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Concept of Mass Center for a Rigid Body

Centroid – the point about 
which moments due to 
gravity are zero:

 g mi (xg – xi) =  0 

xg = mi xi / mi = mi xi / M 

• Calculation applies to all three body axes:  x,y,z
• x can be referenced to any point, e.g., bow, 

waterline, geometric center, etc.
• “Enclosed” water has to be included in the mass 

if we are talking about inertia

G
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Center of Buoyancy
A similar differential approach with displaced mass:
xb =  i xi where i is incremental volume,


 

is total volume

Center of buoyancy is the 
same as the center of 
displaced volume: it doesn’t 
matter what is inside the 
outer skin, or how it is 
arranged.

Calculating trim of a flooded vehicle:  Use in-water weights of the 
components, including the water (whose weight is then zero and can be 
ignored).  The calculation gives the center of in-water weight.
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• For a submerged 
body, a sufficient 
condition for 
stability is that zb 
is above zg.

g

Righting arm:
h =(zb -zg )sin


Righting 
moment:
gh

G

B

Make (zb -zg ) large  the “spring” is large and:
• Response to an initial heel angle is fast (uncomfortable?)
• Wave or loading disturbances don’t cause unacceptably 

large motions
• But this is also a spring-mass system, that will oscillate 
unless adequate damping is used, e.g., sails, anti-roll planes, 
etc.
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• In most surface 
vessels, righting 
stability is 
provided by the 
waterplane area.

b


intuition: wedges

B2B1

h

l

RECTANGULAR SECTION
Geometry:
d/dx = bh + bl/2     or 
h = ( ddx – bl/2 ) / b 
l = b tan

Vertical forces:
dFG = -g d no shear)
dFB1 = g b h dx
dFB2 = g b l dx / 2

K

l/3

b/6

G



M

g
y

submerged volume d

 d

 

= Adx

slice thickness dx



Massachusetts Institute of Technology, Subject 2.017

Moment arms:
yG = KG sin yB1 = h sin 

 

/ 2  ;  yB2 = (h + l/3) sin 

 

+ b cos 

 

/ 6

Put all this together into a net moment (positive anti-clockwise):

dM/g = -KG d

 

sin

 

+ bh2 dx sin

 

/ 2 + 
b l dx [ (h+l/3) sin

 

+ b cos

 

/ 6] / 2

Linearize (sin

 

~ tan

 

~ ), and keep only first-order terms ():

dM g d  KG h / 2 b2 / 12 h
- KG + A / 2 b + b3 / 12 A 

For this rectangular slice, the sum  h / 2 + b2 / 12 h must exceed the 
distance KG for stability. This sum is called KM – the distance from 
the keel up to the “virtual” buoyancy center M.   M is the 
METACENTER, and it is as if the block is hanging from M!

-KG + KM = GM : the METACENTRIC HEIGHT

(valid until the corner 
comes out of the water)
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The Perfect Storm

G

M

R: righting arm

heel angle

R “down-flood”

How much GM is enough?  
Around 2-3m in a big boat

Note M does not 
have to stay on the 
centerline**!

damage, 
flooding, ice

Image removed due to copyright restrictions.
Please see any publicity images for The Perfect Storm,

 such as http://www.imdb.com/media/rm1041734656/tt0177971

http://www.imdb.com/media/rm1041734656/tt0177971
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Considering the Entire Vessel…

Transverse (or roll) stability is calculated using the same moment 
calculation extended on the length:
Total Moment = Integral on Length of dM(x), where (for a vessel with all 
rectangular cross-sections)
dM(x) g [ -KG(x) A(x) +  A2(x) / 2 b(x) + b3(x) / 12 dx 

First term:  Same as –g KG , if 

 

is the ship’s submerged volume, 
and KG is the value referencing the whole vessel
Second term:  Significant if d>b (equivalent to h2 b / 2)
Third term:  depends only on beam – dominant for most monohulls

Longitudinal (or pitch) stability is similarly calculated, but it is usually 
secondary, since the waterplane area is very long  very high GM
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Weight Distribution and Trim

• At zero speed, and with no 
other forces or moments, 
the vessel has B 
(submerged) or M (surface) 
directly above G.  

G
M

Too bad!

For port-stbd symmetric hulls, keep G on the centerline using a 
tabulation of component masses and their centroid locations in the 
hull, i.e.,  

 

mi yi = 0
Longitudinal trim should be zero relative to center of waterplane 
area, in the loaded condition.
Pitch trim may be affected by forward motion, but difference is 
usually only a few degrees.
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Rotational Dynamics Using the Centroid
Equivalent to F = ma in linear case is

T = Jo * d2/ dt2

where T is the sum of acting torques in roll
Jo is the rotary moment of inertia in roll,

referenced to some location O
 is roll angle (radians)

J written in terms of incremental masses mi :
Jo =  mi (yi -yo )2 OR   Jg =  mi (yi -yg )2 

J written in terms of component masses mi and their own moments of 
inertia Ji (by the parallel axis theorem) : 

Jg =  mi (yi -yg )2 +  Ji

The yi ’s give position of the centroid of each body, and Ji ’s are 
referenced to those centroids
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What are the acting torques T ?
• Buoyancy righting moment – metacentric height
• Dynamic loads on the vessel – e.g., waves, wind, movement of 

components, sloshing
• Damping due to keel, roll dampers, etc.
• Torques due to roll control actuators

An instructive case of damping D, metacentric height GM:
J d2 / dt2 = - D d /dt – GM  g  

 
OR

J d2 / dt2 +         D d /dt + GM  g  = 0 
d2 / dt2 +         a d /dt +               b = 0 
d2 / dt2 + 2  n d /dt +            n

2 = 0

A second-order stable system  Overdamped or oscillatory 
response from initial conditions
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Homogeneous Underdamped Second-Order Systems

x’’ + ax’ + bx = 0;    write as x’’ + 2n x’ + n
2x = 0

Let x = X est 

(s2 + 2n s + n
2) est = 0    OR     s2 + 2n s + n

2 = 0 
s    =     [-2n +/- sqrt(42n

2 – 4n
2)] / 2 

= n [-
 

+/- sqrt2-1)]       from quadratic equation

s1 and s2 are complex conjugates if 
 

< 1, in this case:
s1 = -n 

 
+ id , s2 = -n 

 
– id where d = n sqrt(1-2)

Recalling er+i

 

= er ( cos
 

+ i sin, we have
x = e-nt [ (X1

r + iX1
i)(cosd t + isind t) + 

(X2
r + iX2

i)(cosd t – isind t)    ]         AND
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x’ = -n x + d e-nt [ (X1
r + iX1

i)(-sind t + icosd t) + 
(X2

r + iX2
i)(-sind t – icosd t)    ]

Consider initial conditions  x’(0) = 0, x(0) = 1:
x(t=0)  = 1 means               X1

r + X2
r = 1    (real part) and

X1
i + X2

i = 0    (imaginary part)
x’(t=0) = 0 means                X1

r - X2
r = 0    (imaginary part) and

-n + d (X2
i – X1

i) = 0   (real part)

Combine these and we find that
X1

r = X2
r = ½

X1
i = -X2

i = -n / 2 d

Plug into the solution for x and do some trig:  

x = e -nt sin(d t + k) / sqrt(1-2),  where k = atan(d /n )
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= 0.0 has 
fastest rise time 
but no decay



 

= 0.2 gives 
about 50% 
overshoot



 

= 0.5 gives 
about 15% 
overshoot



 

= 1.0 gives 
the fastest 
response 
without 
overshoot



 

> 1.0 is 
slower



STABILITY REFERENCE POINTS
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LINEAR MEASUREMENTS IN STABILITY
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B

WATERLINE

THE CENTER OF 
BUOYANCY

Massachusetts Institute of Technology, Subject 2.017 Courtesy of Greg Mitchell. Used with permission.



CENTER OF BUOYANCY
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B’



B1

- The freeboard and reserve buoyancy will also change

Reserve Buoyancy

Draft

CENTER OF BUOYANCY

Freeboard

B0

Courtesy of Greg Mitchell. Used with permission.

B1



G0

KGo

G MOVES TOWARDS A WEIGHT ADDITION

MOVEMENTS IN THE CENTER OF GRAVITY

G1

KG1

Courtesy of Greg Mitchell. Used with permission.
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G MOVES AWAY FROM A WEIGHT REMOVAL

MOVEMENTS IN THE CENTER OF GRAVITY



G1

G MOVES IN THE DIRECTION OF A WEIGHT SHIFT

MOVEMENTS IN THE CENTER OF GRAVITY

Massachusetts Institute of Technology, Subject 2.017 Courtesy of Greg Mitchell. Used with permission.

G0



DISPLACEMENT = SHIP’S WIEGHT

20

B

- if it floats, B always equals G
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METACENTER
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METACENTER

B SHIFTS

M
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MOVEMENTS OF THE 
METACENTER

THE METACENTER WILL CHANGE POSITIONS IN THE 
VERTICAL PLANE WHEN THE SHIP'S DISPLACEMENT 
CHANGES

THE METACENTER MOVES IAW THESE TWO 
RULES:
1. WHEN B MOVES UP, M MOVES DOWN.
2. WHEN B MOVES DOWN, M MOVES UP.

Massachusetts Institute of Technology, Subject 2.017 Courtesy of Greg Mitchell. Used with permission.
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Righting Arm
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Righting Arm for Various Conditions
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THINGS TO CONSIDER

• Effects of: 
– Weight addition/subtraction and movement
– Ballasting and loading/unloading operations
– Wind, Icing
– Damage stability

• result in an adverse movement of G or B
• sea-keeping characteristics will change
• compensating for flooding (ballast/completely flood a 

compartment)
• maneuvering for seas/wind
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