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2.016 Hydrodynamics 
Prof. A.H. Techet 

Introduction to basic principles of fluid mechanics 

I. Flow Descriptions 

1. Lagrangian (following the particle): 

In rigid body mechanics the motion of a body is described in terms of the body’s position 
in time. This body can be translating and possibly rotating, but not deforming. This 
description, following a particle in time, is a Lagrangian description, with velocity vector 

 
= V u  i  + v j + w  z  . (3.1) 

Using the Lagrangian approach, we can describe a particle located at point
x = ( ,x y  , z )  for some time t = to, such that the particle velocity is  o o o o 

 ∂xV =
∂t 

, (3.2) 

and particle acceleration is 
 ∂V a = . (3.3)

∂t 
 

We can use Newton’s Law of motion ( F = ma  ) on the body to determine the acceleration 
and thus, the velocity and position.  However, in fluid mechanics, it is difficult to track a 
single fluid particle. But in the lab we can observe many particles passing by one single 
location. 

2. Eulerian (observing at one location): 

In the lab, we can easily observe many particles passing a single location, and we can 
make measurements such as drag on a stationary model as fluid flows past.  Thus it is 
useful to use the Eulerian description, or control volume approach, and describe the flow 
at every fixed point in space (x y z)  as a function of time, t ., ,
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Figure 1: An Eulerian description gives a velocity vector at every point in x,y,z as a 
function of time.  
 
 
In an Eulerian velocity field, velocity is a function of the position vector and time, 

( , )V x t .  For example:  

 2 2( , ) 6 3 10V x t tx i zy j xyt z= + +  

3. Reynolds Transport Theorem (the link between the two views): 
 
In order to apply Newton’s Laws of motion to a control volume, we need to be able to 
link the control volume view to the motion of fluid particles.  To do this, we use the 
Reynolds Transport Theorem, which you’ll derive in graduate fluids classes, like 2.25.  
Suffice it to say that the theorem exists.  For this class, we’ll use control volumes to 
describe fluid motion.   
 

4. Description of Motion:  
 
Streamlines:  Line everywhere tangent to velocity (Eulerian) (No velocity exists 
perpendicular to the streamline!) 
 
 
 
 
 
Streaklines: instantaneous loci of all fluid particles that pass through a given point xo. 
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Particle Pathlines: Trajectory of fluid particles (“more” lagrangian) 

In steady flow stream, streak, and pathlines are identical!! (Steady flow has no time 
dependence.) 

II. Governing Laws 

The governing laws of fluid motion can be derived using a control volume approach. 
This is equivalent to a “fluidic black box” where all we know about the flow is what is 
going in and what is coming out of the control volume: mass, momentum, and energy. 
The control volume (CV) can be fixed or move with the fluid.  For simplicity it is often 
ideal to fix the CV, but this does not always provide the easiest solution in all cases.  For 
most of this class the CV will be fixed.  

When analyzing a control volume problem there are three laws that are always true:  

1. Conservation of Mass 
2. Conservation of Momentum 
3. Conservation of Energy 

1. Conservation of Mass:

Basic fluid mechanics laws dictate that mass is conserved within a control volume for 
constant density fluids. Thus the total mass entering the control volume must equal the 
total mass exiting the control volume plus the mass accumulating within the control 
volume. 

mass in – mass out = mass accumulating 

 min − mout = m (3.4)acc 

Let us consider three cases: 
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Case I: 

In control volume 1, water is poured into a tub with a drain. The mass flow rate into the 
tub is min = ρ V  A in . Similarly, the mass flow rate out of the tub is m out = ρ Vout A out . If the in 

mass flow rate in is greater than the mass flow rate out, water will accumulate in the tub. 
If the mass flow rate out is greater, then the tub will drain.  If the two are equal, then no 
water will accumulate in the tub.  Think about it next time you’re in the shower! 

Case II: 

Control Volume 2 is a section of a pipe full of water.  Since the CV is full, the only way 
more mass can accumulate is if it becomes denser.  Remember, in this class, we treat 
water as incompressible, so the density cannot change and we never have mass 
accumulating in a full control volume.  Thus, the mass flow rate in equals the mass flow 
rate out. Furthermore, since CV2 is drawn in a pipe of constant area, then the velocity in 
must equal the velocity out.  For an incompressible fluid, there is no change in velocity 
through a pipe of constant area! 
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Case III: 


Let’s now consider a general control volume immersed in a fluid: 


We can write a 2D mass balance equation for the fluid entering and exiting the control 
volume.  

 −mout = m (3.5)min acc 

∂u ∂vρudydz +ρvdxdz −ρ(u + dx)dydz −ρ(v + dy)dxdz = 0 (3.6)
∂x ∂y 

∂u
−ρ dxdydz −ρ ∂v dydxdz = 0 (3.7)

∂x ∂y 

Which simplifies to, 
∂u ∂v

+ = 0  (3.8)
∂x ∂y 

In three dimensions, the derivation is the same, and we have:  

∂u ∂v ∂w
+ + = 0  (3.9)

∂x ∂y ∂z 

∂ ∂or in vector notation, recalling the gradient operator: ∇ = ( ∂ , ∂y , ∂z ) , we have∂x 

 
∇⋅V = 0 (3.10) 
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2. Conservation of Momentum:

Newton’s second law is simply the law of conservation of momentum. 


It states that the time rate of change of momentum of a system of particles is equal to the 

sum of external forces acting on that body. 

d
Σ = {MV} (3.11)Fi dt 

where M = ρ x z  is the mass of the fluid parcel (in two dimensions, ie mass per unit δ δ  
length) and MV  is the linear momentum of the system (V is the velocity vector). Since 
the fluid density is constant, the time-rate of change of linear momentum can be written 
as 

d x{MV} = ρδ δ z dV 
. (3.12)

dt dt 

The rate of change of velocity of the fluid parcel can be found, for small δ t , as 

dV 
= 

lim  1 {V (x +δ x z  +δ z ,  +δ t p ) −V(x  z  t  )} (3.13)
dt δ t → 0 δ t p , p t ,  ,  

δ δWe can substitute, δ xp = u t  , and, δ zp = w  t  , into equation (3.13) and cancel terms to 
arrive at a more familiar form of the momentum equation.  

The total derivative of the velocity is written as: 

DV = ∂V + ∂V u + ∂V w (3.14)Dt ∂t ∂x ∂z 

which can be simplified using the vector identity, 

V ⋅∇ =  u 
∂
∂ 
x + v 

∂
∂ 
y + w ∂ (3.15)

∂z 
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The total (material) derivative of the velocity is the sum of the conventional 
∂acceleration, V , and the advection term, (V ⋅∇)V : 
∂t 

DV ∂V 
= + (V ⋅∇)V. (3.16)

Dt ∂t 

Finally, the momentum equation, from equation (3.11), can be rewritten in two 
dimensions as  

DV
Σ = ρ δ δ z . (3.17)Fi x

Dt 

3. Forces

The LHS of equation (3.17) is the sum of the forces acting on the control volume. 
Contributions from gravity and pressure both play a role in this term as well as any 
applied external forces. These forces are found as follows:  

1. Force on a fluid volume due to gravity: 

) ˆF = −(ρ δ δ  g x z  k  (3.18)g

2. Pressure Forces due: Force due to pressure is simply pressure times the surface area it 
acts on 

⋅FP = P  A  . (3.19) 

The pressure force in x-direction is 

⎛ ⎞ xFPx =
⎛ p + 1 ∂p δ z ⎟

⎞δ z − ⎜ p + 1 ∂p δ z + ∂p δ  δ  z = − ∂p δ δ  z (3.20)⎜
⎝ 2 ∂z ⎠ ⎝ 2 ∂z ∂x

x ⎟
⎠ ∂x 

and the pressure force in z-direction is 

FPz = −
∂p δ xδ z . (3.21)
∂z 
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Thus the total pressure force in two dimensions is 

∂ 
, xFP = −(∂p p )δ xδ z = −∇  pδ δ  z. (3.22)

x z∂ ∂

4. Euler Equation

Substituting relations (3.18) and (3.22) for the gravity and pressure forces acting on the 
body, into the momentum equation (3.17) we arrive at  

⎫ x g x z  k  −∇  pδ δ  ρ ⎧⎨
∂V 

+ (V ⋅∇  )V⎬δ δ z = (−ρ δ δ  ) ˆ x z  (3.23)
⎩ ∂t ⎭ 

for any δ x,δ z . The final result is the Euler equation in vector form:  

⎫ρ ⎧⎨
∂V 

+ (V ⋅∇)V⎬ = −ρgk̂ −∇  .  (3.24)
⎩ ∂t ⎭ 

p 

We can further manipulate this equation with the vector identity  

(V ⋅∇)V = 1 ∇(V  V  ) , (3.25)⋅ 2 

such that the Euler equation becomes  

⎫ρ ⎨
⎧∂V 

+ 
1 
∇(V V)⎬ = −ρgk̂ −∇  .  (3.26)⋅ 

⎩ ∂t 2 ⎭ 
p 
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5. Bernoulli’s Equation:

Application of Newton’s Second Law along a streamline: 

1
2 

2 1
2 

2p + ρV1 + ρgz  = p + ρV2 + ρgz  = C (3.27)1 1 2 2 

 Assuming the following conditions: 

1) Points 1 and 2 are on the same streamline! 
2) Fluid density is constant  

dV3) Flow is steady: = 0 (no time dependence or turbulence)
dt 

4) Fluid is “inviscid” or can be approximated as inviscid. No frictional 
effects 

5) No Work Added! 

We can derive this through a Lagrangian derivation: 

Looking at a small elemental volume along a streamline d∀ = dn  ds  dx  (dx is the depth 
into the paper).  

Fluid weight in the (-z) direction.:  
g dn  ds  dx  ρ (3.28) 

Component of weight acting in the s-direction:  

g sin dn  ds  dx  ρ β−  (3.29) 

Where sin dz 
ds

β =  so that the weight in the s-direction is: 
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dz
−ρg  dn  ds  dx  . (3.30)

ds 

The force due to pressure in the s-direction is found similarly:  

Fs = ⎜
⎛ p − ∂ p ⎞ ⎛ ∂ p  ds  ⎞ ⎛ ∂ p 
⎝ ∂ s ⎠⎟ 

dn dx −
⎝
⎜ p +

∂ s 2 ⎠⎟ 
dn dx =

⎝
⎜− 

∂ s 
− ρ g ∂

∂ 

z
s ⎠⎟
⎞ dn ds dx (3.31) 

The force accelerates the fluid along the streamline such that the rate of change in 
momentum, per unit volume, is  

⎛ ∂ V ⎞ 

ρ ⎜
⎜ V +

∂ s 
ds  − V ⎟ ∂ V 

⎟ = ρ V (3.32) 
⎜ dt ⎟ ∂ s

⎝ ⎠


∂ s
where V = . 
∂ t 

So Euler’s equation in one dimension along a streamline becomes: 

∂ Vρ V +
∂ p 

+ ρ g ∂ z 
= 0 . (3.33)

∂ s ∂ s ∂ s 

Change in Pressure along a streamline:  dp = ∂ p ds 
∂ s 
∂ VChange in Velocity along a streamline: dV = ds 
∂ s 

∂ zChange in height along a streamline: dz = ds 
∂ s 

Multiplying equation 23 through by ds gives us 

ρ V dV  + dp  + ρ g  dz  = 0 (3.34) 

dp 
+ V dV  + g  dz  = 0 (3.35)

ρ 

If density is constant along the streamline then we can integrate along the streamline to 
get: 
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p 
+ 1

2 V 2 + g  z  = C
ρ 

Along a streamline Bernoulli’s equation relates pressure, height and velocity at two 
points: 

p1 2+ 1
2 V1

2 + g  z  = 
p 

+ 1
2 V2

2 + g  z  = C (3.36)1 2ρ ρ 

This equation also assumes that NO additional heat or work is added to the system along 
the streamline.   

6. Irrotational flow

An irrotational flow is defined as a flow for which each and every fluid particle is not 
rotating.  Mathematically speaking, the curl of the velocity is identically zero.  

î ĵ k̂ 

x 
ω 

∂
= ∇  ×  =  

∂ 
V

y 
∂ 

∂ 
0 

z 
∂ 

= 
∂ 

 (3.37) 

u v w 

∂ v ∂ w ∂ uω = î ( ∂ w 
− ) + ĵ( ∂ u 

− ) + k̂( ∂ v 
− ) = 0.  (3.38) 

∂ y ∂ z ∂ z ∂ x ∂ x ∂y 

For 2D flow this reduces to ∂ u = ∂ w .
∂ z ∂ x 
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