Added Mass Force Formulation

Prof. A. Techet

Added Mass Tensor

A good way to think of the added mass components, $m_{i j}$, is to think of each term as mass associated with a force on the body in the $i^{\text {th }}$ direction due to a unit acceleration in the $j^{\text {th }}$ direction.

$$
\underline{F}=\left[\begin{array}{llllll}
m_{11} & m_{12} & m_{13} & m_{14} & m_{15} & m_{16} \\
m_{21} & m_{22} & m_{23} & m_{24} & m_{25} & m_{26} \\
m_{31} & m_{32} & m_{33} & m_{34} & m_{35} & m_{36} \\
m_{41} & m_{42} & m_{43} & m_{44} & m_{45} & m_{46} \\
m_{51} & m_{52} & m_{53} & m_{54} & m_{55} & m_{56} \\
m_{61} & m_{62} & m_{63} & m_{64} & m_{65} & m_{66}
\end{array}\right]\left(\begin{array}{c}
\dot{u}_{1} \\
\dot{u}_{2} \\
\dot{u}_{3} \\
\dot{u}_{4} \\
\dot{u}_{5} \\
\dot{u}_{6}
\end{array}\right)
$$

$\underline{F}=F_{i}$, where $i=\underbrace{1,2,3}_{\begin{array}{c}\text { Linear } \\ \text { Forces }\end{array}}, \underbrace{4,5,6}_{\text {Moments }}$
$\dot{u}_{i}=\left[\dot{u}_{1}, \dot{u}_{2}, \dot{u}_{3}, \dot{u}_{4}, \dot{u}_{5}, \dot{u}_{6}\right]$ added mass matrix $\left[m_{a}\right.$] $m_{i j}$ where $i, j=1,2,3,4,5,6$

Vector Velocity

Velocities:

$$
\begin{gathered}
\text { Translation Velocity }: \vec{U}(t)=\left(U_{1}, U_{2}, U_{3}\right) \\
\text { Rotational Velocity }: \vec{\Omega}(t)=\left(\Omega_{1}, \Omega_{2}, \Omega_{3}\right) \equiv\left(U_{4}, U_{5}, U_{6}\right)
\end{gathered}
$$

All rotation is taken with respect to Origin of the coordinate system (often placed at the center of gravity of the object for simplicity!).

Accelerations:

$$
\dot{u}_{i}=\left[\dot{u}_{1}, \dot{u}_{2}, \dot{u}_{3}, \dot{u}_{4}, \dot{u}_{5}, \dot{u}_{6}\right]
$$

Added Mass Forces and Moments

Forces: (force in the $j^{\text {th }}$ direction). $(i=1,2,3,4,5,6$ and $j, k, l=1,2,3)$

$$
F_{j}=-\dot{U}_{i} m_{i j}-\varepsilon_{j k l} U_{i} \Omega_{k} m_{l i}
$$

Moments: $(i=1,2,3,4,5,6$ and $j, k, l=1,2,3)$

$$
M_{j}=-\dot{U}_{i} m_{j+3, i}-\varepsilon_{j k l} U_{i} \Omega_{k} m_{l+3, i}-\varepsilon_{j k l} U_{k} U_{i} m_{l i}
$$

Tensor Notation

The alternating tensor $\varepsilon_{j k l}$

$$
\varepsilon_{j k l}=\left\{\begin{array}{cc}
0 ; & \text { if any } j, k, l \text { are equal } \\
1 ; & \text { if } j, k, l \text { are in cyclic order } \\
-1 ; & \text { if } j, k, l \text { are in anti-cyclic order }
\end{array}\right.
$$

Einstein Summation

$$
F_{j}=-\dot{U}_{i} m_{i j}-\varepsilon_{j k l} U_{i} \Omega_{k} m_{l i}
$$

Sum up the terms for all i,j,k,l options: $(i=1,2,3,4,5,6$ and $j, k, l=1,2,3)$

For example take: $j=1$ for the Force in the 1-direction (x-component) Sum over all $i=1: 6$:

$$
\begin{aligned}
\underbrace{F_{1}=}_{j=1} & -\underbrace{\dot{U}_{1} m_{11}}_{i=1}-\underbrace{\dot{U}_{2} m_{21}}_{i=2}-\underbrace{\dot{U}_{3} m_{31}}_{i=3}-\underbrace{\dot{U}_{4} m_{41}}_{i=4}-\underbrace{\dot{U}_{5} m_{51}}_{i=5}-\underbrace{\dot{U}_{6} m_{61}}_{i=6} \\
& -\underbrace{\varepsilon_{1 k l} U_{1} \Omega_{k} m_{l 1}}_{i=1}-\underbrace{\varepsilon_{1 k l} U_{2} \Omega_{k} m_{l 2}}_{i=2}-\underbrace{\varepsilon_{1 k l} U_{3} \Omega_{k} m_{l 3}}_{i=3}-\underbrace{\varepsilon_{1 k l} U_{4} \Omega_{k} m_{l 4}}_{i=5} \\
& -\underbrace{\varepsilon_{1 k l} U_{5} \Omega_{k} m_{l 5}}_{i=4}-\underbrace{\varepsilon_{1 k l} U_{6} \Omega_{k} m_{l 6}}_{i=5}
\end{aligned}
$$

for $k, l=1,2,3$
Next consider $k=1,2,3$ then $\mathrm{I}=1,2,3 \rightarrow$

For
 $k=1,2,3$

$$
\varepsilon_{j k l}=\left\{\begin{array}{cc}
0 ; & \text { if any } j, k, l \text { are equal } \\
1 ; & \text { if } j, k, l \text { are in cyclic order } \\
-1 ; & \text { if } j, k, l \text { are in anti-cyclic order }
\end{array}\right.
$$

Since we are considering the F_{1} component where $\mathrm{j}=1$, then all terms with ε in them where $\mathrm{j}=\mathrm{k}=1$ will be zero. So there is no reason to consider $\mathrm{k}=1$ here. So we just sum up the terms where $k=2$ and $k=3$:

$$
\underbrace{F_{1}}_{j=1}=-\underbrace{\dot{U}_{1} m_{11}}_{i=1}-\underbrace{\dot{U}_{2} m_{21}}_{i=2}-\underbrace{\dot{U}_{3} m_{31}}_{i=3}-\underbrace{\dot{U}_{4} m_{41}}_{i=4}-\underbrace{\dot{U}_{5} m_{51}}_{i=5}-\underbrace{\dot{U}_{6} m_{61}}_{i=6} \quad \text { iame as before) }
$$

Let: $\mathrm{k}=2$
$\underbrace{-\underbrace{\varepsilon_{12} U_{1} \Omega_{2} m_{l 1}}_{i 2 l}-\underbrace{\varepsilon_{12 l} U_{2} \Omega_{2} m_{l 2}}_{i=2}-\underbrace{\varepsilon_{12 l} U_{3} \Omega_{2} m_{l 3}}_{i=3}-\underbrace{\varepsilon_{12 l} U_{4} \Omega_{2} m_{l 4}}_{i=4}-\underbrace{\varepsilon_{12 l} U_{5} \Omega_{2} m_{l 5}}_{i=5}-\underbrace{\varepsilon_{12 l} U_{6} \Omega_{2} m_{l 6}}_{i=6}}_{i=1}$
Next Let: $\mathrm{k}=3$
$\underbrace{-\underbrace{\varepsilon_{13 l} U_{1} \Omega_{3} m_{l l}}_{k=3}-\underbrace{\varepsilon_{13 l} U_{2} \Omega_{3} m_{l 2}}_{i=2}-\underbrace{\varepsilon_{13 l} U_{3} \Omega_{3} m_{l 3}}_{i=3}-\underbrace{\varepsilon_{13 l} U_{4} \Omega_{3} m_{l 4}}_{i=4}-\underbrace{\varepsilon_{13 l} U_{5} \Omega_{3} m_{l 3}}_{i=5}-\underbrace{\varepsilon_{13 l} U_{6} \Omega 3 m_{l 6}}_{i=6}}_{i=1}$

Next look at
 $$
\varepsilon_{j k l}=\left\{\begin{array}{c} 0 \\ 1 \\ -1 \end{array}\right.
$$
 if any j, k, l are equal
 if j, k, l are in cyclic order $l=1,2,3$ -1 ; if j, k, l are in anti-cyclic order

Since we are considering the F_{1} component where $\mathrm{j}=1$, then all terms with \boldsymbol{e} in them where $j=l=1$ will be zero. So there is no reason to consider $l=1$ here. So we just sum up the terms where $l=2$ and $l=3$:

$$
\underbrace{F_{1}}_{j=1}=-\underbrace{\dot{U}_{1} m_{11}}_{i=1}-\underbrace{\dot{U}_{2} m_{21}}_{i=2}-\underbrace{\dot{U}_{3} m_{31}}_{i=3}-\underbrace{\dot{U}_{4} m_{41}}_{i=4}-\underbrace{\dot{U}_{5} m_{51}}_{i=5}-\underbrace{\dot{U}_{6} m_{61}}_{i=6} \quad \text { (same as before) }
$$

Let: $\boldsymbol{l}=3 \quad$ Note that any term where $k=l$ then ε is zero
$\underbrace{-\underbrace{\varepsilon_{123} U_{1} \Omega_{2} m_{31}}_{i=2}-\underbrace{\varepsilon_{123} U_{2} \Omega_{2} m_{32}}_{i=3}-\underbrace{\varepsilon_{123} U_{3} \Omega_{2} m_{33}}_{i=3}-\underbrace{\varepsilon_{123} U_{4} \Omega_{2} m_{34}}_{i=4}-\underbrace{\varepsilon_{123} U_{5} \Omega_{2} m_{35}}_{i=5}-\underbrace{\varepsilon_{123} U_{6} \Omega_{2} m_{36}}_{i=6}}_{i=1}$
Next Let: I = 2
$\underbrace{-\underbrace{\varepsilon_{132} U_{1} \Omega_{3} m_{21}}_{k=3 ; i=2}-\underbrace{\varepsilon_{132} U_{2} \Omega_{3} m_{22}}_{i=2}-\underbrace{\varepsilon_{132} U_{3} \Omega_{3} m_{23}}_{i=3}-\underbrace{\varepsilon_{132} U_{4} \Omega_{3} m_{24}}_{i=4}-\underbrace{\varepsilon_{132} U_{5} \Omega_{3} m_{25}}_{i=5}-\underbrace{\varepsilon_{132} U_{6} \Omega 3 m_{26}}_{i=6}}_{i=1}$

Total Force:

$$
\begin{aligned}
F_{i=1}^{F_{1}}= & -\underbrace{\dot{U}_{1} m_{11}}_{i=1}-\underbrace{\dot{U}_{2} m_{21}}_{i=2}-\underbrace{\dot{U}_{3} m_{31}}_{i=3}-\underbrace{\dot{U}_{4} m_{41}}_{i=4}-\underbrace{\dot{U}_{5} m_{51}}_{i=5}-\underbrace{\dot{U}_{6} m_{61}}_{i=6} \\
& \underbrace{\varepsilon_{123} U_{1} \Omega_{2} m_{31}}_{i=2, i l=3}-\underbrace{\varepsilon_{123} U_{2} \Omega_{2} m_{32}}_{i=1}-\underbrace{\varepsilon_{123} U_{3} \Omega_{2} m_{33}}_{i=2}-\underbrace{\varepsilon_{123} U_{4} \Omega_{2} m_{34}}_{i=3}-\underbrace{\varepsilon_{123} U_{5} \Omega_{2} m_{35}}_{i=4}-\underbrace{\varepsilon_{123} U_{6} \Omega_{2} m_{36}}_{i=5} \\
& \underbrace{\underbrace{\varepsilon_{132} U_{1} \Omega_{3} m_{21}}_{i=1}-\underbrace{\varepsilon_{132} U_{2} \Omega_{3} m_{22}}_{i=3}-\underbrace{\varepsilon_{132} U_{3} \Omega_{3} m_{23}}_{i=2}-\underbrace{\varepsilon_{132} U_{4} \Omega_{3} m_{24}}_{i=3}-\underbrace{\varepsilon_{132} U_{5} \Omega_{3} m_{25}}_{i=4}-\underbrace{\varepsilon_{132} U_{6} \Omega 3 m_{26}}_{i=5}}_{i=6}
\end{aligned}
$$

On the second row of the equation above, the indices of the alternating tensor, $\varepsilon_{j k l}$, are in cyclic order $j k l=123\left(\varepsilon_{123}=+1\right)$. In the third row, the indices are in anti (or reverse) cyclic order: $\varepsilon_{132}=-1$ where $j k l=132$.

Example

Example: For a body moving in the fluid with velocity

$$
\begin{aligned}
& \vec{V}=(1,0,1,0,0,1)=\left(U_{1}, 0, U_{3}, 0,0, U_{6}\right)=\left(U_{1}, 0, U_{3}, 0,0, \Omega_{3}\right) \\
& \vec{a}=(1,0,0,0,0,1)=\left(\dot{U}_{1}, 0,0,0,0, \dot{U}_{6}\right)
\end{aligned}
$$

The force in the x-direction is F_{1}
First substitute " 1 " for every instance of j

$$
F_{j=1}=F_{1}=-\dot{U_{i}} m_{i 1}-\varepsilon_{1 k l} U_{i} \Omega_{k} m_{l i}
$$

Next we need to "cycle" through the possible values for $i(i=1,2,3,4,5,0$)
Only need to look at values of $i=1,3,6$

Force becomes:

$$
F_{1}=-\underbrace{\dot{U}_{1} m_{11}}_{i=1}-\underbrace{\dot{U}_{6} m_{61}}_{i=6}-\underbrace{\varepsilon_{1 k l} U_{1} \Omega_{k} m_{l 1}}_{i=1}-\underbrace{\varepsilon_{1 k l} U_{3} \Omega_{k} m_{l 3}}_{i=3}-\underbrace{\varepsilon_{1 k l} U_{6} \Omega_{k} m_{l 6}}_{i=6}
$$

Now look at the k-index: $(k \neq j \therefore k=2,3)$
Since velocity is $\bar{V}=(1,0,1,0,0,1)$ then $\Omega_{2}=0$ and $\Omega_{3} \neq 0$ so we only have to deal with $k=3$
Now the only non-zero terms are for $l=2$ therefore

$$
\begin{aligned}
F_{1}= & -\underbrace{\dot{U}_{1} m_{11}}_{i=1}-\underbrace{\dot{U}_{6} m_{61}}_{i=6} \\
& -\underbrace{\varepsilon_{132}^{U_{1} \Omega_{3} m_{21}}-\underbrace{\varepsilon_{132} U_{3} \Omega_{3} m_{23}}_{i=3}-\underbrace{\varepsilon_{132} U_{6} \Omega_{3} m_{26}}_{i=6}}_{i=1}
\end{aligned}
$$

Slender Body

Slender body oriented with the long axis in the 1-direction.

2D cross-sectional slice of slender body.

Added Mass Matrix

	1	2	3	4	5	6
1						
2		$m_{22}=\int_{L} a_{22} d x$	$m_{23}=-\int_{L} a_{23} d x$	$m_{24}=\int_{L} a_{24} d x$		$m_{26}=\int_{L} x a_{22} d x$
3			$m_{33}=\int_{L} a_{33} d x$		$m_{35}=-\int_{L} x a_{33} d x$	
4			$m_{44}=\int_{L} a_{44} d x$		$m_{46}=\int_{L} x a_{24} d x$	
5					$m_{55}=\int_{L} x^{2} a_{33} d x$	
6						$m_{66}=\int_{L} x^{2} a_{22} d x$

The 2D coefficients will be written as $a_{i j}$ whereas the 3D coefficients are written as $m_{i j}$.

Figure removed for copyright reasons. Please see:
Table 4.3 in
Newman, J. "Added-Mass Coefficients for Various Two Dimensional Bodies." In Marine Hydrodymanics. Cambridge MA: MIT Press, 1977. ISBN: 0262140268.

