2.00AJ / 16.00AJ Exploring Sea, Space, & Earth: Fundamentals of Engineering Design Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Writing a Technical Report

> Les Perelman 7 February 2007

with slides developed by Dr. Mya Poe

# Topics

- Elements of the report
- Process of writing the design report
- Introduction / Proposal
- Process of writing the design report
- Revising and Editing

The goal of oral presentations and written reports is to explain a technical finding . . .

BUT . . . they're not the same. . .

#### Written Reports

- Random reading (re-reference text)
- Reader controls pace
- Message is archival
- Reader must actively read
- Feedback not possible

Image removed due to copyright restrictions. Please see any issue of Nature.

#### **Oral Presentations**

- Linear (cannot "go back")
- Speaker controls pace
- Message presented in the moment
- Audience can be passive
- Feedback possible (questions)



Eakins, Thomas. The Agnew Clinic. 1889.

Writing the Design Report -Prewriting

Start early

Image courtesy of vincos on Flickr.

- Technical papers are like spaghetti sauce or stew -- they get better when they sit for a while
- Read the assignment
  - List what you are supposed to do
- List design criteria
- List different solutions and evaluate them in terms of design criteria
- Use models
- Define audiences and purposes

# Introduction

- Give background and context of problem
- State problem clearly & concisely
- State why it is important
- Give one or two sentence overview of paper
- Use terms your audience can understand

# Background & Context of Problem

Capstan drives have many uses in products, such as printers, plotters, copiers/scanners and tape recorders. For example, in printers, the head that supports the ink cartridge is typically actuated by a cable driven by a capstan<sup>1</sup> [1]. Another use in printers is the feeding system; paper from the tray is fed onto the platen by a rotating capstan<sup>2</sup> [2]. Tape recorders use a capstan that supports and controls the speed of the tape<sup>3</sup> [3].

In precision machines, capstans can be used as rotary power transmission elements. For example, a device from SensAble Technologies<sup>4</sup> uses a combination of two input drums and one output drum to aid in a 3 degree-of-freedom touch based application, as shown in Fig. 1. Capstans in these applications are typically configured with a cable wrapped in a figure-eight pattern around input and output drums. Multiple wrappings give the drive high stiffness and reduce radial loads. Two input drums are

# Problem Statement —> Overview

#### rameters.

While there is significant experimental data supporting the use of porous media aerostatic bearings, few published theoretical models seem to exist that reliably predict their behavior. Accordingly, this paper presents a simple analytical modeling approach for circular porous air bearings that captures the physical phenomena governing the airflow.

The problem of modeling an air bearing is illustrated in

# Lab Notebook is Bridge Between Introduction / Proposal and Rest of Paper



Courtesy NPS. Image from Wikimedia Commons.

# Lab Notebook

March 97 1876 713 11 12. A lines held (B. Hig 11) and insisting jos The toning of the delithen the me insuited alove AD! 1. He apparatus suggested no sound from M Jularday was made and tried this afternoone. 13. is hat white the difference of particle and in at another (m ) fig 1 - mos The last reprime to had confilling = do with The stretched across the bottom of the bon B ). a friese "wealt - a first of abel and substituted for of costs (C) mus bladlaced attached to the centre of the The prass nothern The and The hall B was Then rung. mentione ( ) forming a support for the wine w while Ma Bound from M. projected into the water in the glass recel V. 14. Fine of start invitituted for B (sig 9) . the breas rithon Re some increased in the water alon . Connections were made as in the diagram (Fig 1 ) . around as in Referent 10 -Moon singing into the book the pitch of the voice was ( Vergel 5 . ) clearly andible from S - which latter and pland in the toget room by When Witcom talked into The It seems as if The sound from N ( Fig. 754 1011) for - an indictinat pumbling sons beard at S. And Trank where the astation property B to be to Consect and The million of fails in contract with the water function? sundling the compared I could been a confirmed By the following ansignant - Factor size W & stratitud molling bound like speech but could not make out When Willow counted - I farried The Almet. a mader Scould perceive The articulations "one, Time Thick, form, bet this may have been faney - as I kam beforehand what to support. However that may be I am contrain That the There & Barris 9 7 influction of the voice enverymented - 2 444 Anter March 9 7 1 8.9. D. a.g.B.

Image from Wikimedia Commons.

# What to include in Lab Notebook

- All procedures
- All results
- Possible inferences from results
- Sign and date each page
- Cross-out only with a single line



Image courtesy of Julie70 on Flickr.

# The form of scientific communication follows its function

 Forms of technical reports: conceptual, empirical, observational, methodological, review

Image removed due to copyright restrictions.

Please see http://www.nlm.nih.gov/MEDLINEPLUS/ency /images/ency/fullsize/9494.jpg

#### convey the values of science

- Contextualizes research in the field
- Provides a repeatable methodology
- Forces writer to speak from the data
- Forces writer to separate results from opinions

# The form also conveys function needed by readership

- Scientific readers maximize potential of the form when they read.
- Makes it is easy to locate data & compare experiments (methods, etc.)
- Easy to write? No
- Easy to read? Yes. Optimized for reading
- Document design and use of figures conveys ethos of scientist.



Known as the IMRaD Format

# Many writers start off using the outlining approach to writing



# Try the storyboarding approach instead

A "movie-making" approach to writing

Each section of report is a "scene"

| Abstract Intro | duction <b>M</b> ethods | Results | Discussion | Conclusion |
|----------------|-------------------------|---------|------------|------------|
|----------------|-------------------------|---------|------------|------------|

# Try the storyboarding approach instead

#### A "movie-making" approach to writing



## Try the storyboarding approach instead

#### A "movie-making" approach to writing



Lab report is built around Results data

How do you make a movie of your data?

# Step 1: Organize your data

#### Start with figures:

300

- · Assemble hard copies of your figures in a "storyboard"
- Figure out the major technical theme of the report
- Assess how each figure contributes to the major theme
- REVISE figures to focus on the major theme (develop figures that summarize that major theme)



- citizes are clateros mariera (separated by 250 µm)
- blue dye in left channel, to dye in right channel
   blurring of dye is center.
- bluring of dye is center secula from diffusion

| Characterizing Concernations                     |  |
|--------------------------------------------------|--|
|                                                  |  |
| -l. a max                                        |  |
| 124) <u>/</u>                                    |  |
|                                                  |  |
| nin 👘                                            |  |
| j j <sub>atopo</sub> L                           |  |
| 0 100 200 300 400 500 600                        |  |
| Pixel Number                                     |  |
|                                                  |  |
| <ul> <li>brightness measured through</li> </ul>  |  |
| center row of excepte image                      |  |
| <ul> <li>brightness togest shere no</li> </ul>   |  |
| dye absorbe light                                |  |
| <ul> <li>characterize bianation width</li> </ul> |  |

by measuring minimum, maximum,

and stops

| 04          | 115.0 | 241.3  | o 684 | 75.42  |
|-------------|-------|--------|-------|--------|
| 2           | 120.6 | 2238.0 | 0.547 | 94.80  |
| 88          | 126.0 | 217.5  | 0.449 | 111.75 |
| 4           | 120.5 | 209.5  | 0.379 | 122.44 |
| 1.5         | 124.1 | 202.0  | 0.333 | 150.88 |
| 6           | 135.0 | 197.5  | 0.294 | 170.43 |
| $\sim \tau$ | 139.9 | 109.5  | 0.245 | 304.93 |
| 18 - E      | 142.0 | 184.8  | 0.210 | 228.30 |
| <u></u>     | 144.2 | 184.6  | 0.193 | 259.52 |
| :40         | 145.8 | 160.7  | 0.188 | 206.20 |
| .11         | 147.9 | 179.0  | 0.150 | 320.40 |
| 32          | 149.5 | 170.7  | 0.122 | 411.85 |
| 13          | 150.2 | 175.5  | 0.108 | 452.03 |
| 14          | 151.3 | 173.3  | 0.099 | 304.47 |
| 3.5         | 152.5 | 172.0  | 0.090 | 384.74 |
| -16         | 153.3 | 171.2  | 0.082 | 009.39 |



- with increases off square tool of distance for small distances.
   -> cots intent with theory from data
- with increases with square of distance for large distances -> inconsistent with theory from class.
  - -+ perhaps due to "edge effects" from sideaulis

# Say it in Pictures

Image removed due to copyright restrictions. Please see http://www.anl.gov/Careers/Education/rube/Images/rube\_back.gif

# Again, say it in pictures

J.-S. Plante et al. / Precision Engineering 29 (2005) 336-346



Fig. 4. From the physical system to the 1D model differential element.

339

### **Step 2: Plan the report**

After you've got your data, consider if it's appropriate "screenplay" for your audience and venue:

- Who is the <u>audience</u>? technical expertise level of interest personal familiarity
- How much <u>space</u> do you have?
   2-3 pages? 10 pages?
   Can Results be combined with Discussion?
   Do I need a Theory section?
   How much background information to motivate study?

# **Step 3: Write in non-linear sequence**

- What was the purpose of the project? What were the Results?
- Readers read Results first, so start there.
- "plug and play" other sections.
- Make sure you have accurate lab notebook



Use storyboard as the "backbone" of your report/presentation

### **Step 4: Continue building the report**



Add Discussion, Introduction, & Conclusion around the Methods and Results

Check for coherence between and across sections

# General Design Strategy

## Modularity

- Autonomous sections
- Chunking
  - use of white space
- Hierarchy
  - Section levels
  - Use only 3 levels
- Use of levels of abstraction
  - Move from overview to specifics

### **Step 5: Add End/Front Matter**



# Abstract

### Informative abstract summarizes

- problem
- constraints
- essential elements of design solution

Do not write a **descriptive abstract** that just lists the parts of the paper

# Abstract template

- What is the problem?
- What are the general and important design constraints and specifications?
- What are the essential elements of the design solution?
- What important conclusions can be drawn from the design?

# Step 6: All the Good Stuff: Edit, Peer Review, Bake, Revise, Edit, & Proofread

**Check the** 

figures!

# and ... Submit!

1. Revise for completeness

Is all relevant information included? Where might readers have questions?

- Revise for organization and document design
   Is each section divided logically using subheadings?
   Does the information link clearly across sections?
   Do the figures support the text?
- 3. Edit for **prose style**

Are there irrelevant sentences, sections, plots? Can you read the report aloud without verbally stumbling?

# Editing the Paper

- Are the sentences clear and easy to read?
- Is the language grammatically correct?
- Read it aloud
- Cut out needless words
  - Text is like code
    - Less is more

# The grammar of scientific communication also follows its function

Because science readers do not read chronologically and skim, the grammar of science is:

- Prose that is not laden with jargon or vague expressions
- Simple sentence structure S V O
- Provides links between text and visuals e.g., "As shown in Figure 2 . .."
- Provides time reference (e.g., Methods past tense)
- Distances subjectivity of the researcher (e.g., passive voice)
- Unambiguous prose It = ??, This = ??

# Omit Needless Words

- The question as to whether . . .
  - Whether . . .
- There is no doubt
  - No doubt
- In an interactive manner
  - Interactively
- This is an element which
  - This element
- During which time
  - while



#### Owing to the fact that

Because

# The fact that the system had not succeeded

- The system failed
- The system's failure . . .
- The fact that the packet arrived
  - The packet's arrival

# Resources

### Mayfield Handbook

- http://www.mhhe.com/mayfieldpub/tsw/toc.htm
- Writing and Communication Center
  - http://web.mit.edu/writing/