

Today, February 25th

- HW \#2 due before the class, \#3 out on the web after the class.
- Math Formulae, handout
- Lab groups fixed, and thank you.
- group report!!!
- Metal cutting demo
- Cutting physics

Material removal processes

- Cost:
- Expensive \$100\$10,000
- Quality:

- Very high
- Flexibility:
- Any shape under the sun
- Rate:
- Slow

Machined Surface

Cutting processes

- Why do we study cutting physics?
- Product quality: surface, tolerance
- Productivity: MRR \uparrow, Tool wear \downarrow
- Physics of cutting
- Mechanics
- Force, power
- Tool materials
- Design for manufacturing

Cutting Tools

Cutting process modeling

- Methods: Modeling and Experiments
- Key issues
- How does cutting work?
- What are the forces involved?
- What affect does material properties have?
- How do the above relate to power requirements, MRR, wear, surface?

Orthogonal cutting in a lathe

Varying rake angle α :

$$
-\alpha \quad \alpha=0
$$

Forces and power

- FBD at the tool-workpiece contact
- What are the forces involved
- Thrust force, Ft
- Cutting force, Fc
- Resultant force, R
- Friction force,
- Normal Force,

- Shear Force,

Fs, Fn

E. Merchant's cutting diagram

FBD of Forces
$\mathrm{F}=\mathrm{R} \cdot \sin (\beta) \quad \beta=$ Friction Angle
$\begin{array}{ll}\mathrm{F}=\mathrm{R} \cdot \sin (\beta) & \beta=\text { Friction Angle } \\ \mathrm{N}=\mathrm{R} \cdot \cos (\beta) & \mu=\tan (\beta)\end{array}$
$\mathrm{Ft}=\mathrm{R} \cdot \sin (\beta-\alpha)$
$\mathrm{N}=\mathrm{R} \cdot \cos (\beta) \quad \mu=\tan (\beta) \quad \mathrm{Fc}=\mathrm{R} \cdot \cos (\beta-\alpha)$
$F_{s}=F_{c} \cdot \cos (\varphi)-F_{t} \cdot \sin (\varphi)=R \cos (\varphi+\beta-\alpha)$
$\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{c}} \cdot \sin (\varphi)+\mathrm{F}_{\mathrm{t}} \cdot \cos (\varphi)$
$\mu=\frac{\mathrm{F}}{\mathrm{N}}=\frac{\mathrm{F}_{\mathrm{t}}+\mathrm{F}_{\mathrm{c}} \cdot \tan (\alpha)}{\mathrm{F}_{\mathrm{c}}-\mathrm{F}_{\mathrm{t}} \cdot \tan (\alpha)}$
Typcially: $0.5<\mu<2$

Analysis of shear strain

- What does this mean:
- Low shear angle = large shear strain
- Merchant's assumption: Shear angle adjusts to minimize cutting force or max. shear stress
- Can derive:

$$
\phi=45^{\circ}+\frac{\alpha}{2}-\frac{\beta}{2}
$$

Things to think about

- As rake angle decreases or friction increases
- Shear angle decreases
- Chip becomes thicker
- Thicker chip = more energy dissipation via shear
- More shear = more heat generation
- Temperature increase!!!

$$
\varphi=45^{\circ}+\frac{\alpha}{2}-\frac{\beta}{2}
$$

Power

Power input : $F_{c} \cdot V \quad=>$ shearing + friction

Power for shearing : $F_{\mathrm{s}} \cdot V_{\mathrm{s}}$
Power for shearing $: F_{s} \cdot V_{s}$
Specific energy for shearing $: u_{s}=\frac{F_{s} \cdot V_{s}}{w \cdot t_{o} \cdot V_{2}}$
Power dissipated via friction : $F \cdot V_{c}{ }_{c} \cdot V_{c}$
Specific energy for friction : $u_{f}=\frac{{ }^{F} \cdot t_{o} \cdot V}{}$
Total specific energy: $u_{s}+u_{f}=\frac{F \cdot V_{c}}{w \cdot t_{o} \cdot V}+\frac{F_{S} \cdot V_{s}}{w \cdot t_{o} \cdot V}$
Experimantal data

Specific energy (rough estimate)

Approximate Energy Requirements in Cutting Operations (at drive motor, corrected for 80% efficiency; multiply by 1.25 for dull tools).		
	Specific energy	
Material	$\mathrm{W} \cdot \mathrm{s} / \mathrm{mm}^{3}$	$\mathrm{hp} \cdot \mathrm{min} / \mathrm{in} .^{3}$
Aluminum alloys	0.4-1.1	0.15-0.4
Cast irons	1.6-5.5	0.6-2.0
Copper alloys	1.4-3.3	0.5-1.2
High-temperature alloys	3.3-8.5	1.2-3.1
Magnesium alloys	0.4-0.6	$0.15-0.2$
Nickel alloys	4.9-6.8	1.8-2.5
Refractory alloys	3.8-9.6	1.1-3.5
Stainless steels	3.0-5.2	1.1-1.9
Steels	2.7-9.3	1.0-3.4
ing-2004 S.K.im	Kalpakian	

Cutting zone pictures

