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Some Major Considerations
• Hydrostatic pressure
• Heat dissipation in housings
• Waves
• Forces on bodies in steady flow

• But don’t forget:  
wind and rain, corrosion, biofouling, material fatigue, 

creep, chemical breakdown, human safety, 
regulations, etc.
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Steel 200e9 550e6 4400 8000
Aluminum 70e9 480e6 22000 2700

Titanium 100e9 1400e6 1500 4900

Glass 70e9 <35000e6 
(compression!)

100 2600

ABS Plastic 1.3e9 34e6 LOW ~1100

Mineral oil - 17 ~900

Water 2.3e9 - 60 1000

Young’s 
Modulus,
Pascals

Ultimate
Strength, 
Pascals

Coefficient of 
thermal 
conductivity, 
W m / m2 oK

Density, 
kg/m3
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Wave Fields
Definition:
SeaState Height (ft)        Period (s)      Wind (knots)

2 1                        7                         9
3                  3                        8                   14
4                  6                        9                   19
5                 11                     10                     24
6                 16                     12                     37
7                 25                     15                     51

Distribution:
30% of world oceans are at  0-1m height
41%                                       1-2m 
17%                                       2-3m
6%                                       3-4m
2%                                       4-5m

Wave height H1/3
Significant wave:  
Average of one-third 
highest waves

Wave fields depend on 
storms, fetch, topography
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Linear Wave Theory 
(deepwater)

Wave elevation:


 

= 

 

cos( t  – k x ) where   


 

is amplitude    


 

is frequency in rad/s :   period        T = 2
k is wavenumber in rad/m :  wavelength 

 

= 2/k

Dispersion Relation:      k = 2 / g

Wave speed:                 V = 

 

/ k

Particle velocities:         u  = k 

 

V e-kz cos ( 

 

t – k x)
w = k 

 

V e-kz sin (

 

t – k x) where z is depth

Fluctuating pressure:    p = 

 

g e-kz cos ( 

 

t – k x )


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Short-Term Statistics of Extreme Waves

• Average of one-third highest waves is significant 
wave height Hsig or H1/3 = 4 

• An observer will usually report H1/3

• H1/10 = 1.27 * Hsig

• Expected maxima: N = 100;   1.6 * H1/3

N = 1000 ; 1.9 * H1/3

N = 10000 ; 2.2 * H1/3



Massachusetts Institute of Technology 2.017

Principles of Naval Architecture, E.V. Lewis, ed., SNAME, 1989.
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Seven components an =[1 2 3 3 2 2 1] at n ~[1 2 3 4 5 6 7]rad/s

significant amplitude

absolute maximum (14)
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Hsig is 
~5m
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Likelihood of a wave 
> 15m height is 
0.1%

Likelihood of a wave 
> 30m height is 

0.00003%

The 100- 
year 
wave
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Vehicles:  Some Basic Catagories

• Streamlined vs. Bluff Bodies
– Bluff:  Cylinders, blocks, higher drag, lower 

lift, large-scale separation and wake
– Streamlined:  airplanes and ship hulls,  

Lower drag but higher lift, avoids separation 
to minimize wake

– Tradeoff in Directional Stability of the body:  
• A fully streamlined fuselage/fairing is 

unstable.
• Drag aft adds stability, e.g., a bullet
• Wings aft add stability, e.g., fins, stabilizers
• Wings forward decrease stability, but 

improve maneuverability.

• Turbulent vs. Laminar flow
• High- vs. low-speed flow
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Concept of Drag, Lift, Moment (2D)

Flow U

Lift (normal 
to the flow)

Drag (parallel to the flow)

F

r
Moment = r X F 
depends on location 
of body frame!

body 
frame

Typical nondimensionalization:

Drag =        ½ 

 

U2 A Cd ,    where A is (typically) frontal area or wetted area
Lift =           ½ 

 

U2 A Cl ,     where A is usually a planform area
Moment =   ½ 

 

U2 DL2 Cm ,  where L is characteristic body length, and D is
characteristic width (or diameter)

Center of 
Force
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Aerodynamic Center
Consider streamlined, balanced (symmetric) forms in free flight.

Aerodynamic center is the location on the body of lift force  that would 
create the observed moment, e.g.,

xAC = Cm DL2 / CL A ,
referenced to the same location as for Cm

xAC

ref
Lift

Drag

• For an Odyssey-like shape, xAC is up to one body length forward 
of the nose  Extremely unstable!

• For a typical zero-camber foil section, xAC is around 20-30% of the 
chord length aft from the leading edge  more stable but 
can flutter

Flow
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Destabilizing body lift force

Stabilizing fin lift force

Center of mass

Direction of travel 
at speed U

Aerodynamic 
center without fin

Fins

Body is neutrally directionally stable if sum of moments 
about center of mass is zero:
M ~  Lbody xAC +  Lfins xfins +  Dfins xfins 

Stabilizing
Drag force 
(small)

Streamlined Vehicle Design using Aft Lifting Surfaces


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Origins of the Destabilizing 
Moment: Slender-Body Theory

Diff. lateral force on body is derivative of fluid momentum (as drawn):
F = D( ma (x) w x )/Dt = (d/dt + U d/dx) (ma (x) w x) 

Assume steady-state and uniform cross-section so all d()/dt = 0 
F = U d/dx ( ma (x) w x )

Integrate by parts to get the moment:

M = ∫
 

x F = U w [ xstern ma (xstern ) – xbow ma (xbow ) - ∫
 

ma (x) dx ] 

Derivative of property 

 

with the particle motion:
D/Dt = lim ((t+t,x+x) – (t,x)) / t

= t + x x / t (Taylor series expansion)
= t + x U 
= (d/dt + U d/dx) 

w
U

F

+x
y

-Uwm33
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Forces in steady flow
• Streamlined vs. Bluff Bodies

– Bluff:  Cylinders, blocks, higher drag, lower lift, large- 
scale separation and wake

– Streamlined:  airplanes and ship hulls,  Lower drag but 
higher lift, avoids separation to minimize wake

– Tradeoff in Directional Stability of the body:  
• A fully streamlined fuselage/fairing is unstable.
• Drag aft adds stability, e.g., a bullet
• Wings aft add stability, e.g., fins, stabilizers
• Wings forward decrease stability, but improve maneuverability.

• Turbulent vs. Laminar flow
• High- vs. low-speed flow
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Typical Drag Coefficients (frontal area)

• Square cylinder section 2.0
• Diamond cylinder section 1.6
• Thin rect. plate AR=1 1.1
• AR=20 1.5
• AR>>1 2.0
• Circular cylinder section 1.1
• Circular cylinder end on 1.0
• 1920 Automobile 0.9
• Volkswagon Bus 0.42
• Modern Automobile < 0.3
• MIT Solar Car?

Potter & Foss (1982)
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Figures from PNA

Originally published in Lewis, Edward V. Principles of Naval Architecture.
Vol. 3: Motions in Waves and Controllability. Jersey City, NJ: SNAME, 1989.
Reprinted with the permission of the Society of Naval Architects and Marine Engineers (SNAME).
http://www.sname.org/SNAME/SNAME/Publications/Books/Default.aspx
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Figure from PNA
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Vol. 3: Motions in Waves and Controllability. Jersey City, NJ: SNAME, 1989.
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Images removed due to copyright restrictions. Please see Fig. 30-33 in Hoerner,
Sighard F., and Henry V. Borst. Fluid-Dynamic Lift. Bakersfield, CA: Hoerner Fluid Dynamics.
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Recommended References

• Fluid-Dynamic Lift.  S.F. Hoerner, 1975, Hoerner Fluid 
Dynamics, Bakersfield, CA.

• Principles of Naval Architecture, Volume III (Motions in 
Waves and Controllability), E.V. Lewis, ed., 1989, 
SNAME, Jersey City, NJ.

• Fluid Mechanics, M.C. Potter and J.F. Foss, 1982, Great 
Lakes Press, Okemo, MI.

• Theory of Flight, R. von Mises, 1945, Dover, New York.
• http://naca.larc.nasa.gov/:   NACA reports on bodies and 

surfaces

http://naca.larc.nasa.gov/
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