

Cutting process modeling

- Methods: Modeling and Experiments
- Key issues
 - How does cutting work?
 - What are the forces involved?
 - What affect does material properties have?
 - How do the above relate to power
 - requirements, MRR, wear, surface?

Approximate Energy Requirements in Cutting Operations (at drive motor, corrected for 80% efficiency; multiply by 1.25 for dull tools).		
Material	Specific energy	
	W · s/mm ³	hp·min/in.
Aluminum alloys	0.4-1.1	0.15-0.4
Cast irons	1.6-5.5	0.6-2.0
Copper alloys	1.4-3.3	0.5-1.2
High-temperature alloys	3.3-8.5	1.2-3.1
Magnesium alloys	0.4-0.6	0.15-0.2
Nickel alloys	4.9-6.8	1.8-2.5
Refractory alloys	3.8-9.6	1.1-3.5
Stainless steels	3.0-5.2	1.1-1.9
Steels	2.7-9.3	1.0-3.4

