin \omega_{0} t+\alpha f_{0}\left(-\omega_{0} \tau \sin \psi+\cos \psi\right) \cos \omega_{0} t=f_{0} \cos \omega_{0} t \Rightarrow \text { must be true for all } \mathrm{t}
\end{aligned}
$$ \Rightarrow equate coefficients

$$
\left\{\begin{array}{l}
\alpha f_{0}\left(-\omega_{0} \tau \sin \psi+\cos \psi\right)=f_{0} \tag{1}\\
\omega_{0} t \cos \psi+\sin \psi=0
\end{array}\right.
$$

From (2), $\Rightarrow \tan \psi=-\omega_{0} t$
From (1) $\Rightarrow \tan \psi \sin \psi+\cos \psi=\frac{f_{0}}{\alpha f_{0}} \Rightarrow \frac{1}{\cos \psi}=\frac{1}{\alpha}$

$$
\Rightarrow \alpha=\cos \psi=\frac{1}{\sqrt{1+\tan ^{2} \psi}}=\frac{1}{\sqrt{1+\left(\omega_{0} t\right)^{2}}}
$$

$$
\therefore x_{p}(t)=\frac{f_{0}}{\sqrt{1+\tan ^{2} \psi}} \cos \left(\omega_{0} t-\tan ^{-1} \omega_{0} t\right)
$$

Back to the complete solution:

$$
\begin{aligned}
& x(t)=A e^{-\frac{t}{\tau}}+\alpha f_{0} \cos \left(\omega_{0} t-\psi\right) \\
& x(0)=0=A+\alpha f_{0} \cos \psi \Rightarrow A=-\alpha f_{0} \cos \psi
\end{aligned}
$$

Final Solution:

$$
x(t)=\frac{f_{0}}{\sqrt{1+\left(\omega_{0} t\right)^{2}}}\left(-\frac{e^{-\frac{t}{\tau}}}{\sqrt{1+\left(\omega_{0} t\right)^{2}}}+\cos \left(\omega_{0} t-\psi\right)\right)
$$

Note that the first term here is the exponential decay, while the second is the steady-state solution. Longterm, we are interested in the steady-state response (i.e., $t \gg \tau$) when the exponential has decayed and the cosinusoidal is what remains.

$$
x_{\text {steady }- \text { state }}(t) \simeq \frac{f_{0}}{\sqrt{1+\left(\omega_{0} t\right)^{2}}} \cos \left(\omega_{0} t-\psi\right)
$$

More generally, for linear time-invariant systems, where $f(t) \rightarrow$ LTI $\rightarrow x(t)$ [steady-state only!]:
If $f(t)=f_{0} \cos \left(\omega_{0} t-\alpha\right)$ then $x(t)=f_{0} \cos \left(\omega_{0} t-\alpha+\psi\right)$,
since the system is linear $\left(\omega_{0} t\right)$ and shift invariant (α).
E.g.: 1st-order low-pass system, $\tau \dot{x}+x=f$

Figure 1: $\alpha(\omega)=\frac{1}{\sqrt{1+(\omega \tau)^{2}}}$
A graph showing the change in α as ω ranges from zero to ω_{0}.

Figure 2: $\psi(\omega)=\tan ^{-1}(-\omega \tau)$
A graph of ψ over the range of ω from zero to ω_{0}.

It is convenient here to define a complex number, G :

$$
G(\omega)=\alpha(\omega) e^{i \psi(\omega)}
$$

where $\alpha(\omega)$ is the magnitude of the function, and $\psi(\omega)$ is the phase. G therefore is the transfer function.

Why is it convenient?

We started this discussion by using the excitation:

$$
f(t)=f_{0} \cos \omega_{0} t=f_{0} \operatorname{Re}\left[e^{i \omega t}\right]
$$

We found that:

$$
x(t)=f_{0} \alpha \cos \omega_{0} t+\psi=f_{0} \operatorname{Re}\left[\alpha e^{i(\omega t+\psi)}\right]
$$

In other words:

$$
x(t)=f_{0} \operatorname{Re}\left[H\left(\omega_{0}\right) e^{i \omega_{0} t}\right]!!
$$

We will soon return to this point!
The representation of a sinusoid

$$
\alpha \cos \omega_{0} t+\psi
$$

by a complex number

$$
\alpha e^{i \psi}
$$

is known as phasor representation.
Sometimes we use the notation

$$
\alpha e^{i \psi} \equiv \alpha \angle \psi
$$

to denote the phasor in terms of its amplitude α and phase ψ.

