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Fig. 8.2. Horizontally stratified ocean with horizontally moving source and receiver. The
source is moving at speed ��� and bearing

� � , while the receiver is moving at speed ��� and
bearing

� � . Vertical motion is ignored.

8.4 Doppler Shift in a Waveguide

Up to this point, we have discussed only solutions to the wave equation for stationary
problems, i.e., for the environment and source/receiver configuration fixed throughout
the duration of the propagation. However, for real sonar environments, this is not al-
ways a valid assumption. Thus, we shall demonstrate in the following that the problem
of a moving source or receiver is of broadband nature, even for a monochromatic CW
source.

It is well known that a moving source and/or receiver in free space results in a
frequency Doppler shift which is described by the simple relation obtained from a
Galilean transformation [11]. In a waveguide or stratified environment, source/receiver
motion results in a more complicated Doppler structure because of multipath phenom-
ena. Here we consider the simplest case: horizontal motion in a range-independent
waveguide environment; each horizontal wavenumber component of the acoustic field
will undergo a different Doppler shift. Previous waveguide derivations [19, 20] used
normal-mode representations for deriving the Doppler shifted field. Here we present
a simple derivation based on the spectral representation in a form which requires only
a very simple modification of an existing wavenumber integration code to incorpo-
rate the source/receiver dynamics. The spectral formulation is then translated into a
numerically tractable modal formulation.

We start with the wave equation governing the field produced by a moving source
in a horizontally stratified ocean, as shown in Fig. 8.2. As we shall see later, once the
expression for the field is found for the moving source, it is straightforwardly modified
to incorporate receiver motion. The wave equation (2.25) in cartesian coordinates,
with the right-hand-side representing a harmonic point source of time dependence
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���������
	����� and moving with a constant horizontal velocity vector � � , is

����� �������������� � �
! � � �"�#�$������!  � % �'&��"�(� � � ��)&��*�+�,� � �)-/.�021�354 (8.43)

We now apply the Fourier transform in Eq. (2.27) to arrive at the inhomogeneous
Helmholtz equation,6 � ��798��:<; � �"�#�$����=�� % �'&��*�>�,� � �@?9&����'� � � ��)- 0BA : .#1#CD3�E 5� (8.44)

where
8 : is the medium wavenumber at frequency = ,

8 : % =�F  . In the following we
will first derive the wavenumber integral representation for the solutions to Eq. (8.44),
followed by the normal mode equivalent.

8.4.1 Wavenumber Integral Representation

Because of the source motion, we do not assume the problem to be axisymmetric;
rather than the Hankel transforms used in Sec. 2.4, we use a two-dimensional Fourier
transform to reduce the spatial dimension of the Helmholtz equation. Thus, we use the
transform pair

� ��������G�=�� % ? � �"HJIK�$��G�=��)- 0DL�M�N I E � HOIP� (8.45)

� ��HJIK����G�=�� % ��RQTS�� � ? � �"������G�=��)- .�0DL M N I E � ��� (8.46)

to transform Eq. (8.44) into the depth-separated wave equation,

E � � ��HJIK����G�=��E � 7 6 8 �: � 8 �� ; � ��HOIU����G�=�� % � &��*�>�,� � ��RQVS�� � ? - 0BA : .#1).#L�M�N WYXRCZ3 E 

% � &��*�>�,� � �QVS &��[=\�]�^�_HOIa` � � �O�
(8.47)

with
8 � %cb HJI b , and where we have used the identities

?d&����'� � � ��)- .�0DLKM�N I E � � % - .#LKMeN WYX*3 � (8.48)

and �QTS ? - 0fA : .#1).#L M N W X C�3 E  % &��[=\�]�^�_HOIg` � � �O4 (8.49)
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Equation (8.47) is a standard depth-separated wave equation of the form given in
Eq. (4.3), with the solution

� ��HOIU����G�=�� % &��[=\�]�^�_HOIg` � � ���O� 8 � ����G�=��O� (8.50)

with �J� 8 � ����G�=�� being the depth-dependent Green’s function for the waveguide at fre-
quency = , satisfying Eq. (2.90), and being determined for arbitrary stratifications by
any of the methods described in Chap. 4.

The time-domain solution then follows by evaluation of the inverse Fourier trans-
forms in Eqs. (8.45) and (2.26),

� ������������ % �QVS ?9- .�0 : 3aE = ? � ��HJIK������=��)- 02L M N I E � HJIP� (8.51)

which by insertion of Eq. (8.50) reduces to

� ������������ % �QTS ? �O� 8 � ����G�� 7 HOI ` � � �)- .�0�� A21��)LKMeN WYXRCZ3[.#L�M�N I�� E � HOIP4 (8.52)

Thus, in evaluating the integral, we simply have to compute the depth-dependent
Green’s function for each wave vector H I at the frequency

= % � 7 HJI ` � � 4 (8.53)

Equation (8.53) represents the Doppler frequency shift for each wavenumber compo-
nent of the field resulting from a moving harmonic source. Now, it is clear that since
the expression in Eq. (8.52) represents the field at all range vectors � , we can straight-
forwardly modify it to include the receiver motion. Thus, the range vector for a re-
ceiver at position �	� at time  %�
 , and moving with a velocity vector � � , is given by� % ��� 7 � �  . Insertion of this into Eq. (8.52) yields

� ����� 7 � �  �������� % �QTS ? �O� 8 � �$��G�� 7 HOI@` � � �)-/.�0��� 1��)L�M�N A WYXe.�W��eC � 3[.#LKM�N I���� E � HOIJ4 (8.54)

Here, it is interesting to note the asymmetry between source and receiver motion. Thus,
whereas both source and receiver motion yield a frequency shift through the exponen-
tial, only the source motion affects the integration kernel, i.e., the depth-dependent
Green’s function. Therefore, reciprocity does not hold for moving sources and re-
ceivers! Also note that, as expected, no Doppler shift is observed if source and receiver
are moving at identical velocities, but the kernel is still affected, in a non-reciprocal
way.

Therefore, the field observed at a receiver moving with the same speed and di-
rection as the source is different from the field observed in the stationary case, a fact
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which is rarely appreciated when interpreting experimental data. On the other hand, as
we shal demonstrate this effect is rather small, making the static approximation valid
for most realistic source/receiver motions. A joint source/receiver motion is clearly
equivalent to stationary sources and receivers in a moving medium.

Even though Eq. (8.54) represents the field through a wavenumber integral, this
expression is not well suited for direct numerical implementation. The reason is that
the source/receiver dynamics couples the time and wavenumber through the argument
to the exponential function, requiring the integral to be evaluated for each individual
time value. However, it turns out that this time-wavenumber coupling is closely tied to
the formulation in the source’s frame of reference, i.e. in terms of a harmonic source
excitation of frequency � , resulting in each received wavenumber component to be of
different frequency. Thus, as shown by Schmidt and Kuperman [21] a much simpler,
and numerically tractable, formulation is achieved by assuming the source to have a
finite bandwidth, which is obviously realistic, and transforming the field expression
in Eq. 8.54 into the receiver’s frame of reference. For a source with finite bandwidth� ��� � , the field at the receiver is simply determined by a Fourier integral of the above
expressions,

� �"� � 7 � �  �������� % �� S � ? E � � �*� � ? E � HJI
��� � 8 � �$��G�� 7 HJIa` � � ��- .�0 � A 1��)L M N A W X .�W � C CZ3[.#L M N I���� 4 (8.55)

In the receiver’s frame of reference the frequency spectrum of the field at the receiver
now follows by applying the Fourier transform in Eq. (2.27) to Eq. (8.55),

� ����� 7 � �  ������=�� % ? E �- 0 : 3 � �"� � 7 � �  ��������
% �� S � ? E � � �*� � ? E � HJI$- 0DL�M�N I�� � � 8 � ����G�� 7 HJIg` � � �

� ? E �- .�0BA 1K. : ��LKM�N A WUXZ.�W��eC CZ3
% �QTS ? E � HJI�- 0DL M N I�� ? E � � �*� �

��� � 8 � ����G�� 7 HJIa` � � ��&���� �>= 7 HOI/`e� � � � � � ���
% �QTS ? E � HJI�- 0DL M N I � � ����� � � � 8 � ����G�= 7 HOIg` � � �O� (8.56)

where ��� is the Doppler shifted source frequency

��� % = � HOI `#� � � � � � ��4 (8.57)
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Equation (8.56) represents stationary frequency components of the field in the receiver’s
frame of reference, with the time domain response following by evaluation of the in-
verse Fourier transform in Eq. (2.26). Thus, simply by transforming into the receiver’s
frame of reference, i.e. changing from a representation in terms of “source frequency”� in Eq. (8.55) to a representation in terms of “receiver frequency” = , the coupling
between time and wavenumber has been eliminated. As a result, the wavenumber and
frequency integrations are performed independently, as in the static case. In fact, the
differences introduced by the dynamics are rather trivial. The first concerns the source
spectrum

� ��� � � which is wavenumber-independent in the static case and therefore in
that case may be applied outside the wavenumber integral, as part of the Fourier syn-
thesis; the other difference is the change in frequency-argument to the depth-dependent
Green’s function. We will later discuss the physical significance of these differences.

In spite of its extraordinary simplicity, Eq. (8.56) is exact within the limitations
of the linear theory of acoustics. Thus, the only assumption made is that source and
receiver are moving at constant speed.

Unfortunately, the evaluation of the two-dimensional wavenumber integral in Eq. (8.56)
is computationally intensive. However, in underwater acoustics the range separation
of the source and receiver is usually large compared to the track of each during the
time duration of the signal. The angles

� � and
� � between the velocity vectors of the

source and receiver, respectively, and the radial vector connecting them, can therefore
be considered constant, and we can replace the 2-D Fourier integral in Eq. (8.56) by a
Hankel transform representation in the horizontal wavenumber [22], i.e.� ����� 7 � �  ������=��

� ?��� E 8 � 8 ��� �V� 8 ��� � �
� � �*���Y� � � 8 � �$��G�= 798 �
	 ������ � � �

% �Q ? �. �
E 8 � 8 �
� A��*C� � 8 �
� ���

� � �*���Y� � � 8 � �$��G�= 798 �
	 ������ � � �O� (8.58)

with ��� % = � 8 � � 	������� � � � 	 ������ � � �O4 (8.59)

Using this approximation it is extremely simple to modify an existing wavenumber
integration code to compute the Doppler shifted acoustic field. The only change
needed is to compute the depth-dependent Green’s function at the shifted frequency= 7 8 �
	 ������ � � for every wavenumber

8 � considered, and multiply it by the source
spectrum at the shifted frequency � � . The resulting dynamic transfer functions are
then transformed into the time domain response by standard Fourier synthesis.
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8.4.2 Normal Mode Representation

Based on the spectral representations given above it is now straightforward to proceed
to the normal mode representation of the doppler shifted discrete part of the acoustic
field. Ignoring the branch line contribution, the depth-dependent Green’s function can
be written in terms of normal modes through Eq. (5.40),

� � 8 � �$��G�=�� � �QTS�� ��� � � � ��� �*�<� ��� �*� � �8 �� � 8 �� � (8.60)

where
8 � are the eigenvalues of the homogeneous form of Eq. (8.47), and ��� are the

associated eigenvectors. We can now replace the kernel in Eq. (8.58) by the modal
expansion in Eq. (8.60), but with the wavenumber

8 � replaced by the eigenvalues
8	�� at

doppler shifted frequency = 7 8 � 	������� � � , i.e. for 	�� F  �
 � ,
8 �� � 8 �� � 7 	 ������ � �

E 8 �E =�� % 8 �� � 7 	��

	 ��� ���� � � � � (8.61)

where 	 ��� is the group velocity of the � � �� mode at angular frequency = . The
wavenumber integral in Eq. (8.58) can then, in analogy to the static case, be replaced
by the modal sum,

� ����� 7 � �  ������=�� � 	
� � �*� � � � � � �*� � �

� ��� �*�<� ��� �*� � � � A��*C� � 8 � � �T� � 7�� ������ ���� � � ��� � (8.62)

where

� � % = � 8 � � 	 � ���� � � � 	 ������ � � �
% = � � � 	 �

	 ��� ���� � � 7 	��

	 ��� ���� � � � � (8.63)

with 	 ��� % =�F 8 � being the modal phase velocity. Here it has been assumed that the
change in modal eigenfunctions is negligable. Further, this expression ignores any
modal cutoff effects introduced by the doppler shift, and as such Eq. (8.62) represents
another level of approximation compared to the spectral representation in Eq. (8.58).
On the other hand, the physical interpretation of the dynamic effects is very simple in
the modal approximation. It is clear from Eq. (8.63) that the doppler shift in observed
frequency is associated with the horizontal phase velocity of the individual modes.
Since each mode is a result of the constructive interference of up- and down-going
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plane waves with distinct grazing angles � � % ���� .�� � 8 � F 8�� � , different modes clearly
have different phase velocities and therefore different doppler shifts.

The source/receiver dynamics also yields a perturbation in the interference associ-
ated with the change in the modal propagation wavenumbers in Eq. (8.61). It is clear
from Eq. (8.62) that this change in modal eigenvalue can alternatively be interpreted
as a change in range. With this observation we can easily interprete this effect phys-
ically as being associated with the different distances the modes are traveling from
being launched at the source to being received at the receiver, due to their different
group velocities. Here it is interesting to note that this effect only involves the receiver
motion. However, this asymmetry, which is the reason for the earlier discussed lack
of reciprocity, actually makes sense physically. Assume the source function is a delta
function in time, i.e.

� �*� ��� � . All modes in the waveguide will then be excited at
the same instance in time, and their arrival time and therefore relative phase will be
unaffected by the continued source motion. Therefore, if the receiver is at rest, the
arrival time, and therefore relative phase, of the modes is independent of the source
dynamics. On the other hand, if the receiver is moving, it will pick up the individ-
ual modal arrivals at different points in space due to their different group velocities.
As a result, the relative phase between the modes is affected, reflected through the
change in observed modal wavenumber given in Eq. (8.61). This wavenumber doppler
shift was ignored in the doppler formulation of Fawcett and Maranda [23], but as is
clear from Eqs. (8.62) and (8.63), this effect can be equally important to the frequency
doppler shift, depending on the ratio between the relative source/receiver speed and
the receiver speed itself.

It is easily verified, that for a stationary receiver and a moving, monochromatic
source,

� ��� � % &��*� �d� ��� , the Fourier transform of Eq. (8.63) becomes identical to
the expressions derived by Guthrie et al. [19] and Hawker [20] for this special case.
Their results could also be derived by directly replacing the wavenumber integral in
Eq. (8.52) by its modal expansion.

Next, we will derive a simple modification of the adiabatic mode expansion, incor-
porating the source/receiver dynamics. This is easily done heuristically, based on the
physical interpretation of the two effects of the dynamics stated above. For the static
case the adiabatic expansion of the field produced by a source of strength

� � =�� directly
follows from Eq. (5.191) as

� � � ������=�� �
0��<A : C��
	�������� A��RX C�� ����� � ��� �*�<� ��� �*� � � � ��� ���� �! ��"$#$%��&"' � �� � � A � " C�( � " 4 (8.64)

Now it is clear from the above that the frequency doppler shift depends on the phase
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velocities at the source and receiver, whereas the phase shift is associated with the
different ranges the modes are traveling before reaching the moving receiver. Based
on this observation, the adiabatic result directly follows as� ����� 7 � �  �$����=�� �

0 �
	�������� A�� X C�� ��� � � � �*� �� � ��� �*�<� ��� �*� � � � ��� � ��� � �  � " #$%�� "'
� � ��� � � A � " C�( � " 4 (8.65)

where � �� % = � � � 	 �

	 � � � 
 � ���� � � 7 	 �

	 � � � � � � ���� � � � � (8.66)

and � �� is the perturbed ranges for the phase integrals,

� �� % � � � � 7 	 �

	 � � � � ��� ���� � � � 4 (8.67)

The modification of existing normal mode codes to account for the source/receiver
dynamics is clearly equally simple to the one described above for wavenumber inte-
gration codes.

8.5 Numerical Examples

This section presents a few examples of the kind of detailed insight into ocean-acoustic
propagation which can be achieved only through time-series analysis. The geophysics
literature is replete with references showing that even extremely complicated arrival
structures in heterogeneous fluid–elastic environments can be completely untangled
by exploiting the different propagation characteristics of the various wave types. Thus,
it is often possible to explicitly identify compressional (� ) and shear bulk waves ( � � ,

� 	 ), various converted components of these waves, head waves, guided � and � modes,
interface waves, -U  4 For illustrative examples we refer the reader to two recent pub-
lications dealing with the modeling aspect of seismic wave propagation: Schmidt and
Tango [8] describe a pulse modeling technique for horizontally stratified media based
on the wavenumber integration technique (Chap. 4) combined with Fourier synthesis;
Dougherty and Stephen [12] present time-domain finite-difference solutions for range-
dependent elastic media.

We shall concentrate on some fundamental aspects of acoustic propagation in both
shallow and deep water. The problems are solved both in the time domain and via
Fourier synthesis, and results are presented either as stacked time series versus range
or depth, or as snapshots at fixed times.


