

2.008 Staffs

- Faculty
- Professor Sang-Gook Kim, Wed 4-6
- Professor Jung-Hoon Chun
- Lab Instructors
- David Dow
- Patrick McAtamney
- TAs (office hours on Mon, Tue, 5-6)
- Course Administrator
2.008 MIT

Positioning of 2.008 - 2.007 - 2.009 - Elementary - Capstone - Small scale - Large scale - Individual . Team - Boxful of scraps - 6,000 per team - What did you learn? - What will you learn?

Scope

- Lectures and labs
- Manufacturing processes
- Equipments/control
- Manufacturing systems
- Design for manufacturing
- Rate, cost, quality and flexibility
2.008 MIT

Lectures

. Monday, Wednesday, 12:30 to 1:55 PM
2.008 MIT


```
Safety
- Safety!
- Safety!
- Safety!
```

Safety Instructions By David Dow

	2.008 Labs
	- Lab I: CAD/CAM/Process Plan I - Lab II: CAD/CAM/Process Plan II - Lab III: CAD/CAM/Process Plan III - Lab IV: Yo-Yo Manufacturing: Part Design - Lab V: Yo-Yo: Tooling Design - Lab VI Yo-Yo: Tooling Fabrication - Lab VII: Yo-Yo: Parts Production - Lab VIII: Yo-Yo: Variation - Lab IX: Manufacturing Systems: Lego
	2.008 MIT

Group meetings

- Team effort for Yo-Yo mfg and the final presentation
- Discuss design decisions, part dimensions, and report preparation outside lab once a week.
- Keep minutes and submit with each report.
- No peer reviews.
2.008 MIT

\square	Grading	
	- Quizzes (two)	40\%
	- Lab performance and reports	30\%
	- Participation \& Project presentation	
		20\%
	- Home Works	10\%
	2.008 MIT	

$\underline{1}$	Plant tour
	- Plant tour to a manufacturing facility (TBA) on April 21(W), 22(Th), 2-5PM. - Attend either one of two. Sign-up to Mr. Dave Dow for your preference by April $2^{\text {nd }} 4 \mathrm{PM}$. - Safety reminder; proper attire, safety glasses, shoes
	2.008 mT

The transition from an agrarian society of the 1700s to an industrial society of 1900s resulted in the industrialization of agriculture and not its disappearance.

- Today, only 3\% of Americans are engaged in agricultural activities in contrast to 90% of the workforce in the 1700s.

	U.S.A		Japan		Germany		Canada	
	$\mathbf{1 9 3 0}$	$\mathbf{1 9 9 9}$	1930	1990	1933	1990	1931	1990
Agriculture	$\mathbf{2 2 . 9}$	$\mathbf{2 . 9}$	49.9	6.9	2.9	3.5	35.2	4.3
Manufacturing	$\mathbf{2 4 . 5}$	$\mathbf{1 8 . 0}$	16.1	23.4	31.6	31.6	16.4	15.7

2.008 MIT
B. Benhabib

Objectives

- Exposure to key manufacturing

 processes- Understand the measure of success or failure of processes, machines or systems
- Apply physics to control the measure; cost, rate, quality, flexibility
2.008 MIT

Objectives (cont.)

- Understanding of variation of the manufacturing processes and systems
- Control of processes and systems with the presence of variation
- SONY TV
- Mercedez, BMW
- Six sigma - 3.4 defects per million
2.008 MIT

Objectives (cont.)

- Manufacturing constraints on product design and process planning
- Learn manufacturing system issues
- A system has many different units in its boundary.
- What is a complex system?
- What is a good system?
2.008 MIT

