
Lecture 6 - 2003
Torsion Properties for Line Segments and Computational Scheme

for Piecewise Straight Section Calculations
this consists of four parts (and how we will treat each)

A - derivation of geometric algorithms for section properties (cover quickly for sense of approach)

B - derivation of first moment approach (for info - not covered)

C - computational routine resulting from A (demo a few examples - routine available in lab)

D - computational routine resulting from B (routine available in lab)

sourced from section 6.1 to 6.3 of Kollbrunner, Curt Friedrich, Torsion in structures; an engineering

approach TA417.7.T6.K811 1966, and geometry.

starting point: a line defined by two points, x1,y1 and x0,y0 this assumes X.cg and Ycg known

y − y0 y1 − y0 = line passing through two points
x x0 x1 − x0−

y1 − y0 (y1 − y0) x1 − x0 x1 − x0
y =

x1 − x0
⋅x + y0 − x0 (x1 − x0)

or ... x =
y1 − y0

⋅y + x0 − y0⋅
y1 − y0

consider calculation of increment of moment of inertia (relative to centroid)

⌠ b
dx ∆x ⌠ b t	 ⌠

x1
2

⋅ y dx y2
⋅t ds ds = () ∆s = length = ()

 y2
⋅t ds = () ⌡
⌡0 cos α cos α ⌡0 cos α x0

⌠
x1 2



  x1 − x0

 y1 − y0  simplify

3 
y0

2
+ y1⋅y0 + y1

2
⋅(x1 − x0)
 

 y1 − y0
⋅x + y0 − x0⋅

 x1 − x0 
 dx

factor
→

1
⋅

⌡x0

⌠ b t ⌠
x1

⌡0 cos α
⋅ y2 dx = t

() ⋅



(x1 −

3

x0)
⋅ y1 ()2



 y2

⋅t ds = () ⌡ cos α ()2
+ y0⋅y1 + y0




x0

Ix =
t s1 − s0)

⋅ y1 ()2


⋅(
()2

+ y0⋅y1 + y0


3

similarly (by the symmetry of the expression for the line above):

Iy =
t s1 − s0)

⋅ x1 ()2


⋅(
()2

+ x0⋅x1 + x0


3

cross moment of inertia ⌠ b t ⌠
x1

t ⌠
y1

Ixy =  x y⋅t ds =
cos α

⋅ x y dx = () ⌡
⋅

⌡0
⋅ () ⌡

⋅
sin α

⋅ x y dy
x0 y0

1 notes_15_torsion_prop_calc.mcd

⌠
x1

⌠
x1

 
y1 − y0  y1 − y0 

⋅ x y dx =   x1 − x0
⋅x + y0 − x0⋅



 x1 − x0 




⋅x dx
⌡x0  

⌡x0

⌠
x1

 y1 − y0  y1 − y0  simplify 1





x1 − x0
⋅x + y0 − x0⋅




x1 − x0 
⋅x dx

factor
→

6
⋅(x1 − x0)⋅(2 x1⋅y1 + y0⋅x1 + x0⋅y1 + 2 y0⋅x0)
 ⋅ ⋅

  

⌡x0

t ⌠
x1

t  x1 − x0 
Ixy =

cos α
 ⋅ ()   ⋅(

⋅(
6




+

⋅

x
(
0⋅y1 + x1⋅y0 



() ⋅

⌡x0

x y dx =
6

⋅
 cos α

⋅2 x1⋅y1 + x0⋅y0) + x0⋅y1 + x1⋅y0 =
t s1 − s0)

⋅2 x1⋅y1 + x0⋅y0) ...

we could calculate Iyx using the same relationship but we know it is = Ixy Iyx = Ixy

to evaluate the warping relationships: start with line passing through two points and obtain normal
form of line

y − y0 y1 − y0 y1 − y0 (y1 − y0)
=

−x x0 x1 − x0
or ... y =

x1 − x0
⋅x + y0 − x0 (x1 − x0)

multiply by (x1 - x0) y x1 − x0) = (y1 − y0)⋅x + y0⋅(x1 − x0) − x0(y1 − y0)⋅(

rearrange => −(y1 − y0)⋅x + (x1 − x0)⋅y + x0⋅(y1 − y0) − y0⋅(x1 − x0) = 0

A = −(y1 − y0) B = x1 − x0 C = x0⋅(y1 − y0) − y0⋅(x1 − x0)
general form: A x + B y + C = 0⋅ ⋅

to reduce to normal form x*cos(β)+y*sin(β)=p divide by y1 y0− (2 x1 x0− (2
+)) where sign is

() ()
ρc

y1 y0 −

denom
x ⋅

x1 x0− (
denom

y ⋅+
C

denom
=

A− x ⋅ B y⋅ − becomes A x ⋅ B y ⋅ + C + 0 =

cos β() = sin β ()
x1 x0− (−

denom
=

for the geometry shown: x0 > x1, y1 > y0

denom = denom y1 y0− (2 x1 x0− (2
+ =

x1,y1

x0,y0

β

β

opposite of C. C ≠ and β is angle between the x axis and the NORMAL to line.

)

)

))
0

−denom⋅sign C()

y1 − y0
denom

= C

C =
x⋅cos β + y⋅sin β = ρc

denom

2 notes_15_torsion_prop_calc.mcd

ds*sin(β) =-dx

we could also have determined this direct from the geometry
x, y is a point on a line a distance hc from the centroid:

x,y

β β

hc

x*cosβ y*sinβ () + y⋅sin βx⋅cos β () = hc

⌠
dωc = dΩc = ρc⋅ds definition of ωc =  hc ds

⌡

for a straight line segment ρc = constant ∆ωc = ρc⋅L and is linear along line

ρc = p from normal form of line

ρc is positive if centroid is to the left when viewing the element from i to j (0 to 1) along

the tangent line

alternative form of line (cos(α), sin(α) and p defined in terms of x1,y1
x0,y0 above in this form p is the distance from origin to line and β is

angle NORMAL to line makes with x axis
x⋅cos β () = ρc = hc() + y⋅sin β

the increase in ωc due to this line segment is then

⌠
s1 ⌠

s1 ⌠
s1 ⌠

y1 ⌠
x1

() ds +  y⋅sin β∆ωc = ρc⋅L =  hc ds =  x⋅cos β
⌡

() ds =  x dy −  y dx
⌡s0

⌡s0 s0
⌡y0

⌡x0

ds*sin(β) =-dx

xD,yD

C
x

y

hC

hD

tangent

Parallel to
tangent α

β

a

b

β

β

ds β

= -dx*cos(α)

ds*cos(β) =dy
=ds*sin(α)

xD,yD

C
x

y

hC

hD

tangent

Parallel to
tangent α

β

a

b

β

β

ds β

= -dx*cos(α)

ds*cos(β) =dy
=ds*sin(α)

3 notes_15_torsion_prop_calc.mcd

"it can be shown"

⌠
s1 ⌠

y1 ⌠
x1

 hc ds =  x dy −  y dx = 
⌡s0

⌡y0
⌡x0

 x1 +

2

x0




⋅(y1 − y0) −

(y1 +

2

y0)
⋅(x1 − x0)

x1 + x0 y1 + y0
∆ωc =

2
⋅(y1 − y0) −

2
⋅(x1 − x0)

xm = mid-point
∆y∆ωc = xm⋅() − ym⋅∆x	 ∆x = x1 - x0

∆y = y1 - y0

⌠ b ⌠ b
Ixωc =  ωc⋅y ds Iyωc =  ωc⋅x ds

⌡0 ⌡0

⌠ ⌠
ωc is linear with s for a line hc is constant => ωc =  hc ds = hc⋅ 1 ds = hc⋅s

⌡ ⌡

initial value is ω0 and end value ω1
being linear with s also implies linear with x and y i.e.
with x

− −
() = ωc0 + (ωc1 − ωc0) (x x0)

=



ωc1 − ωc0 
x + ωc0 − ωc0

(x x0)
ωc s

x1 − x0  x1 − x0  x1 − x0

which is exactly like y1 − y0 (y1 − y0)
with y substituted for ω y =

x1 − x0
⋅x + y0 − x0 (x1 − x0)

⌠ b

⌡0
⋅

⋅(
6  ⋅(so just as Ixy =  x y dA Ixy =

t s1 − s0)
⋅2 x1⋅y1 + x0⋅y0) + x0⋅y1 + x1⋅y0

⌠ b
−⌠ b   ωc1 − ωc0  (x x0) 

⌡0   x1 − x0 
⋅x + ωc0 − ωc0⋅

x1 − x0 
⋅x dsIyωc =  ωc⋅x ds =  

⌡0
⋅(

Iyωc =
t s1 − s0)

⋅2 x1⋅ωc1 + x0⋅ωc0) + x0⋅ωc1 + x1⋅ωc0
6  ⋅(

⋅(and
Ixωc =

t s1 − s0)
⋅2 y1⋅ωc1 + y0⋅ωc0) + y0⋅ωc1 + y1⋅ωc0

6  ⋅(

4 notes_15_torsion_prop_calc.mcd

IyIx

IzIy

now we can locate the shear center: (assume for the time being that these values are the results for a more
complete section - we'll tie this together later)

from previous lecture

(Iyωc⋅Iz − Iyz⋅Izωc) (−Izωc⋅Iy + Iyz⋅Iyωc)
yD := zD :=

 2  2
Iy⋅Iz − Iyz  Iy⋅Iz − Iyz 

the coordinate system is changed from y,z to x,y changing y to x (first) and then z to y

(Ixωc⋅Iy − Ixy⋅Iyωc) (−Iyωc⋅Ix + Ixy⋅Ixωc)
xD := yD :=

 2  2
Ix⋅Iy − Ixy  Ix⋅Iy − Ixy 

now we can calculate ωD by first calculating Ω (this is warping referenced to shear center with an arbitrary
coordinate system.

β is the same as our angle α hD ds ⋅ hC ds ⋅ xD sin α ()⋅ ds ⋅− yD cos α ()⋅ ds⋅+ =

⌠ s ⌠ s
() =  hD ds =  hC − xD⋅sin α () dsdΩD = dωD = hD⋅ds => ΩD s () + yD⋅cos α

⌡0 ⌡0

⌠ s ⌠ s ⌠ s
ΩD s () ds −  yD⋅cos α () − xD⋅ 1 dy + yD⋅ 1 dx where α constant() =  hC ds −  xD⋅sin α () ds = ωc s

⌠y ⌠ x

⌡0 ⌡0 ⌡0 ⌡y0
⌡x0

as ... ds⋅cos α () = dy() = dx ds⋅sin α

∆ΩD s() = ∆ωc − xD⋅(y1 − y0) + yD⋅(x1 − x0)

if we set Ω D0 = 0 at the start of a line segment, then ΩD1 = Ω D0 + ∆Ω D

we find the centroid as we would X and Y (it's linear therefore cg of each segment is (Ω1+Ω0)/2). Then the
normalized ΩD i.e.ωD is. ΩD-ΩDo and the moments are calculated as above

calculate "centroid" of warping wrt shear center:

ai ∑∆QΩD
∆QΩDi

=
2

⋅

Ω Di

+ Ω Di 1
 ΩDcg =

A
ωDj

= ΩDj
− ΩDcg+

5 notes_15_torsion_prop_calc.mcd

⋅(
Iω =

t s1 − s0)
⋅(ωD1)2

+ ωD0⋅ωD1 + (ωD0)2
3

these should be thought of in terms of

⋅(
contributions from the segment as

IyωD =
t s1 − s0)

⋅2 x1⋅ωD1 + x0⋅ωD0) + x0⋅ωD1 + x1⋅ωD0
we'll see in the overall scheme

6  ⋅(
the total should = 0

⋅(
IxωD =

t s1 − s0)
⋅2 y1⋅ωD1 + y0⋅ωD0) + y0⋅ωD1 + y1⋅ωD0

why?
6  ⋅(

⌠ b ⌠ b ⌠ b ⌠ b ⌠ b ⌠b

 σ⋅x dA = − φ''⋅ ω⋅x dA =  ω⋅x dA = 0  σ⋅y dA = − φ''⋅ ω⋅y dA =  ω⋅y dA = 0 as bending
E⋅ E⋅
⌡0 ⌡0 ⌡0 ⌡0 ⌡0 ⌡0 moments = 0

first moment approach
assume Xcg and Ycg known

⌠
s1

Qx =  y dA
⌡s0

⌠
s1

dx ∆x ⌠ b t ⌠
x1

⋅ ⋅  y t ds ds = () ∆s = length = ()  y t ds = () ⋅
⌡x0

y dx

⌡s0

cos α cos α ⌡0 cos α

⌠
x1

 y1 − y0  y1 − y0  simplify 1


 

 x1 − x0
⋅x + y0 − x0⋅

 x1 − x0 
 dx

factor
→

2
⋅(x1 − x0)⋅(y1 + y0) =>

⌡x0

⌠
s1

t   y1 + y0  y1 + y0  y1 + y0 
 y t ds = () ⋅


(x1 − x0)⋅

 2 
 = t s1 − s0)⋅

2
= ai⋅ 2 ⌡s0

⋅
cos α

⋅(

this should have been obvious as cg is mid point and moment of area is ycg * area

yi 1 + yi xi 1 + xi+ +
ymi =

2
xmi =

2

now for the moments of inertia:
we saw that:

now this presents a small problem:
⌠b ⌠

y1 Q is linear only where x or y is constant otherwise it's parabolic
Ix =  y2

⋅t ds = − Qx⋅t dy this can be handled easily if we calculate the values at the midpoints and use
 Simpson's rule for integration: it is exact for a parabolic variation (linear is a⌡0 ⌡y0 subset order = 1) we will get 2*n_elements + 1 values

this time we'll keep a running total

6 notes_15_torsion_prop_calc.mcd

n_elements

xxmyym

increase is calculated using the approach above over each half (hence 1/2 of area and 1/2 of endpoints) of the
segment:

ai ai ai ai
∆Qx2 i

:=
4

⋅(yi + ymi) ∆Qx2 i+1
:=

4
⋅(ymi + yi 1) ∆Qy2 i

:=
4

⋅(xi + xmi) ∆Qy2 i+1
:=

4
⋅(xmi + xi 1)⋅ ⋅ + ⋅ ⋅ +

k := 1 .. 2⋅n_elements

Qx0
:= 0 Qxk

= Qxk 1
+ ∆Qxk 1

Qy0
:= 0 Qyk

= Qyk 1
+ ∆Qyk 1− − − −

integration is over entire element using midpoint and endpoint values => n_element values

⌠
y1 ⌠

y1

⌡y0
 ⋅

⋅
⋅ +1

+ Qx2 i+1)
 Simpson's rule
∆Ix =  y2

⋅t dy = − Qx⋅t dy = −t
(y1 −

6

y0)
⋅

Qx2 i

+ 4 Qx2 i ⋅(⌡y0

since this result will be useful later on we'll put it aside: similarly for Iyy

⋅ ⋅
⋅ ⋅ ⋅(⋅ ⋅ ⋅(

Qx_bari
= Qx2 i

+ 4 Qx2 i+1
+ Qx2 i+1)

Qy_bari
= Qy2 i

+ 4 Qy2 i+1
+ Qy2 i+1)

n_elements−1 n_elements−1
−1 −1

Ixx =
6

⋅ ∑ Q_barxi
⋅∆yi Iyy =

6
⋅ ∑ Q_baryi

⋅∆xi

i = 0 i = 0

the cross moments of inertia are:

⌠ b ⌠ b
Iyz = − Qy dz = − Qz dy

⌡0 ⌡0

n_elements−1 n_elements−1
−1 −1

Ixy =
6

⋅ ∑ Q_barxi
⋅∆xi Iyx =

6
⋅ ∑ Q_baryi

⋅∆yi

i = 0 i = 0

derived above: and in lecture 6 ⌠b ⌠ b

∆ωc =
x1 +

2

x0
⋅(y1 − y0) −

y1 +

2

y0
⋅(x1 − x0)

Iyω = −

0

Qy dω = −

0

Qω dx
⌡ ⌡

⌠ b ⌠ b
Ixω = − Qx dω = − Qω dy

∆y∆ωc = xm⋅() − ym⋅∆x ⌡0 ⌡0

7 notes_15_torsion_prop_calc.mcd

ωωm

IyIx

−1
n_elements−1

−1
n_elements−1

∆ωci
= xmi⋅∆yi − ymi⋅∆xi Ixωc =

6
⋅ ∑ Qx_bari

⋅∆ωci
Iyωc =

6
⋅ ∑ Qy_bari

⋅∆ωci
i = 0 i = 0

as above:

(Ixωc⋅Iy − Ixy⋅Iyωc) (−Iyωc⋅Ix + Ixy⋅Ixωc)
xD := yD :=

 2  2
Ix⋅Iy − Ixy  Ix⋅Iy − Ixy 

now we can calculate the warping parameters: as above: calculate ΩD and centroid

∆ΩD s() = ∆ωc − xD⋅(y1 − y0) + yD⋅(x1 − x0)

if we set Ω D0 = 0 at the start of a line segment, then ΩD1 = Ω D0 + ∆Ω D

we find the centroid as we would X and Y (it's linear therefore cg of each segment is (Ω1+Ω0)/2). Then the
normalized ΩD i.e.ωD is. ΩD-ΩDo and the moments are calculated as above

calculate "centroid" of warping wrt shear center:

ai ∑∆QΩD
∆QΩDi

=
2

⋅

Ω Di

+ Ω Di 1
 ΩDcg =

A
ωDj

= ΩDj
− ΩDcg+

instead of direct integration based on the linear relationship as above we calculate the value at the mid-points and
the Q ωDi

+ ωDi 1+
ωmDi

=
2

now for the moments of inertia:

we saw that above (this was copied an x and y changed to ω:

⌠ b
⌠

ω1
Iω =  ω

2
⋅t ds = − Qω⋅t dω

⌡0 ⌡ω0

increase is calculated using the approach above over each half (hence 1/2 of area and 1/2 of endpoints) of the
segment:

ai ai
∆Qω2 i

:=
4

⋅(ωi + ωmi) ∆Qω2 i+1
:=

4
⋅(ωmi + ωi 1)+

⋅ ⋅

8 notes_15_torsion_prop_calc.mcd

n_elementsk := 1 .. 2⋅n_elements

Qω0
:= 0 Qωk

= Qωk 1
+ ∆Qωk 1− −

integration is over entire element using midpoint and endpoint values => n_element values

⌠
ω1 ⌠

ω1

⌡ω0 ⌡ω0
⋅

⋅
⋅ +1

Qω2 i+1)
 Simpson's rule
∆Iω =  ω

2
⋅t dω = − Qω⋅t dω = −t

(ω1 −

6

ω0)
⋅

Qω2 i

+ 4 Qω2 i
+

⋅(

since this result will be useful later on we'll put it aside:

⋅
⋅ ⋅ ⋅(

Qω_bari
= Qω2 i

+ 4 Qω2 i+1
+ Qω2 i+1)

n_elements−1
−1

Iωω =
6

⋅ ∑ Qω_bari
⋅∆ωi

i = 0

the cross moments are:

−1
n_elements−1

−1
n_elements−1

Ixω =
6

⋅ ∑ Qx_bari
⋅∆ωi Iyω =

6
⋅ ∑ Qy_bari

⋅∆ωi

i = 0 i = 0

9 notes_15_torsion_prop_calc.mcd

input input input input input

Computational Scheme for Cross-Sectional Quantities

X, Y, 0 ... n_elements as get extra when start with 0
A 0 nelements -1

X := input Y := input n_elements := input a := input or ... t := input

n_elements := 3

i := 0 .. n_elements − 1 an_elements := 0 an_elements := 0 tn_elements := 0

j := 0 .. n_elements tn_elements := 0

 0   20     0.5 
X :=  5  Y :=  20  t :=  0.5

 5   0   elements
 0 
  0 

 0.5  20

Y
10

0
0 2 4 6

X

we will use these later

∆Xi := Xi 1 − Xi ∆xi := ∆Xi ∆Yi := Yi 1 − Yi ∆yi := ∆Yi+ +

calculate area if necessary


∆Xi(2

∆Yi(2
+))  ai := if ai = 0, ti⋅ , ai 

A := ∑a A 15=

calculate centroid in X and Y coordinate system and coordinates in centroidal system:

ai ∑∆QY
+∆QYi

:=
2

⋅(Xi + Xi 1) Xcg :=
A Xcg = 4.167 xj := Xj − Xcg

ai ∑∆QX
+∆QXi

:=
2

⋅(Yi + Yi 1) Ycg :=
A Ycg = 10 y j := Yj − Ycg

10 notes_15_torsion_prop_calc.mcd

calculate moments of inertia

these are contributions from segment i = 0, t*(s1 - s0) = area of segment ai

⋅(
()2

+ y0⋅y1 + y0
 Iy =

⋅(
3 ()2

+ x0⋅x1 + x0


Ix =
t s1

3

− s0)
⋅ y1 ()2



t s1 − s0)
⋅ x1 ()2



Ix := ∑
a

3
i
⋅
(yi 1)2

+ yi⋅yi 1 + ()2

 Ix = 833.333 Iy := ∑

a

3
i
⋅
(xi 1)2

+ xi⋅xi 1 + xi
 Iy = 31.25

+ +
yi

+ + ()2


i
i

⋅(
Ixy =

t s1 − s0)
⋅2 x1⋅y1 + x0⋅y0) + x0⋅y1 + x1⋅y0 6  ⋅(

ai
⋅2 xi 1⋅yi 1 + xi⋅yi) + xi⋅yi 1 + xi 1⋅yi Ixy = 0Ixy := ∑ 6  (+ + + +

i
Iyx := Ixy

calculate ∆ωc this is a running total:
∆ωc =

x1 +

2

x0
⋅(y1 − y0) −

y1 +

2

y0
⋅(x1 − x0)

xi 1 + xi yi 1 + yi+ +first calculate each increment ∆ωci := ⋅∆yi −
2

⋅(∆xi)2
xi 1 + xi yi 1 + yi+ +

ωc0 := 0 ωci 1 := ωci +
2

⋅∆yi −
2

⋅(∆xi) ωci 1 := ωci + ∆ωci+ +

calculate warping moments wrt centroid:

⋅(
Iyωc =

t s1 − s0)
⋅2 x1⋅ωc1 + x0⋅ωc0) + x0⋅ωc1 + x1⋅ωc0 contribution from each segment

6  ⋅(

⋅(
Ixωc =

t s1 − s0)
⋅2 y1⋅ωc1 + y0⋅ωc0) + y0⋅ωc1 + y1⋅ωc0

6  ⋅(

ai
⋅2 xi 1⋅ωci 1 + xi⋅ωci) + xi⋅ωci 1 + xi 1⋅ωci Iyωc = 3.411 × 10− 13Iyωc := ∑ 6  (+ + + +

i

ai
⋅2 yi 1⋅ωci 1 + yi⋅ωci) + yi⋅ωci 1 + yi 1⋅ωci Ixωc = 1.944 × 103Ixωc := ∑ 6  (+ + + +

i

11 notes_15_torsion_prop_calc.mcd

from torsion properties:

(Ixωc⋅Iy − Ixy⋅Iyωc) (−Iyωc⋅Ix + Ixy⋅Ixωc)
xD := yD := 2  2

Ix⋅Iy − Ixy  Ix⋅Iy − Ixy 

− 14 xD = 2.333 yD = −1.091 × 10

now we can calculate warping Ω relative to an arbitrary origin Ω0 = 0

∆ΩD s() = ∆ωc − xD⋅(y1 − y0) + yD⋅(x1 − x0)

if we set Ω D0 = 0 at the start of a line segment, then ΩD1 = Ω D0 + ∆Ω D

∆ΩDi
:= ∆ωci − xD⋅∆yi + yD⋅∆xi

ΩD0
:= 0 ΩDi 1

:= Ω Di
+ ∆Ω Di+

calculate "centroid" of warping wrt shear center:

ai ∑∆QΩD
∆QΩDi

:=
2

⋅

Ω Di

+ ΩDi 1
 ΩDcg :=

A
ΩDcg = −35 ωDj

:= ΩDj
− ΩDcg+

now we can calculate the normalized warping functions (relative to the shear center)

⋅(
Iω =

t s1 − s0)
⋅(ωD1)2

+ ωD0⋅ωD1 + (ωD0)2



3

⋅(
IyωD =

t s1 − s0)
⋅2 x1⋅ωD1 + x0⋅ωD0) + x0⋅ωD1 + x1⋅ωD0

6  ⋅(

⋅(
IxωD =

t s1 − s0)
⋅2 y1⋅ωD1 + y0⋅ωD0) + y0⋅ωD1 + y1⋅ωD0

6  ⋅(

12 notes_15_torsion_prop_calc.mcd

Iω := ∑
a

3
i
⋅



ωDi 1


2

+ ωDi
⋅ωDi 1

+ 


ωDi



2
 Iω = 2.292 × 103

+ +
i

ai
IyωD := ∑ 6 


 + ⋅ωDi 1

+ xi⋅ωDi
 + xi⋅ωDi 1

+ xi 1⋅ωDi
⋅2 xi 1 +  + +  − 13i IyωD = −3.553 × 10

ai − 13IxωD := ∑ 6 

 + ⋅ωDi 1

+ yi⋅ωDi
 + yi⋅ωDi 1

+ yi 1⋅ωDi
 IxωD = 9.379 × 10⋅2 yi 1 +  + + 

i

Output:
elements, centroid, shear center

20
Xcg = 4.167 Ycg = 10

− 14 xD = 2.333 yD = −1.091 × 10 Y 15

ΩDcg = −35 Ycg
10

Ix = 833.333 Iyx = 0 yD+Ycg

Iy = 31.25 Ixy = 0 5

Ixωc = 1.944 × 103 Iyωc = 3.411 × 10− 13
0

0 2 4 6 8
,

Iω = 2.292 × 103 X Xcg, xD+Xcg

− 13IxωD = 9.379 × 10

Note: the coordinate system in this plot is X, Y
IyωD = −3.553 × 10− 13 therefore xD and yD needs to have Xcg and Ycg

added back in

13 notes_15_torsion_prop_calc.mcd

first moment approach to hold values from above Ixx := Ix

repeat centroid calculations:
Iyy := Iy

we will use these later ∆Xi := Xi 1 − Xi ∆xi := ∆Xi ∆Yi := Yi 1 − Yi ∆yi := ∆Yi+ +

calculate area if necessary


∆Xi(2

∆Yi(2
+))  ai := if ai = 0, ti⋅ , ai 

A := ∑a A 15=

calculate centroid in X and Y coordinate system and coordinates in centroidal system:

ai ∑∆QX
+∆QXi

:=
2

⋅(Xi + Xi 1) Xcg :=
A Xcg = 4.167 xj := Xj − Xcg

ai ∑∆QY
+∆QYi

:=
2

⋅(Yi + Yi 1) Ycg :=
A Ycg = 10 y j := Yj − Ycg

first moment approach get midpoints and values for Q at end and midpoints:

yi 1 + yi xi 1 + xi+ +
ymi :=

2
xmi :=

2

ai ai ai ai
∆Qx2 i

:=
4

⋅(yi + ymi) ∆Qx2 i+1
:=

4
⋅(ymi + yi 1) ∆Qy2 i

:=
4

⋅(xi + xmi) ∆Qy2 i+1
:=

4
⋅(xmi + xi 1)⋅ ⋅ + ⋅ ⋅ +

k := 1 .. 2⋅n_elements we have a total of 2*n_elements + 1, k = 1...2*n_elements and 0

Qx0
:= 0 Qxk

:= 


Qxk 1
+ ∆Qxk 1

 Qy0
:= 0 Qyk

:=

Qyk 1

+ ∆Qyk 1


− − − −

k1 := 0 .. 2⋅n_elements + 1

5
60

40 Qyk1 0
Qxk1

20

5
0 2 4 6

0
0 2 4 6 k1

k1

14 notes_15_torsion_prop_calc.mcd

integrate using Simpson's rule with midpoint values

⋅ ⋅
⋅ ⋅ ⋅(⋅ ⋅ ⋅(

Qx_bari
:= Qx2 i

+ 4 Qx2 i+1
+ Qx2 i+1)

Qy_bari
:= Qy2 i

+ 4 Qy2 i+1
+ Qy2 i+1)

n_elements−1 n_elements−1
−1 −1

Ix :=
6

⋅ ∑ Qx_bari
⋅∆yi Iy :=

6
⋅ ∑ Qy_bari

⋅∆xi

i = 0 i = 0

Ix = 833.333 Ixx = 833.333 Iy = 31.25 Iyy = 31.25

cross moments of inertia

−1
n_elements−1

n_elements−1
Ixy :=

6
⋅ ∑ Qx_bari

⋅∆xi Iyx :=
−

6
1

⋅ ∑ Qy_bari
⋅∆yi

i = 0
i = 0

Ixy = 0 Iyx = −5.329 × 10− 14

warping moments relative to the centroid:

n_elements−1 n_elements−1
−1 −1

∆ωci
:= xmi⋅∆yi − ymi⋅∆xi Ixωc :=

6
⋅ ∑ Qx_bari

⋅∆ωci
Iyωc :=

6
⋅ ∑ Qy_bari

⋅∆ωci
i = 0 i = 0

Ixωc = 1.944 × 103 Iyωc = −3.032 × 10− 13

as above calculate shear center

xD :=
(Ixωc⋅Iy − Ixy⋅Iyωc)

xD = 2.333 yD :=
(−Iyωc⋅Ix + Ixy⋅Ixωc)

yD = 9.701 × 10− 15

 2  2
Ix⋅Iy − Ixy  Ix⋅Iy − Ixy 

now as above we can calculate the warping parmeters

now we can calculate warping Ω relative to an arbitrary origin Ω0 = 0

∆ΩD s() = ∆ωc − xD⋅(y1 − y0) + yD⋅(x1 − x0)

if we set Ω D0 = 0 at the start of a line segment, then ΩD1 = Ω D0 + ∆Ω D

∆ΩDi
:= ∆ωci

− xD⋅∆yi + yD⋅∆xi ΩD0
:= 0 ΩDi 1

:= Ω Di
+ ∆Ω Di+

15 notes_15_torsion_prop_calc.mcd

calculate "centroid" of warping wrt shear center:

ai ∑∆QΩD
∆QΩDi

:=
2

⋅

Ω Di

+ ΩDi 1
 ΩDcg :=

A
ΩDcg = −35 ω j := ΩDj

− ΩDcg+

ωi + ωi 1+
ωmi :=

2
ai ai

∆Qω2 i
:=

4
⋅(ωi + ωmi) ∆Qω2 i+1

:=
4

⋅(ωmi + ωi 1)+
⋅ ⋅

k := 1 .. 2⋅n_elements Qω0
:= 0

+
− − ⋅

⋅ ⋅ ⋅(
Qωk

:= Qωk 1
∆Qωk 1 Qω_bari

:= Qω2 i
+ 4 Qω2 i+1

+ Qω2 i+1)

∆ωi := ωi 1 − ωi+

−1
n_elements−1 40

Iωω :=
6

⋅ ∑ Qω_bari
⋅∆ωi Iωω = 2.292 × 103

i = 0 20

the cross moments are:
Qωk1

0

−1
n_elements−1

− 14Ixω :=
6

⋅ ∑ Qx_bari
⋅∆ωi Ixω = 7.579 × 10 20

0 2 4
i = 0

k1

−1
n_elements−1

− 13Iyω :=
6

⋅ ∑ Qy_bari
⋅∆ωi Iyω = 1.137 × 10

i = 0

16 notes_15_torsion_prop_calc.mcd

6

Output:
elements, centroid, shear center

20
Xcg = 4.167 Ycg = 10

− 15 xD = 2.333 yD = 9.701 × 10 Y 15

10
Ix = 833.333

Iy = 31.25 Ixy = 0 5

Ixωc = 1.944 × 103 Iyωc = −3.032 × 10− 13
0

ΩDcg = −35

yD Ycg +Iyx 5.329 − 10 14 −
× =

Ycg

0 2 4 6 8
,

Iω = 2.292 × 103 X Xcg, xD+Xcg

− 14Ixω = 7.579 × 10

Note: the coordinate system in this plot is X, Y
Iyω = 1.137 × 10− 13 therefore xD and yD needs to have Xcg and Ycg

added back in
if the example is as in the starting point:	  0   20     0.5 
the results can be compared with Shames: example 11.20 X :=  5  Y :=  20  t :=  0.5

 5   0  
   0.5 
 0   0 

t1⋅b2

e = for channel shape where e = distance from web as shown
h

⋅2 b⋅t1 + t2⋅
3

tflange := t0 tweb := t1 b := 5
h := 20t1 := tflange t2 := tweb

t1⋅b2

e :=

⋅
h e = 1.5 from web as defined2 b⋅t1 + t2⋅
3

compares to distance from cg erel_cg := e + (5 − Xcg)
Xcg = 4.167

xD = 2.333 erel_cg = 2.333

17 notes_15_torsion_prop_calc.mcd

