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2.008 Design & Manufacturing 
II

Spring 2004

Metal Cutting II
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Cutting processes

Objectives
Product quality: surface, tolerance
Productivity: MRR , Tool wear

Physics of cutting
Mechanics
Force, power

Tool materials
Design for manufacturing 
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Orthogonal cutting in a lathe

Rake angle

Shear angle

To: depth of cut

Shear plane

Assume a hollow shaft
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Velocity diagram in cutting zone
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Cutting ratio: r <1
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E. Merchant’s cutting diagram
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Analysis of shear strain

What does this mean:
Low shear angle = large shear strain

Merchant’s assumption: Shear angle adjusts 
to minimize cutting force or max. shear stress
Can derive:
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Shear Angle 2
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Power
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Experimantal data

MRR (Material Removal Rate) = w.to.V
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Cutting zone pictures
continuous secondary shear BUE

serrated discontinuous
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Chip breaker

- Stop and go
- milling

Continuous chip: bad for automation
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Cutting zone distribution

Hardness Temperature

770

500

316

Mean temperature: CVafb
HSS: a=0.5, b=0.375
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Built up edge
What is it?
Why can it be a good thing?
Why is it a bad thing?

Thin BUE

How to avoid it…

•Increasing cutting speed
•Decreasing feed rate
•Increasing rake angle
•Reducing friction (by applying cutting fluid)
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Tools
HSS (1-2 hours)

Inserts

-High T
-High σ
-Friction
-Sliding on cut surface
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Tool wear up close

Crater wear

Depth of cut line
Flank wear

Wear land
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Taylor’s tool wear relationship 
(flank wear)

CTV n =⋅ ) fpm ( velocity cuttingV =
(min) failure  totimeT =

F. W. Taylor, 1907

Workpiece 
hardness

fpm

CTV n =⋅⋅⋅ yx fd

rate feedf
cut of depthd

=
=

41-77 fdVCT −− ⋅⋅⋅=Ex.

Optimum for max MRR?
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Taylor’s tool life curves 
(Experimental)

Coefficient n varies from:
Steels Ceramics
0.1 0.7

As n increases, cutting speed can be 
increased with less wear.

Given that, n=0.5, C=400, if the V 
reduced 50%, calculate the increase of 
tool life?

Log scale
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What are good tool materials?

Hardness
wear
temperature

Toughness
fracture
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History of tool materials

Trade off: Hardness vs Toughness
wear vs chipping
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HSS

High-speed steel, early 1900
Good wear resistance, fracture resistance, not so expensive
Suitable for low K machines with vibration and chatter, why?
M-series (Molybdenum)

Mb (about 10%), Cr, Vd, W, Co
Less expensive than T-series
Higher abrasion resistance

T-series (Tungsten 12-18%)
Most common tool material but not good hot hardness

2.008-spring-2004  S.Kim 21

Carbides

Hot hardness, high modulus, thermal stability
Inserts
Tungsten Carbide (WC)

(WC + Co) particles (1-5 µ) sintered
WC for strength, hardness, wear resistance
Co for toughness

Titanium Carbide (TiC)
Higher wear resistance, less toughness
For hard materials

Uncoated or coated for high-speed machining
TiN, TiC, TiCN, Al2O3
Diamond like coating
CrC, ZrN, HfN
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Crater wear

Diffusion is dominant for crater wear
A strong function of temperature
Chemical affinity between tool and workpiece
Coating?

Crater wear
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Multi-phase coating

TiN low friction

Al2O3 thermal stability

TiCN wear resistance

Carbide substrate
hardness and 
rigidity

Custom designed coating for heavy duty, high speed, interrupted, etc.
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Ceramics and CBN

Aluminum oxide,  hardness, high abrasion resistance, hot 
hardness, low BUE
Lacking toughness (add ZrO2, TiC), thermal shock
Cold pressed and hot sintered
Cermets (ceramic + metal)

Al2O3 70%, TiC 30%, brittleness, $$$
Cubic Boron Nitride (CBN)

2nd hardest material
brittle

Polycrystalline Diamond
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Range of applications

V

f

High

High
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Chatter

Severe vibration between tool and the 
workpiece, noisy.
In general, self-excited vibration 
(regenerative)
Acoustic detection or force 
measurements
Cutting parameter control, active 
control
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Turning parameters

MRR = π Davg. N. d . f
N: rotational speed (rpm), f: feed (in/rev), d: depth of cut (in)
l; length of cut (in)

Cutting time, t = l / f N
Torque = Fc (Davg/2)
Power = Torque. Ω
1 hp=396000 in.lbf/min = 550 ft.lbf/sec

Example
6 inch long and 0.5 in diameter stainless steel is turned to 0.48 
in diameter. N=400 rpm, tool in traveling 8 in/min, specific 
energy=4 w.s/mm2=1.47 hp.min/in3

Find cutting speed, MRR, cutting time, power, cutting force.
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Sol.

Davg=(0.5+0.48)/2= 0.49 in
V=π. 0.49.400 = 615 in/min
d=(0.5-0.48)/2=0.01 in
F=8/400=0.02 in/rev
MRR=V.f.d=0.123 in3/min
Time to cut=6/8=0.75 min

P=1.47 x 0.123 = 0.181 hp=Torque x ω
1hp=396000 in-lb/min
T=P/ω=Fc. (Davg/2)
Then, Fc=118 lbs
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Drilling parameters

MRR:
Power: specific energy x MRR
Torque: Power/ω

A hole in a block of magnesium alloy, 10 mm drill bit, 
feed 0.2 mm/rev, N=800 rpm
Specific power 0.5 W.s/mm2

MRR
Torque

Nf
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 DπMRR
2

⋅⎟
⎠

⎞
⎜
⎝

⎛
=

2.008-spring-2004  S.Kim 30

Sol

MRR=π (10x10/4 ) . 0.2  . 800 =210 mm3/s
Power= 0.5 W.s/mm2 . 210 mm3/s

=105 W = 105 N.m/s
= T.ω
=T 2π. 800/60
=1.25 N.m
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Milling

Chip continuous?
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Milling parameters (slab)

Parameters:
Cutting speed,  V=πDN
tc, chip depth of cut 
d; depth of cut
f; feed per tooth
v; linear speed of the 
workpiece
n; number of teeth
t; cutting time, 
w; width of cut

Torque: Power/ω
Power: sp. Energy x MRR

wdvt
lwd

==MRR

Nn
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DFM for machining

Geometric compatibility

Dimensional compatibility
Availability of tools
Drill dimensions, aspect ratio

Constraints
Process physics
Deep pocket 
Machining on inclined faces

Set up and fixturing
Tolerancing is $$$
Minimize setups


