
Numerical Treatment of IVP ODEs. . .
in a Nutshell

AT Patera, M Yano

October 31, 2014

Draft V1.3 ©MIT 2014. From Math, Numerics, & Programming for Mechanical Engineers
. . . in a Nutshell by AT Patera and M Yano. All rights reserved.

1 Preamble

Many phenomena and systems in science and engineering may be accurately modeled by
systems of IVP (initial value problem) ODEs (ordinary differential equations). As two simple
examples, at rather different scales, we cite the dynamics of an automobile suspension and
the motion of the planets in our solar system. In this nutshell we describe the essential
preparations and ingredients for numerical solution of this large and important class of
problems.

In this nutshell,

We introduce the concept of temporal discretization and the development of finite dif-
ference ODE approximation schemes from either a differentiation or integration per-
spective.

We provide the definitions of truncation error and consistency; absolute stability; and
solution error, convergence, and convergence rate (order). We emphasize the connec-
tions between consistency, absolute stability, and convergence.

We discuss the notion of stiff and non-stiff equations and the relative advantages of
implicit and explicit schemes in these respective contexts.

We derive several particular (illustrative) schemes: Euler Backward; Euler Forward;
Crank-Nicolson. We indicate the application of these schemes first to first-order linear
scalar IVP ODEs, then to general systems of first-order IVP ODEs.

We recall the framework by which a system of higher order equations, for example a
system of coupled oscillators, may be reduced to a system of first-order IVP ODEs.

We provide theoretical justifications as appendices.

Prerequisites: ODEs: first-order and second-order initial value problems; systems of first-
order initial value problems. Numerical calculus: differentiation and integration schemes.

© The Authors. License: Creative Commons Attribution-Noncommercial-Share Alike 3.0 (CC BY-NC-SA 3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors
and MIT OpenCourseWare source are credited; the use is non-commercial; and the CC BY-NC-SA license is
retained. See also http://ocw.mit.edu/terms/.

1

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://ocw.mit.edu/terms/

2 A Model Problem

2.1 Formulation

We wish to find a function w(t), 0 < t ≤ tf , such that

dw
= g(t, w), 0 < t tf , (1)

dt
≤

w(0) = w0 , (2)

for g a prescribed suitably smooth function of both arguments. The problem (1)-(2) is
an initial value problem (IVP) ordinary differential equation (ODE): we must honor the
initial condition (2) at time t = 0; we must satisfy the first-order ODE (1) for each time
t, 0 < t ≤ tf .

For much of this nutshell we shall consider the particular model problem

du
= λu+ f(t), 0 < t < tf , (3)

dt

u(0) = u0 , (4)

for λ a negative scalar real number and f(t) a prescribed function. Note that (3) is a
special case of (1): we choose g(t, w) ≡ λw + f(t), and we rename u ← w. (The latter
serves to highlight that we consider the special case of (1)-(2) given by (3)-(4).) We also
emphasize that the ODE (3) is a linear ODE; in general, (1) need not be linear, for example
g(t, w) = λw3 + f(t).

We can motivate our model problem (3)-(4) physically with a simple heat transfer sit-
uation. We consider a body at initial temperature u0 > 0 which is then “dunked” or
“immersed” into a fluid flow — forced or natural convection — of ambient temperature
zero. (More physically, we may view u0 as the temperature elevation above some non-zero
ambient temperature.) We model the heat transfer from the body to the fluid by a heat
transfer coefficient, h. We also permit heat generation within the body, q̇(t), due (say) to
Joule heating or radiation. If we now assume that the Biot number — the product of h
and the diameter of the body in the numerator, the thermal conductivity of the body in the
denominator — is small, the temperature of the body will be roughly uniform in space. In
this case, the temperature of the body as a function of time, u(t), will be governed by (3)-(4)
for λ ≡ −hArea/ρcVol and f(t) ≡ q̇(t)/ρcVol, where ρ and c are the density and specific
heat, respectively, and Area and Vol are the surface area and volume, respectively, of the
body.

Our model problem (3)-(4) shall provide a foundation on which to construct and under-
stand numerical procedures for much more general problems: (1)-(2) for general g, but also
systems of ordinary differential equations.

2.2 Some Representative Solutions

We shall first study a few important closed-form solutions to (3)-(4) in order to understand
the nature of the equation and also to suggest test cases for our numerical approaches. In

2

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

u
(t

)

λ = −1

λ = −0.5

λ = −4.0

Figure 1: The solution of our model IVP ODE (3)-(4) for u0 = 1, f(t) = 0, and several
different values of the parameter λ.

all cases these closed-form solutions may be obtained by standard approaches as described
in any introductory course on ordinary differential equations.

We first consider the homogeneous case, f(t) = 0. We directly obtain

u(t) = u0e
λt .

The solution starts at u0 (per the initial condition) and decays to zero as t→∞ (recall that
λ < 0). The decay rate is controlled by the time constant 1/|λ| — the larger the λ, the
faster the decay. The solutions for a few different values of λ are shown in Figure 1.

Next, we consider the case in which u0 = 0 and f(t) = 1. In this case, our solution is
given by

1
u(t) = eλt .

λ
− 1

The transient decays on the time scale 1/

()
|λ| such that as t→∞ we approach the steady-state

value of −1/λ.
Finally, let us consider a case with u0 = 0 but now a sinusoidal source, f(t) = cos(ωt).

Our solution is then given by

ω λ
u(t) = sin(ωt) cos(

ω2 + λ2
−
ω2 + λ2

(
ωt)− eλt

)
. (5)

We note that for low frequency there is no phase shift; however, for high frequency there is a
π/2 phase shift. The solutions for λ = −1, ω = 1 and λ = −20, ω = 1 are shown in Figure 2.
The short-time (initial transient) behavior is controlled by λ and is characterized by the time
scale 1/|λ|. The long-time behavior is controlled by the sinusoidal forcing function and is
characterized by the time scale 1/ω.

3

0 1 2 3 4 5
−1

0

1

t

u
(t

)

0 1 2 3 4 5
−0.05

0

0.05
λ = −1, ω = 1

λ = −20, ω = 1

Figure 2: Solutions to our model IVP ODE (3)-(4) for u0 = 0, f(t) = cos(ωt), for ω = 1 and
two different values of the parameter λ.

3 Euler Backward (EB): Implicit

3.1 Discretization

We first introduce J+1 discrete time points, or time levels, given by tj = j∆t, j = 0, 1, . . . , J ,
where ∆t = tf/J is the time step. For simplicity, in this nutshell we shall assume that the
discrete time levels are equispaced and hence the time step constant; in actual practice, a
variable or adaptive ∆t can greatly improve computational efficiency. We shall now search
for an approximation ũj to u(tj) for j = 0, . . . , J . We emphasize that our approximation ũj

is defined only at the discrete time levels j, 0 ≤ j
0 J

≤ J . (Note that j = 0 corresponds to
t = 0, and j = J corresponds to t = tf .) We may consider two different approaches to the
derivation: differentiation, or integration.

We first consider the differentiation approach. For any given time level tj, we approximate
(i) the time derivative in (3) — the left-hand side of (3) — at time tj by the first-order
Backward Difference Formula,

du j

(tj
ũj

)
− ũ −1

dt
≈ , (6)

∆t

and (ii) the right-hand side of (3) at tj by

λu(tj) + f(t) ≈ λũj + f(tj) .

We now equate our approximations for the left-hand and right-hand sides of (3) to arrive at

ũj − ũj−1
= λũj + f(tj) . (7)

∆t

We can apply our difference approximation (6) for j = 1, . . . , J , but not for j = 0, since ũ−1

does not exist. Fortunately, we have not yet invoked our initial condition, which provides

4

the final equation: ũ0 = u0. Our scheme is thus

ũj − ũj−1
= λũj + f(tj), j = 1, . . . , J , (8)

∆t

ũ0 = u0 . (9)

Note that (8)-(9) constitutes J + 1 equations in J + 1 unknowns. The Euler Backward
scheme is implicit because the solution at time level j appears on the right-hand side (more
precisely, in the approximation of the right-hand side of our differential equation, (3)).

We now consider the integration approach to the derivation of Euler Backward. Let us
say that we have in hand our approximation to u(tj−1), ũj−1. We may then write

tj

u(tj) = u(tj−1
du

) +

∫
dt

tj−1 dt

= u(tj−1) +

∫ tj

(λu+ f(t)) dt
tj−1

tj

≈ ũj−1 +

∫
(λu(t) + f(t)) dt

tj−1

≈ ũj−1 + (λũj + f(tj))∆t ≡ ũj , (10)

where in the last step, (10), we apply the rectangle, right rule of integration over the segment
(tj−1, tj). We now supplement (10) with our initial condition to arrive at

ũj = ũj−1 + (λũj + f(tj))∆t , j = 1, . . . , J , (11)

ũ0 = u0 , (12)

which is clearly equivalent to (8)-(9). We note that although the rectangle, right rule is a
convenient fashion by which to derive the Euler Backward scheme, there is an important
distinction between integration of a known function and integration of an ODE: in the latter
we must introduce the additional approximations in red in (10), which in turn admit the
possibility of instability; we shall discuss the latter in more depth shortly.

Finally, we can derive, from either (8)-(9) or (11)-(12), a formula by which we can “time
step” the Euler Backward approximation forward in time. In particular, we may solve for
ũj in (11) (or (8)) to obtain

ũj−1 + f(tj)∆t
ũj = , j = 1, . . . , J , (13)

1− λ∆t

ũ0 = u0 . (14)

We make two remarks. First, we may march the solution forward in time: there is no
influence of times t > tj on ũj, just as we would expect for an initial value problem. We
start with ũ0 = u0; we may then find ũ1 in terms of ũ0, ũ2 in terms of ũ1, ũ3 in terms of

5

ũ2, . . . , and finally ũJ in terms of ũJ−1. Second, at each time level tj, in order to obtain ũj,
we must divide by (1 − λ∆t). We shall later consider systems of ODEs, in which case this
division by a scalar will be replaced by “division” by a matrix: the latter of course refers to
the solution of a system of linear equations, which can be an expensive proposition.

CYAWTP 1. Consider the Euler Backward scheme for our model problem for u0 = 1,
f(t) = 0, and λ = −2 for tf = 1. Find ũJ for J = 1, J = 2, J = 4, J = 8, and J = 16.
How does ũJ compare to the exact solution, exp(−2), as you increase J (and hence decrease
∆t)? What convergence rate ũJ → exp(−2) might you expect based on your knowledge of
the rectangle, right rule of integration?

We anticipate that the solution ũj, j = 1, . . . , J , will converge to the true solution u(tj),
j = 1, . . . , J , as ∆t → 0 such that our finite difference approximation of (6) approaches
du/dt. We now summarize the convergence analysis.

3.2 Consistency

We first introduce the truncation error : we substitute the solution u(t) of the ODE, (3),
into the Euler Backward discretization of the ODE, (8), to define

u(tj)− u(tj−1
τ j

)
trunc ≡ − λu(tj)− f(tj), j = 1, . . . , J .

∆t

Note that if our Backward Finite Difference formula exactly reproduced the first derivative
then the truncation error would be zero: the truncation error is thus a measure of how
well our finite difference formula represents the continuous equation. We are particularly
interested in the largest of the truncation errors, defined as

τmax
trunc ≡ max

j=1,...,J
|τ jtrunc| .

The finite difference scheme is consistent with the ODE if and only if

τmax
trunc → 0 as ∆t→ 0 .

As we shall see, consistency is a necessary condition for convergence: the difference equation
must well approximate the differential equation.

We now consider our Euler Backward finite difference approximation, (8), to the ODE
(3). For f suitably smooth in time, we can derive

τmax ∆t d2u
trunc ≤ max (t) , (15)

2 t∈ 2[0,tf]

∣∣
dt

∣∣
as demonstrated in Appendix 8.1. Since τmax

∣∣ ∣
trunc

∣ ∣
→ 0 as ∆t

∣
→ 0, we conclude that our Euler

Backward approximation (8) is consistent with the ODE (3).

6

3.3 Stability

To study stability, let us consider the homogeneous version of our IVP ODE,

du
= λu , 0 < t

dt
≤ tf , (16)

u(0) = 1 . (17)

Recall that in this case, in which f(t) = 0, the exact solution is given by u(t) = eλt: u(t)
decays as t increases (since λ < 0). (Note that our choice u0 = 1 for the initial condition is
not important in the context of stability analysis.)

We now apply the Euler Backward scheme to this equation to obtain

ũj − ũj−1
= λũj, j = 1, . . . , J , (18)

∆t

u0 = 1 .

A scheme is absolutely stable if and only if

|ũj| ≤ |ũj−1|, j = 1, . . . , J . (19)

We note that our absolute stability requirement, (19), is quite natural. We know that the
exact solution to (16), u(t), decays in time. We may thus rightfully insist that the numerical
approximation to u(t), ũj of (18), should also decay in time.

We pause for three subtleties. First, absolute stability is an intuitive but also a rather
strong definition of stability. Although the notion of absolute stability suffices for our pur-
poses here, a weaker definition of stability is required to treat more general equations. Sec-
ond, in principle, stability depends only on our difference equation, and not on our differential
equation. In practice, since we also wish to ensure consistency, the form of the difference
equation reflects the differential equation of interest. Third, although it may appear that
we have ignored the inhomogeneity, f(t), in fact stability only depends on the homogeneous
operator. This conclusion naturally emerges from the error analysis, as we discuss further
below.

Let us now demonstrate that the Euler Backward scheme, (18), is absolutely stable for
all ∆t (under our hypothesis λ < 0). We first rearrange our difference equation, (18), to
obtain ũj − ũj−1 = λ∆t ũj, and hence ũj(1−λ∆t) = ũj−1, and finally |ũj| |1−λ∆t| = |ũj−1|.
We may then form

|ũj| 1
= γ , j = 1 . . . , J , (20)

|ũj−1| |1− λ∆t
≡
|

where γ (here independent of j) is denoted the amplification factor. It follows from the
definition of γ, (20), that we may rephrase our requirement (19) in terms of the amplfication
factor: our scheme is absolutely stable if and only if γ ≤ 1. We now recall that λ < 0, and
we thus directly obtain

1
γ = < 1 for all ∆t > 0 ; (21)

1− λ∆t

7

we may thus conclude that Euler Backward discretization of our model problem is absolutely
stable for all ∆t.

We close with a more refined characterization of absolute stability. A scheme is un-
conditionally absolutely stable if it is absolutely stable for all (positive) ∆t. A scheme is
conditionally absolutely stable if it is absolutely stable only for ∆t ≤ ∆tcr, where ∆tcr is
the critical time step. (Hence, for an unconditionally absolutely stable scheme, effectively
∆tcr = ∞.) We observe that, under our assumption λ < 0, the Euler Backward scheme for
our particular model problem, (18), is unconditionally absolutely stable.

3.4 Convergence

A scheme is convergent if the numerical approximation approaches the exact solution as the
time step, ∆t, is reduced. More precisely, convergence is defined as

ũj → u(tj) for fixed tj = j∆t as ∆t→ 0 . (22)

Note that fixed time tj = j∆t implies that the time level j must tend to infinity as ∆t→ 0.
(We note that the perhaps more obvious definition of convergence, ũj → u(tj) for fixed j as
∆t → 0, is, in fact, meaningless: for fixed j, tj = j∆t → 0 as ∆t → 0, and hence we only
confirm convergence to the initial condition.) Note (22) implies that as ∆t → 0 we must
take an infinite number of time steps to arrive at our discrete approximation.

The precise relationship between consistency, stability, and convergence is summarized in
the Dahlquist equivalence theorem. The theorem, or more precisely a more restrictive form
of this theorem, states that consistency and absolute stability imply convergence. Thus, we
need only demonstrate that a scheme is both consistent and stable in order to confirm that
the scheme is convergent. Consistency is required to ensure that the truncation error — the
error between the difference equation and the differential equation — is small; stability is
required to ensure that the truncation errors are controlled — amplification factor γ ≤ 1 —
by the difference equation.

In our current context, we may conclude that the Euler Backward approximation, ũj,
0 ≤ j ≤ J , (8)-(9), converges to the exact solution of our model problem, (3)-(4): consistency,
(15), and stability, (21), imply convergence, (22). We explicitly prove convergence, and hence
the Dahlquist theorem in this particular case, in Appendix 8.2.

3.5 Convergence Rate: Order

The Dahlquist equivalence theorem assures us that if a scheme is consistent and (absolutely)
stable then the scheme is convergent. However, the theorem does not state how rapidly the
approximation will converge to the exact solution as the time step, ∆t, is reduced. Formally,
a scheme is pth-order accurate if

|ej| ≤ C∆tp for fixed tj = j∆t as ∆t→ 0 ,

where ej ≡ u(tj)− ũj is the solution error. Note the distinction between the truncation error
and the solution error: the former measures the error in the difference equation, whereas

8

the latter measures the error in the approximate solution; the two errors are related through
stability.

In general, for a stable scheme, if the truncation error is pth-order accurate, then the
scheme is pth-order accurate:

τmax
trunc ≤ C∆tp ⇒ |ej| ≤ C∆tp for a fixed tj = j∆t .

In other words, once we confirm the stability of a scheme, then we need only analyze the
truncation error to predict the convergence rate of the solution error. In general it is relatively
simple to estimate, or intuit, the dependence of the truncation error on ∆t.

We now consider Euler Backward approximation of our model problem. We may conclude
from (15) and (21) that the solution error will decrease as ∆t as ∆t→ 0: the Euler Backward
scheme is first-order accurate, p = 1 (for f suitably smooth). We develop a precise bound
in Appendix 8.2: for any positive ∆t,

|ej| ≤ C∆t for fixed tj = j∆t ,

where

t 2
f

C ≡ max
2 t∈ 2[0,tf

∣∣d u
(t)

] dt

∣∣
th

∣
.

Figure 3 presents e convergence behavior of

∣
the Euler

∣∣
Backward approximation of our

model problem for u0 = 1, f(t) = 0, and λ =

∣ ∣
−4 for tf = 1. We choose for our time of

interest — the fixed time at which we measure the error — the final time, t = tf = 1. We
observe that, as predicted by the theory, the solution error decreases as ∆t: the slope of the
log of the error vs the log of ∆t is 1.

4 Euler Forward (EF): Explicit

We again introduce J + 1 discrete time points, or time levels, given by tj = j∆t, j =
0, 1, . . . , J , where ∆t = tf/J is the time step. We search for an approximation ũj to u(tj)
for j = 0, . . . , J . (In principle, we should denote our Euler Backward approximation by
(say) ũjEB and our Euler Forward approximation by (say) ũjEF, however more simply we shall
rely on context. In this section, ũj shall always refer to Euler Forward.) We may consider
two different approaches to the derivation of the Euler Forward scheme: differentiation, or
integration.

We first consider the differentiation approach. For any given time level tj
′
, we approxi-

mate (i) the time derivative in (3) — the left-hand side of (3) — at time tj
′
by the first-order

Forward Difference Formula,

du
(tj

ũj
′+1

′
)

− ũj′≈ , (23)
dt ∆t

and (ii) the right-hand side of (3) at tj
′

by

λu(tj
′
) + f(tj

′
) λũj

′
+ f(tj

′
) .≈

9

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

u

∆t = 0.5

∆t = 0.125

∆t = 0.03125

exact

(a) solution

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

1.00

∆t

|e
(t

=
1
)|

(b) error

Figure 3: The convergence behavior of the Euler Backward approximation of our model
problem for u0 = 1, f(t) = 0, and λ = −4 for tf = 1. Note |e(t = 1)| ≡ |u(tj) − ũj| at
tj = j∆t = 1.

Note the one, and only, difference between Euler Forward and Euler Backward: in the former
we consider a forward difference, whereas in the latter we consider a backward difference.
We now equate our approximations for the left-hand and right-hand sides of (3) to arrive at

ũj
′+1 − ũj′

= λũj
′
+ f(tj

′
) .

∆t

We next apply our initial condition to arrive at J + 1 equations in J + 1 unknowns:

ũj
′+1 − ũj′ ′

= λũj + f(tj
′
) , j = 0, . . . , J 1 , (24)

∆t
−

ũ0 = u0 .

Finally, we shall shift our indices, j = j′ + 1, such that — for uniform comparison between
various schemes — the largest time level in our difference equation is tj:

ũj − ũj−1
= λũj−1 + f(tj−1), j = 1, . . . , J , (25)

∆t

ũ0 = u0 . (26)

The Euler Forward scheme is explicit because the solution at time level j does not appear on
the right-hand side of our difference equation (more precisely, in the approximation of the
right-hand side of our differential equation, (3)).

We now consider the integration approach to the derivation of Euler Forward. Let us say

10

that we have in hand our approximation to u(tj−1), ũj−1. We may then write

u(tj) = u(tj−1) +

∫ tj du
dt

tj 1 dt−

= u(tj−1) +

∫ tj

(λu+ f(t)) dt
tj−1

≈ ũj−1 +

∫ tj

(λu(t) + f(t)) dt
tj−1

≈ ũj−1 + (λũj−1 + f(tj−1))∆t ≡ ũj , (27)

where in the last step, (27), we apply the rectangle, left rule of integration over the segment
(tj−1, tj). We now supplement (27) with our initial condition to arrive at

ũj = ũj−1 + (λũj−1 + f(tj−1))∆t , j = 1, . . . , J , (28)

ũ0 = u0 , (29)

which we see is equivalent to (25)-(26). Note the one, and only, difference between Euler
Forward and Euler Backward: in the former we consider rectangle, left, whereas in the latter
we consider rectangle, right. We again note, now in the case of Euler Forward, that there is
an important distinction between integration of a known function and integration of an ODE:
in the latter we must introduce the additional approximations in red in (27), which in turn
admit the possibility of instability — in the case of Euler Forward, a very real possibility.

We make two remarks. First, we observe directly from (28)-(29) that we may march the
solution forward in time: there is no influence of times t > tj on ũj, just as we would expect
for an initial value problem. We start with ũ0 = u0; we may then find ũ1 in terms of ũ0,
ũ2 in terms of ũ1, ũ3 in terms of ũ2, . . . , and finally ũJ in terms of ũJ−1. Second, at each
time level tj, in order to obtain ũj, we must multiply ũj−1 by (1 + λ∆t) (and also multiply
f(tj−1) by ∆t). We shall later consider systems of ODEs, in which case this multiplication
by a scalar will be replaced by multiplication by a matrix, a not-so-expensive proposition.

CYAWTP 2. Consider the Euler Forward scheme for our model problem for u0 = 1, f(t) =
0, and λ = −2 for tf = 1. Find ũJ for J = 1, J = 2, J = 4, J = 8, and J = 16. How does ũJ

compare to the exact solution, exp(−2), as you increase J (and hence decrease ∆t)? What
convergence rate ũJ → exp(−2) might you expect based on your knowledge of the rectangle,
left rule of integration?

We now analyze the consistency and stability of the scheme. We first consider consistency.
It is readily demonstrated, by arguments quite similar to the development provided in 8.1
for Euler Backward, that for the Euler Forward scheme

max ∆t d
τtrunc ≤ max

2 t∈(0,tf)

∣∣∣ 2u
(t)

dt2

∣∣∣
. (30)∣∣ ∣∣

11

We observe that τmax
trunc → 0 as ∆t → 0, and hence the Euler Forward scheme is consistent

with our ODE (3). We furthemore note that our bound for the truncation error for Euler
Forward, (30), is identical to our bound for the truncation error for Euler Backward, (15),
and we might thus conclude that the two schemes will in general produce similar results.
This is not always the case: we must also consider stability.

To analyze the stability of the scheme we consider the homogeneous ODE. In particular,
Euler Forward approximation of (16) yields

ũj − ũj−1
= λũj−1, j = 1, . . . , J , (31)

∆t

u0 = 1 .

We first rearrange our difference equation, (31), to obtain ũj − ũj−1 = λ∆tũj−1, hence
|ũj| = |1 + λ∆t||ũj−1|. We may then form

|ũj|
= |1 + λ∆t| ≡ γ , j = 1 . . . , J , (32)

|ũj−1|
where γ (here independent of j) is our amplification factor. We recall that our condition (19)
can be recast in terms of the amplification factor: our Euler Forward scheme is absolutely
stable if and only if γ ≤ 1. It follows from (32) that our stability condition is |1 + λ∆t| ≤ 1,
which we may unfold as

−1 ≤ 1 + λ∆t ≤ 1 , or

−2 ≤ λ∆t ≤ 0 .

The right inequality provides no information, since λ∆t is perforce negative due to our
assumption λ < 0 (and ∆t > 0). The left inequality yields

2
∆t ≤ −

λ
≡ ∆tcr .

(Note that since λ is negative we must reverse the inequality in −2 ≤ λ∆t upon division by
λ.) Thus the Euler Forward scheme is absolutely stable only for ∆t ≤ ∆tcr: the scheme is
conditionally absolutely stable.

We discuss the convergence behavior of the Euler Forward scheme for our model problem
for the particular case in which u0 = 1, f(t) = 0, and λ = −4 for tf = 1. We can readily
calculate that, for these parameter values, our critical time step for stability is ∆tcr =
−2/λ = 1/2. For ∆t ≤ ∆tcr = 1/2, and in particular as ∆t → 0, we expect convergence.
We furthermore anticipate, from our bound for the truncation error, (30), a convergence
rate (order) of p = 1. We provide numerical evidence for these claims in Figure 4. In
contrast, for ∆t > ∆tcr, we expect instability. To demonstrate this claim, we consider
∆t = 1 (> ∆tcr = 1/2). In this case, the Euler Forward scheme (28)-(29), for our particular
choice of parameters, reduces to

ũj = −3ũj−1 , j = 1, . . . , J , (33)

ũ0 = 1 . (34)

12

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

u

∆t = 0.125

∆t = 0.0625

∆t = 0.03125

exact

(a) solution

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

1.00

∆t

|e
(t

=
1
)|

(b) error

Figure 4: The convergence behavior for the Euler Forward approximation of our model
problem for u0 = 1, f(t) = 0, and λ = −4 for tf = 1. Note |e(t = 1)| ≡ |u(tj) − ũj| at
tj = j∆t = 1.

The solution to this simple difference equation is ũj = (−3)j. The numerical approximation
grows exponentially in time — in contrast to the exact solution, which decays exponentially in
time — and furthermore oscillates in sign — in contrast to the exact solution, which remains
strictly positive. In short, the Euler Forward approximation is useless for ∆t > ∆tcr: Euler
Forward estimates the solution at time level j from the derivative evaluated at time level
j− 1; for ∆t too large, the extrapolation overshoots such that we realize growth rather than
decay.

We should emphasize that the instability of the Euler Forward scheme for ∆t > ∆tcr is
not due to round-off errors (which involve “truncation,” but not truncation of the variety
discussed in this nutshell). In particular, all of our arguments related to stability — and
the effects of instability through the amplification of truncation error — still obtain even in
infinite-precision arithmetic. Indeed, there are no round-off errors or other finite-precision
effects in our “by-hand” example of (33)-(34). Of course, an unstable difference equation will
also amplify round-off errors, but that is an additional consideration and not the primary
reason for the explosion.

5 Stiff Equations: Implicit vs. Explicit

We can understand the relative benefits of implicit and explicit schemes in the context of
stiff equations — equations which exhibit disparate time scales. As our very simple example
we shall consider our model problem with sinusoidal forcing,

du
= λt+ cos(ωt) , 0 < t

dt
≤ tf , (35)

u(0) = 0 , (36)

13

for the particular case in which |λ| � ω (and tf is on the order of 1/ω, such that we consider
at least one period of the sinusoidal source). The analytical solution u(t) is given by (5) and
presented in Figure 2. The short-time (transient, or homogeneous) response of the solution
is dictated by the time constant 1/|λ|; the long-time (steady-periodic, or inhomogenous)
response is governed by the time constant 1/ω � 1/|λ|. We shall consider the case in which
λ = −100 and ω = 4; the transient and steady-periodic time scales differ by a factor of 25.
We present in Figure 5 the Euler Backward and Euler Forward approximations, respectively,
for three different values of the time step, ∆t: ∆t = 0.015625, ∆t = 0.0625, and ∆t = 0.25.

We first consider the results for the Euler Backward scheme. We recall that the Euler
Backward scheme is stable for any time step ∆t: the numerical results of Figure 5(a) confim
that the Euler Backward approximation is, indeed, bounded for all time steps considered.
For a large time step, in particular ∆t > 1/|λ|, our Euler Backward approximation does
not capture the initial transient, however it does still well represent the long-term sinusoidal
behavior: Figure 5(b) confirms good accuracy. Thus, if the initial transient is not of interest,
rather than choose a ∆t associated with the characteristic time scale 1/|λ| — say ∆t = 0.01
— we may select a ∆t associated with the characteristic time scale 1/ω — say ∆t = 0.1. We
can thereby significantly reduce the number of time steps, tf/∆t.

We next turn to Euler Forward. We recall that the Euler Forward scheme is only condi-
tionally stable: for our model problem, and for the particular parameter values associated
with Figure 5, the critical time step is ∆tcr = 2/|λ| = 0.02. We may obtain, and we show
in Figure 5(c), the Euler Forward numerical solution for only one of the three time steps
proposed, ∆t = 1/64 < ∆tcr, as the other two time steps considered (∆t = 1/16, ∆t = 1/4)
are greater than ∆tcr. Thus, even if we are not interested in the initial transient, we cannot
select a large time step because the Euler Forward approximation will grow exponentially
in time — clearly not relevant to the true sinusoidal behavior of the exact solution. The
exponential growth of the error for ∆t > ∆tcr is clearly reflected in Figure 5(d).

CYAWTP 3. Consider (35)-(36) for the parameter values λ = 100, ω = 4 and tf = 1
considered in this section. For the case of Euler Backward discretization, how many time
steps, J , are required to achieve an accuracy of |e(t = 1)| = 0.0001 (note that the amplitude
of the solution is 0.01, and hence |e(t = 1)| = 0.0001 corresponds to a 1% error)? You may
refer to Figure (5)(b). For the case of Euler Forward discretization, how many time steps,
J , are required to achieve an accuracy of |e(t = 1)| = 0.0001?

CYAWTP 4. Consider (35)-(36) for the parameter values λ = 100, ω = 4 and tf = 1
considered in this section. Now assume that we are interested in both the transient behavior
and the steady-periodic behavior. For the case of Euler Backward discretization with a
variable time step — hence time levels tj, 0 ≤ j ≤ J , which are not equispaced — how
many time steps, J , are required to achieve an accuracy, for all tj, 0 ≤ j ≤ J , of roughly
0.0005? You may refer to Figure (5)(a) and assume (roughly true in this instance, though
not always) that you may “jump” from the solution for one ∆t to the solution for another
∆t at any time at which the two errors are commensurate (without incurring any “residual”
or additional error).

Stiff equations are ubiquitous in science and engineering. It is not uncommon to encounter
problems for which the time scales may range over ten orders of magnitude. For example,

14

0 0.2 0.4 0.6 0.8 1

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

t

u

∆t = 0.25

∆t = 0.0625

∆t = 0.015625

exact

(a) Euler Backward (solution)

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

1.00

∆t

|e
(t

=
1

)|

(b) Euler Backward (convergence)

0 0.2 0.4 0.6 0.8 1

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

t

u

∆t = 0.25

∆t = 0.0625

∆t = 0.015625

exact

(c) Euler Forward (solution)

10
−3

10
−2

10
−1

10
0

10
−10

10
−5

10
0

10
5

10
10

1.00

∆t

|e
(t

=
1

)|

(d) Euler Forward (convergence)

Figure 5: Application of the Euler Backward and Euler Forward schemes to a stiff equation.
Note |e(t = 1)| ≡ |u(tj)− ũj| at tj = j∆t = 1.

15

the time scales associated with the dynamics of a passenger jet are many orders of magnitude
larger than the time scales associated with the smallest eddies in the turbulent air flow outside
the fuselage. In general, if the dynamics of the smallest time scale is not of interest, then an
unconditionally stable scheme may be computationally advantageous: we may select the time
step necessary to achieve sufficient accuracy without reference to any stability restriction.
There are no explicit schemes which are unconditionally stable, and for this reason implicit
schemes are often preferred for stiff equations.

We might conclude that explicit schemes serve very little purpose. In fact, this is not the
case. In particular, we note that for Euler Backward, at every time step, we must effect a
division operation, 1/(1− (λ∆t)), whereas for Euler Forward we must effect a multiplication
operation, 1 + (λ∆t). Shortly we shall consider the extension of our methods to systems,
often large systems, of many ODEs, in which the scalar algebraic operations of division
and multiplication translate into matrix division and matrix multiplication, respectively. In
general, matrix division — solution of linear systems of equations — is much more costly than
matrix multiplication. Hence the total cost equation is more nuanced, as we now describe.

The computational effort can be expressed as the product of J , the number of time steps
to reach the desired final time, tf , and the “work” (or FLOPs) per time step. An implicit
scheme will typically accommodate a large time step ∆t, hence J = tf/∆t small, but demand
considerable work per time step. In contrast, an explicit scheme will typically require a small
time step ∆t, hence J = tf/∆t large, but demand relatively little work per time step. For
stiff equations in which the ∆t informed by accuracy considerations is much, much larger
than the ∆tcr dictated by stability considerations (for explicit schemes), implicit typically
wins: fewer time steps, J , trumps more work per time step. On the other hand, for non-stiff
equations, in which the ∆t informed by accuracy considerations is of the same order as ∆tcr
dictated by stability considerations (for explicit schemes), explicit often wins: since we shall
select in any event a time step ∆t which satisfies ∆t ≤ ∆tcr, we might as well choose an
explicit scheme to minimize the work per time step. Short summary: stiff implicit; non-stiff
explicit.

6 Extensions

6.1 A Higher-Order Scheme

We have provided an example of an implicit scheme, Euler Backward, and an explicit scheme,
Euler Forward. However, both these schemes are first-order. We provide here an example of
a second-order scheme: the Crank-Nicolson method.

We again consider our model problem (3)-(4). The Crank-Nicolson approximation, ũj ≈
u(tj), 0 ≤ j ≤ J , satisfies

ũj − ũj−1 1
= j 1

(λũ + f(tj)) + (λũj−1 + f(tj−1)) , j = 1, . . . , J , (37)
∆t 2 2

ũ0 = u0 . (38)

The Crank-Nicolson scheme is implicit. It can be shown that the scheme is unconditionally
stable (for our model problem) and second-order accurate.

16

CYAWTP 5. Derive the Crank-Nicolson scheme by the integration approach: follow the
same procedure as for Euler Backward and Euler Forward, but rather than the rectangle in-
tegration rule (right, and left, respectively), consider now for Crank-Nicolson the trapezoidal
integration rule.

CYAWTP 6. Demonstrate that, for λ < 0, the Crank-Nicolson scheme is unconditionally
stable: consider the homogeneous version of (37); demonstrate that the amplification factor,
γ ≡ |ũj|/|ũj−1|, is less than or equal to unity for all positive ∆t.

CYAWTP 7. Consider the Crank-Nicolson scheme for our model problem for u0 = 1,
f(t) = 0, and λ =

J

−2 for tf = 1. Find ũJ for J = 1, J = 2, J = 4, J = 8, and J = 16.
How does ũ compare to the exact solution, exp(−2), as you increase J (and hence decrease
∆t)? What convergence rate ũJ → exp(−2) might you expect based on your knowledge of
the trapezoidal rule of integration?

In general, high-order schemes — both implicit and explicit — can be quite efficient:
a relatively modest increase in effort per time step (relative to low-order schemes), but
considerably higher accuracy, at least for smooth problems. The Crank-Nicolson scheme is
but one example of a high-order method: other examples, very popular, include the (implicit
and explicit) Runge-Kutta multistage schemes.

6.2 General First-Order Scalar ODEs

At the outset we posed the general problem (1)-(2). We now return to this problem, and
consider the application of the Euler Backward, Euler Forward, and Crank-Nicolson schemes
to this much broader class of ODEs. The form of each scheme follows rather directly from
the integration rule perspective. To wit, for Euler Backward (rectangle, right rule) we obtain

w̃j = w̃j−1 + ∆tg(tj, w̃j) , j = 1, . . . , J ; (39)

for Euler Forward (rectangle, left rule) we obtain

w̃j = w̃j−1 + ∆tg(tj−1, w̃j−1) , j = 1, . . . , J ; (40)

and for Crank-Nicolson we obtain

w̃j = w̃j
∆−1 t

+ g(tj, w̃j
∆t

) + g(tj−1, w̃j−1) , j = 1, . . . , J . (41)
2 2

Note in each case we must supplement the difference equation with our initial condition,
w̃0 = w0.

6.3 Systems of First-Order ODEs

6.3.1 Formulation

We now consider a general system of n ODEs given by

dw
= g(t, w) , 0

dt
≤ t ≤ tf ,

(42)

w(0) = w0 .

17

Here w is an n × 1 (column) vector of unknowns, w = (w1 w2 · · · wn)T — w is often
referred to as the state vector , and the wi, 1 ≤ i ≤ n, as the state variables; g(t, w) is an
n× 1 column vector of functions,

g(t, w) = (g1(t, w) g2(t, w) · · · gn(t, w))T , (43)

which represents the “dynamics”; and w0 is an n× 1 vector of initial conditions. In (42) we
may admit any function g(t, w) of nominal regularity.

Also of interest is the case of a linear system of first-order ODEs. In this case our n× 1
vector g(t, w) takes the form

g(t, w) = A(t)w + F (t) , (44)

where A(t) is an n× n matrix (hence A(t)w is an n× 1 vector, as required) and F (t) is an
n× 1 vector. In this case, (42) reduces to

dw
= A(t)w + F (t) , (45)

dt

w(0) = w0 .

The formulation (and analysis) further simplifies if A(t) is time-independent, A(t) = A.
We now consider the application of the Euler Backward, Euler Forward, and Crank-

Nicolson schemes to this system of equations. In fact, expressed in vector form, there is
no change from the scalar case already presented in Section 6.2. Rather than repeat these
equations verbatim, we instead present the system equations for the case of a linear system
of ODEs with time-independent A: for Euler Backward we obtain

w̃j = w̃j−1 + ∆t (Aw̃j + F (tj)) , j = 1, . . . , J ; (46)

for Euler Forward we obtain

w̃j = w̃j−1 + ∆t (Aw̃j−1 + F (tj−1)) , j = 1, . . . , J ; (47)

and for Crank-Nicolson we obtain

w̃j
∆t ∆t

= w̃j−1 + (Aw̃j + F (tj)) + (Aw̃j−1 + F (tj−1)) , j = 1, . . . , J . (48)
2 2

Note in all cases we must supplement the difference equation with our initial condition,
w̃0 = w0.

As always, Euler Backward and Crank-Nicolson are implicit schemes, whereas Euler For-
ward is an explicit scheme. We can now finally more explicitly identify the key computational
difference between implicit and explicit schemes. For Euler Backward, (46), at each time
level, to obtain w̃j, we must solve a system of n linear equations in n unknowns :

(−∆tA+ I)w̃j = w̃j−1 + ∆t F (tj) ,

where I is the n×n identity matrix. In constrast, for Euler Forward, (47), at each time level,
to obtain w̃j, we need only evaluate the product of an n × n matrix and an n × 1 vector.

18

Hence our earlier claim that, in general, an implicit method will require more work per time
step than an explicit method.

We now summarize the performance of these schemes. The Euler Backward scheme
(46) is unconditionally absolutely stable for ODEs which are stable (in the sense that the
eigenvalues of A are all of non-positive real part). However, the Euler Backward scheme is
only first-order accurate, and hence often not the best choice. The Euler Forward scheme,
(47), is only conditionally absolutely stable, and furthermore only first-order accurate. The
Euler Forward scheme is almost never the best choice: we include it here in this nutshell
primarily for illustrative value, but also because it often appears as a “building block”
in more advanced numerical approaches. Much better explicit schemes, appropriate for
non-stiff equations, are available — larger ∆tcr and higher-order accuracy: Runge-Kutta
schemes are the most popular. Finally, the Crank-Nicolson scheme, (48), is unconditionally
absolute stable for ODEs which are stable. (Note, however, that Crank-Nicolson can exhibit
amplification factors which approach unity, which can on occasion create difficulties.) The
Crank-Nicolson scheme is also second-order accurate, and hence often a very good choice in
practice. Good alternatives, with somewhat better stability characteristics and also higher-
order accuracy, include implicit Runge-Kutta methods.

6.3.2 Reduction to First-Order Form

We begin our discussion with the classical second-order harmonic oscillator so ubiquitous in
engineering applications:

d2y dy
m + c + ky = f(t), 0 < t < tf ,
dt2 dt

dy
y(0) = y0 , (0) = ẏ0 .

dt

This second-order ODE governs the oscillations of (say) a spring-mass-damper system as a
function of time t: y is the displacement, m is the lumped mass, c is the damping constant,
k is the spring constant, and f represents the external forcing. From a mathematical per-
spective, this IVP ODE is second-order — we thus require two initial conditions, one for the
displacement, and one for the velocity — and also linear.

It is possible to directly numerically tackle this second-order system, for example with
Newmark integration schemes. However, we shall prefer here to reduce our second-order
IVP ODE to a system of two first-order IVP ODEs such that we can then directly apply
the general technology developed in the previous sections — and by the computational
community — for systems of first-order IVP ODEs. The transformation from second-order
IVP ODE to two first-order IVP ODEs is very simple.

We first choose our state variables as

dy
w1(t) = y(t) and w2(t) = (t) ,

dt

corresponding to the displacement and velocity, respectively. We directly obtain the trivial

19

relationship between w1 and w2

dw1 dy
= = w2 .

dt dt

Furthermore, the governing second-order ODE can be rewritten in terms of w1 and w2 as

dw2 d dy d2y b dy k 1 b k 1
= = = − − y + f(t) = − w2 − w1 + f(t) .

dt dt dt dt2 m dt m m m m m

We can thus rewrite the original second-order ODE as a system of two first-order ODEs,

d
(
w1

) (
w2

=
dt w2 − k w1m

− b w2 + 1 f
m m

)
.

This equation can be written in the matrix form as

d

dt

(
w1

=
w

) (
0 1 w1 0

+ (49)
− k − b 1

2 m m

)(
︸ w2

) (
A

︸ f
m

)
︷︷

F

with the initial condition w1(0) = y0, w2(0) = ẏ0. If we no

︸
w define

︷︷ ︸
w = (w1 w2)

T we
recognize that (49) is precisely of the desired first-order system form, (45).

CYAWTP 8. Consider the nonlinear second-order IVP ODE given by ÿ + y3 = f(t),
y(0) = y0, ẏ(0) = ẏ0. Reduce this equation to a system of two first-order IVP ODEs of
the form (42): identify the state vector; the “dynamics” function (vector) g; and the initial
conditions.

...
CYAWTP 9. Consider the third-order linear IVP ODE given by − z + z̈ − ż = f(t),
z(0) = z0, ż(0) = ż0, z̈(0) = z̈0. Reduce this equation to a linear system of three first-order
IVP ODEs of the form (45): identify the state vector; the elements of A and F ; and the
initial condition vector.

To close we consider a more general case: n/2 coupled oscillators (for n an even integer);
the oscillators may represent different degrees of freedom in a large system. These coupled
oscillators can be described by the set of equations

d2y(1) (j)

= F (1)

(
dy

, y(j), 1
dt2 dt

≤ j ≤ n/2

)
+ f (1)(t) ,

d2y(2) (2)

(
dy(j)

= , y(j), 1 j n/2 + f (2)(t) ,
dt2

F
dt

≤ ≤

)
(50)

...

d2y(n/2) dy(j)
= (n/2) , y(j), 1 j n/2 + f (n/2)(t) ,

dt2
F

(
dt

≤ ≤

)

20

where F (j), 1 ≤ j ≤ n/2, are specified functions.
We first convert this system of equations to state space form. We identify

(1) dy(1)
w1 = y , w2 = ,

dt

w3 = y(2)
dy(2)

, w4 = ,
dt

...

dy(n/2)
wn 1 = y(n/2), wn = ,−

dt

from which we form our n × 1 state vector. We can then express (50) as (42), where the
n× 1 vector g(t, w) isgiven by wi+1 i = 1, 3, . . . , n 1

gi(t, w) =
−

,
F (i/2) (expressed in terms of w) i = 2, 4, . . . , n

and w0 is the n× 1 initial


condition vector expressed in terms of the (two) initial conditions

on each of the y(j), 1 ≤ j ≤ n/2,

T
dy

w0 =

(
(1)

y(1)(0) (0) y(2)
dy(2)

(0) (0) . . . y(n/2)
dy(n/2)

(0) (0) .
dt dt dt

)
This same procedure readily specializes to linear systems in the case in which g(t, w) takes
the form (44).

CYAWTP 10. Consider two beads each of mass m on a string under tension T . The string
is fixed at x = 0 and x = L and the two beads are positioned horizontally at x = L/3 and
x = 2L/3, respectively. We denote respectively by y(1)(t) and y(2)(t) the vertical position of
the first bead and the second bead as a function of time t. Under the assumption of small-
angle displacements (and negligible damping) the system is described by the pair (n/2 = 2)
of coupled oscillators

d2y(1) 3T
m + (2y(1) − y(2)) = f (1)(t)

dt2 L

d2y(2) 3T
m + (2y(2)

dt2 L
− y(1)) = f (2)(t) ,

(1) (1) (2) (2)
with initial conditions y(1)(0) = y0 , ẏ(1)(0) = ẏ0 , y(2)(0) = y0 , ẏ(2)(0) = ẏ0 . Here
f (1)(t) and f (2)(t) denote the applied vertical force on the first bead and the second bead,
respectively. Reduce this equation to a linear system of four first-order IVP ODEs of the
form (45): identify the state vector; the elements of A and F ; and the initial condition
vector.

21

7 Perspectives

We have provided here only a first look at the topic of integration of IVP ODEs. A more in-
depth study may be found in Math, Numerics, and Programming (for Mechanical Engineers),
M Yano, JD Penn, G Konidaris, and AT Patera, available on MIT OpenCourseWare; this text
adopts similar notation to these nutshells, and hence can serve as a companion reference. For
an even more comprehensive view, from both the computational and theoretical perspectives,
we recommend Numerical Mathematics, A Quarteroni, R Sacco, F Saleri, Springer, 2000.

We briefly comment on two related topics.

1. We have focused here exclusively on IVP ODEs: initial value problems. In fact, BVP
ODEs also appear frequently in engineering analysis: boundary value problems. Al-
though BVP ODEs do share some features, in particular related to finite difference
discretization, with IVP ODEs, BVPs are fundamentally different from IVPs as re-
gards both theoretical foundations and also computational procedures.

2. We have discussed here exclusively ODEs: ordinary differential equations. Partial dif-
ferential equations (PDEs) also appear frequently in engineering analysis. In fact, the
methods we present in this nutshell are rather directly relevant to the approximation of
PDEs, in particular evolution equations: we may think of A in (45) as a discretization
of the “spatial” part of the partial differential operator.

We note that, for ODEs, essentially all consistent schemes — even schemes which are
conditionally stable — are convergent: as ∆t tends to zero we will perforce satisfy
∆t ≤ ∆tcr. However, for PDEs, the situation is different: the critical time step may
depend on the spatial discretization (say ∆x, inversely proportional to n), and if ∆t
and ∆x do not tend to zero in the proper ratio then convergence will not be realized.
On a related note, all partial differential equations are, in effect, stiff: this places a
premium on implicit approaches, and on efficient solver strategies which exploit, for
example, the sparsity and structure of A.

Both of these topics are discussed in considerable depth in Numerical Mathematics, A Quar-
teroni, R Sacco, F Saleri, Springer, 2000.

8 Appendices

8.1 Euler Backward: Consistency

Let us now analyze the consistency of the Euler Backward integration scheme. We shall
assume that our solution u of (3) is twice continuously differentiable with respect to time.
To start, we construct a Taylor expansion for u(tj−1) about tj,

j

du t τ d2u
u(tj−1) = u(tj)−∆t (tj) (s) ds dτ . (51)

dt
−
∫
tj−1

(∫
dt2tj−1

)
sj(u)

︸ ︷︷ ︸
22

The expansion (51) is simple to derive. First, by the fundamental theorem of calculus,∫ τ d2u du du
(s) ds = (τ)− (tj−1) . (52)

2
tj−1 dt dt dt

Integrating both sides of (52) over the interval (tj−1, tj),∫ tj
(∫ τ

) ∫ tjd2u
(
du

) ∫ tj du
(s) ds dτ = (τ) dτ (tj−1) dτ

2
tj−1 tj 1 dt tj−1 dt

−
tj−1

(
dt−

)
du

= u(tj)− u(tj−1)− (tj − tj−1) (tj−1)
dt

= u(tj)− u(tj−1
du

)−∆t (tj−1) . (53)
dt

If we now in (53) move u(tj−1) to the left-hand side and sj(u) to the right-hand side we
directly obtain (51).

We now subsitute our Taylor expansion (51) into the expression for the truncation error,

j u(tj)− u(tj−1)
τtrunc ≡ − λu(tj)− f(tj) , j = 1, . . . , J ,

∆t

to obtain

τ j
1 du

=

(
u(tj)−

(
u(tj)−∆t (tj)− sj j

trunc (u)
∆t dt

))
− λu(t)− f(tj)

du j
j j j s (u)

= (t)
dt

− λu(t)− f(t) +︸ ∆t

=0 from our

s

︷︷
ODE, (3)

j(u)

︸
= j = 1, . . . , J .

∆t

We now bound the remainder term sj(u) as a function of ∆t. In particular, we note that

∫ tj

j(u) =
tj

(∫ τ d2u
s (s) ds

1 tj 1 dt2

)
t

dτ ≤
∫ j

tj 1

∫
1

∣∣ τ 2

j

∣∣d u∣ (s) ds dτ
t dt2− − − −

∣∣ ∣∣∣ 
d2u tj τ

≤ max (t) ds dτ
t∈[tj−1,tj

∣∣∣
dt2]

∣∣∣ ∫ ∫∣∣
d2u

∣∣ tj−1 tj−1

∆t2
= max

∣∣
(t)
∣∣

, j = 1, . . . , J .
∈[j−1,tj 2t t] dt 2

∣∣∣ ∣∣∣
23

Hence we may bound the maximum truncation error as

2 2 2

τmax = max |τ j


d
trunc trunc| ≤ max  1 ∣∣∣∣

∣
u ∆t ∆t d u

max (t) max
[j 2j=1,...,J j=1,...,J ∆t t∈ t −1,tj] dt

∣∣∣∣∣ (t) .
2


≤

2 t∈[0,tf]

∣∣
dt2

∣∣

It

 ∣∣ ∣
directly follows that

∣ ∣∣

τmax ∆t d2u
trunc ≤ max

∣∣∣∣∣ (t)

∣∣∣∣∣ → 0 as ∆t→ 0 , (54)
2 t∈[0,tf] dt2

and hence the Euler Backward scheme (8) is consistent with our ODE (3).

8.2 Euler Backward: Convergence

Let us denote the solution error by ej,

ej ≡ u(tj)− ũ(tj) .

We first relate the evolution of the error to the truncation error. To begin, we recall that

u(tj)− u(tj−1)− λ∆t u(tj)−∆t f(tj) = ∆t τ jtrunc ,

ũj − ũj−1 − λ∆t ũj −∆tf(tj) = 0 ;

subtracting these two equations and recalling the definition of the error, ej ≡ u(tj)− ũj, we
obtain

ej − ej−1 − λ∆t ej = ∆t τ jtrunc ,

or, upon rearrangment,

(1− λ∆t)ej − ej−1 = ∆t τ jtrunc . (55)

We see that the solution error itself satisfies an Euler Backward difference equation, but now
with the truncation error as the source term. Furthermore, since u(0) = ũ0 = u0, e

0 = 0. It
follows that, if the truncation error τ jtrunc is zero at all time levels, then the solution error is
also zero at all time levels.

However, in general, the truncation error is nonzero. To proceed, we multiply (55) by
(1− λ∆t)j−1 to obtain

(1− λ∆t)jej − (1− λ∆t)j−1ej−1 = (1− λ∆t)j−1∆t τ jtrunc . (56)

We now sum (56) for j = 1, . . . , k, for some k ≤ J ,

∑k [k

(1− λ∆t)jej − (1 λ
j

− ∆t)j−1ej−1
]

=
=1

∑
(1 λ∆t)j−1∆t τ jtrunc .

j=1

[
−

]

24

This is a telescopic series and all the middle terms on the left-hand side cancel. More
explicitly, the sum of the k equations

(1− λ∆t)kek − (1− λ∆t)k−1ek−1 = (1− λ∆t)k−1∆t τ ktrunc

(1− λ∆t)k−1ek−1 − (1− λ∆t)k−2ek−2 = (1− λ∆t)k−2∆t τ k−1trunc

...

(1− λ∆t)2e2 − (1− λ∆t)1e1 = (1− λ∆t)1∆t τ 2trunc

(1− λ∆t)1e1 − (1− λ∆t)0e0 = (1− λ∆t)0∆t τ 1trunc

simplifies to

k

(1− λ∆t)kek − e0 =
∑

(1− λ∆t)j−1∆t τ jtrunc .
j=1

We now recall that ũ0 = u(0), and hence the initial error is zero (e0 = 0). We are thus left
with

k

(1− λ∆t)kek =
∑

(1− λ∆t)j−1∆t τ jtrunc
j=1

or, equivalently,

k

ek =
∑

(1− λ∆t)j−k−1∆t τ jtrunc . (57)
j=1

It remains to bound this sum.
Towards that end, we recall that τmax

trunc ≡ maxj=1,...,J |τ jtrunc|, and thus from (57) we obtain

|ek| ≤ ∆t τmax
trunc

∑k
(1

j=1

− λ∆t)j−k−1 . (58)

We now recall the amplification factor for the Euler Backward scheme, γ = 1/(1− λ∆t), in
terms of which we may write

∑k 1 1 1
(1− λ∆t)j−k−1 = + + +

(1− λ∆t)k (1− λ∆t)k−1 (1
j=1

· · ·
− λ∆t)

= γk + γk−1 + · · ·+ γ .

25

Stability is now invoked: because the scheme is absolutely stable, the amplification factor
satisfies γ ≤ 1. It thus follows that

∑k
(1− λ∆t)j−k−1 = γk + γk−1 +

j=1

· · ·+ γ ≤ kγ ≤ k .

We now insert this result into (58) to obtain

|ek| ≤ (k∆t) τmax = tk τmax
trunc trunc .

Finally, we invoke consistency: τmax
trunc → 0 as ∆t→ 0. Thus,

|ek| ≤ tk τmax
trunc → 0 as ∆t→ 0

for fixed tk = k∆t. Note that the proof of convergence relies on stability (γ ≤ 1) and
consistency (τmax

trunc → 0 as ∆t→ 0).
We may now invoke our specific expression for the truncation error, (54), to develop the

bound

2

|ek ∆t d u| ≤ tk max
2 ,tf]

∣∣∣∣ (t)
t∈[0 dt2

∣∣∣
for

∣ . (59)

fixed tk = k∆t. (We may also replace tk by tf to dev

∣∣
elop a uniform bound over the

interval [0, tf].) We remark that the bound (59) can, in general, be pessimistic: since γ < 1
for Euler Backward, the error at time t is affected only by the truncation errors, and hence
the second derivative of u, for times t′ (≤ t) relatively close to t; the “proof” is (57).

26

MIT OpenCourseWare
http://ocw.mit.edu

2.086 Numerical Computation for Mechanical Engineers
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Preamble
	A Model Problem
	Formulation
	Some Representative Solutions

	Euler Backward (EB): Implicit
	Discretization
	Consistency
	Stability
	Convergence
	Convergence Rate: Order

	Euler Forward (EF): Explicit
	Stiff Equations: Implicit vs. Explicit
	Extensions
	A Higher-Order Scheme
	General First-Order Scalar ODEs
	Systems of First-Order ODEs
	Formulation
	Reduction to First-Order Form

	Perspectives
	Appendices
	Euler Backward: Consistency
	Euler Backward: Convergence

