Goals for today

- The operational amplifier
- input-output relationships
- feedback configuration
- More about zeros
- zero on the right-half plane: non-minimum phase response
- Zero-pole cancellation
- Next week
- Block diagram operations
- Analysis of a simple feedback system

The operational amplifier (op-amp)

(a) Generally, $v_{o}=A\left(v_{2}-v_{1}\right)$, where A is the amplifier gain.

Figure by MIT OpenCourseWare.
Figure 2.10
(see also Lecture 04 - page 16)
(b) When v_{2} is grounded, as is often the case in practice, then $v_{o}=-A v_{1}$.
(Inverting amplifier.)
(c) Often, A is large enough that we can approximate $A \rightarrow \infty$.
Rather than connecting the input directly, the op-amp should then instead be used in the
feedback configuration of Fig. (c).
We have:

$$
V_{1}=0 ; \quad I_{a}=0
$$

(because V_{o} must remain finite) therefore

$$
\begin{gathered}
I_{1}+I_{2}=0 \\
V_{i}-V_{1}=V_{i}=I_{1} Z_{1} \\
V_{o}-V_{1}=V_{o}=I_{2} Z_{2}
\end{gathered}
$$

Combining, we obtain

$$
\frac{V_{o}(s)}{V_{i}(s)}=-\frac{Z_{2}(s)}{Z_{1}(s)} .
$$

Example: PID controller

Equivalent impedances:
(R_{1}, C_{1} connected in parallel)
$\frac{1}{Z_{1}(s)}=\frac{1}{R_{1}}+C_{1} s \Rightarrow Z_{1}(s)=\frac{R_{1}}{1+R_{1} C_{1} s}=\frac{360 \times 10^{3}}{1+2.016 s} ;$
(R_{2}, C_{2} connected in series)

$$
Z_{2}(s)=R_{2}+\frac{1}{C_{2} s}=220 \times 10^{3}+\frac{1}{10^{-7} s} .
$$

Example: all-pass filter

Step response without zero:

$$
\begin{gathered}
C_{o}(s)=-\frac{1}{s(s+10)}=-\frac{1 / 10}{s}+\frac{1 / 10}{s+10} \\
c_{0}(t)=-\frac{1}{10}\left(1-\mathrm{e}^{-10 t}\right) u(t)
\end{gathered}
$$

Images removed due to copyright restrictions.
Please see Fig. 4.28 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

Figure by MIT OpenCourseWare.

$$
\begin{array}{cc|c}
\text { Transfer function: } & & j \omega \\
\frac{V_{o}(s)}{V_{i}(s)}=-\frac{R_{1}}{R_{2}} \frac{s-\frac{R_{2}}{R_{1} R_{3} C}}{s+\frac{1}{R_{3} C}} . & -\times & -\left(\begin{array}{c}
\sigma \\
\boldsymbol{-}
\end{array}\right.
\end{array}
$$

Substituting $R_{1}=R_{2}, R_{3}=100 \mathrm{k} \Omega, C=1 \mu \mathrm{~F}$,

$$
\frac{V_{o}(s)}{V_{i}(s)}=-\frac{s-10}{s+10} \quad \text { zero in the r.h.p. }
$$

Step response:

$$
\begin{aligned}
C(s) & =-\frac{s-10}{s(s+10)} \\
& =\frac{1}{s}-\frac{2}{s+10} \Rightarrow \\
c(t) & =\left(1-2 \mathrm{e}^{-10 t}\right) u(t)
\end{aligned}
$$

Non-minimum phase system

Nonminimum-phase response

Consider a system without a zero, whose step response is $C_{o}(s)$ and recall that the effect of the zero is $C(s)=(s+a) C_{o}(s)=s C_{o}(s)+a C_{o}(s)$.

In the time domain, $c(t)=\dot{c}_{o}(t)+a c_{o}(t)$. Therefore, the system response with the zero is the sum of the derivative of the original response plus the original response amplified by a gain equal to a ("proportional term.")

If $a<0$ and the derivative term $\dot{c}_{o}(t=0)$ is larger than the proportional term $a c_{o}(t=0)$, then the response will initially follow the derivative term in the opposite direction of the proportional term.

Zero-pole cancellation

Compare the step responses

$$
\begin{aligned}
C_{1}(s) & =\frac{26.25(s+4)}{s(s+3.5)(s+5)(s+6)} \\
C_{2}(s) & =\frac{26.25(s+4)}{s(s+4.01)(s+5)(s+6)} .
\end{aligned}
$$

Partial fraction expansion yields

$$
\begin{aligned}
C_{1}(s) & =\frac{1}{s}-\frac{3.5}{s+5}+\frac{3.5}{s+6}-\frac{1}{s+3.5} \\
C_{2}(s) & =\frac{0.87}{s}-\frac{5.3}{s+5}+\frac{4.4}{s+6}-\frac{0.033}{s+4.01}
\end{aligned}
$$

