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1 Preamble 

In engineering analysis we must often predict the behavior of a univariate function — a relation 
between an input (independent variable) and an output (dependent variable) — in order to design or 
optimize a system; for example, we may wish to understand the effect of temperature on the speed 
of sound in the design of an acoustical space. Unfortunately, in most cases we are not provided 
with a closed-form representation of the function, and instead we must base our prediction on 
limited (experimental) observations or (computational) evaluations. In this nutshell, we answer 
the following question: if we know output values at some finite number of input values — a “look
up table” — how can we estimate the output for inputs “in between” the input values of our 
look-up table? We consider here one approach to this approximation problem: interpolation. (In a 
subsequent nutshell we consider an alternative approach, more suitable for noisy data: least-squares 
projection.) 

We introduce in this nutshell the interpolation framework, and we present particular interpola
tion schemes: piecewise-constant, left-endpoint; piecewise-linear. We then develop the concepts of 
discretization, convergence, convergence rate or order, and resolution; we provide local and global 
error bounds based on the Mean Value Theorem and Fundamental Theorem of Calculus; we dis
cuss and demonstrate the role of smoothness; we introduce the definition of operation count and 
FLOPs (floating point operations); and we establish the connection between accuracy and compu
tational cost. We provide both a global domain formulation and also a more local “point-based” 
formulation. 

Prerequisites: univariate differential and integral calculus. 

2 Motivation: Example 

Let us consider a concrete example of interpolation. In Table 1, we are given the speed of sound 
in air for several different values of temperatures ranging from 230K (or −43◦C) — cold air at 
high altitude — to 310K (or 37◦C) — hot air at sea level on a summer day. We now wish to 
approximate the speed of sound for some given outside temperature, and in particular a temperature 
not represented in Table 1. Here, the temperature is the independent variable (also denoted input) 
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— what we are given — and the speed of sound is the dependent variable (also denoted output) — 
what we wish to know. 

How might we estimate the speed of sound for an outside temperature of, say, 283K (10◦C)? Can 
we say anything about the accuracy of our estimate? What is the computational cost associated 
with the construction of our estimate? The material provided in this nutshell will help you answer 
these questions, not just for our particular example, but also more generally for any input–output 
relationship. 

temperature (K) 230 240 250 260 270 280 290 300 310 
speed of sound (m/s) 304.0 310.5 316.9 323.2 329.4 335.4 341.4 347.2 352.9 

Table 1: Variation in the speed of sound in air as a function of the temperature.1 

3 Piecewise-Constant, Left-Endpoint Interpolation 

We first consider arguably the simplest form of interpolation: piecewise-constant, left-endpoint 
interpolation. The origin of the name will become clear shortly. 

Let us first describe the procedure in words for several concrete instances. We wish to approxi
mate the speed of sound at a given temperature of interest, say 283K. We first find the temperature 
in Table 1 which is closest to 283K but also smaller than (or less than or equal to) 283K: 280K. We 
next extract from Table 1 the speed of sound associated with the closest-but-smaller temperature, 
280K: 335.4m/s. Finally, we now approximate, or estimate, the speed of sound at the temperature 
of interest, 283K, by the speed of sound associated with the closest-but-smaller temperature, 280K: 
335.4m/s. We consider a second example: we are given the temperature of interest, 248K; we find 
in Table 1 the closest-but-smaller temperature, 240K; we extract from Table 1 the speed of sound 
associated with the closest-but-smaller temperature, 310.5m/s; we approximate the speed of sound 
at 248K by 310.5m/s. Note that our estimate depends on both the temperature of interest and the 
particular set of (temperature, speed of sound) pairs available — the entries of Table 1. 

We now formalize the procedure. We shall denote the temperature, our independent variable, 
as x, and the speed of sound, our dependent variable, as y. We further denote the mapping from 
the temperature to the speed of sound as y = f(x): f is the function which, given a value of the 
temperature x, returns the value of the speed of sound, y = f(x). We assume here that f exists but 
that we do not know the form of f ; rather, we only know the values of y = f(x), or equivalently 
the pairs (x, f(x)), for the nine temperatures indicated in Table 1. The methodology we develop 
in terms of x and f(x) will of course apply to any independent variable (input) and dependent 
variable (output) — hence the power of abstraction — though you may think of temperature and 
speed of sound as a concrete application. 

Let us say that we are interested in input values x in some interval [a, b]. (We recall that [a, b] 
refers to the closed interval — values of the temperature x such that a ≤ x ≤ b. The open interval 
(a, b) refers to x such that a < x < b; we may also consider various combinations such as (a, b], 
which refers to x such that a < x ≤ b.) We first introduce the discretization depicted in Figure 1. A 
discretization, or “grid,” is a decomposition of the interval [a, b] into a number of small pieces for the 
purposes of construction and analysis of our approximation. In our particular case, we subdivide 

1The “data” in this Table are generated synthetically from the standard sound-speed relation introduced in 
CYAWTP 2. 
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the domain [a, b] into N − 1 segments, Si, 1 ≤ i ≤ N − 1, delineated by N points, xi, 1 ≤ i ≤ N . 
Note that segment Si is given by the interval [xi, xi+1] and is of length hi ≡ xi+1 −xi; for simplicity, 
we shall assume here that the segments are of equal length, h1 ≡ · · · ≡ hN−1 ≡ h ≡ (b−a)/(N −1), 
however in general this need not be the case. In our speed of sound example, for the discretization 
provided in Table 1, a ≡ 230K, b ≡ 310K; N ≡ 9; x1 ≡ 230K, x2 ≡ 240K, x3 ≡ 250K, . . . ; 
S1 ≡ [x1, x2] ≡ [230, 240]K, S2 ≡ [x2, x3] ≡ [240, 250]K, . . . ; h ≡ 10K. Note that the notation “≡” 
should be read as “is defined to be” or “is given as”. 

a ≡ x1 x2 x3 xN−1 xN ≡ b

S1 S2 SN−1

h1 h2 hN−1

Figure 1: Discretization of the segment [a, b] into N − 1 segments defined by N input values. 

We now wish to approximate the function f(x) over the continuous interval [a, b] given only the 
data pairs (x1, f(x1)), (x2, f(x2)), . . . , (xN , f(xN )) associated with our discretization; we may think 
of these N pairs of data as a “look-up table.” We shall pursue a particular kind of approximation 
known as interpolation. In general, an interpolation scheme is characterized by two ingredients: 
the “what” — the functional form of the interpolant; the “where” — the (interpolation) points 
at which we shall require (If)(x) = f(x). This latter condition is the distinguishing feature of 
interpolation: our approximation (If)(x) must “go through” f(x) — agree with the exact function 
f(x) — at prescribed values of the independent variable. Note that we must choose an appropriate 
combination of “what” and “where” such that a unique interpolant can be found. 

We now construct the piecewise-constant, left-endpoint interpolant – a particular choice of 
interpolation scheme. We first focus our attention on interpolation of the data over a single segment 
Si. In particular, let us say that the input value of interest — the value of x at which we wish 
to approximate y = f(x) — resides in interval Si (for some i). We now choose for the “what” a 
constant function, and for the “where” the left endpoint of Si, as depicted in Figure 2; the latter 
demands that (If)(xi) = f(xi), but from the former, If is constant, and hence (If)(x) = f(xi) 
for all x in Si. We thus arrive at a very simple expression for our interpolant over Si, 

(If)(x) = f(xi) for all x in Si . (1) 

Note that, a constant function (the “what”) has one degree of freedom, and the agreement between 
If and f at the left-endpoint (the “where”) constitutes a single condition, or equation; hence we 
have one equation in one unknown and we may readily find the unique interpolant. 

Although we have focused on a particular segment Si, our relation (1) is valid for any segment Si, 
i = 1, . . . , N − 1, and we can thus now estimate f(x) anywhere on the interval [a, b]: given any x in 
[a, b], we first identify the interval in which x resides, Si∗ (note that i∗ depends on x); we then apply 
our formula (1) for xi ≡ xi∗ to obtain (If)(x) = f(xi∗ ). We depict the interpolant over the entire 
interval in Figure 3, from which we now understand the genesis of the name “piecewise-constant, 
left-endpoint”: the “piecewise-constant” refers to the “what” (now from a global formulation), and 
the “left-endpoint” refers to the “where” (in reference to the underlying discretization). 

Finally, we may demonstrate that our more mathematical construction here is equivalent to the 
simple description in words provided at the outset of this section. It suffices to note that, for any 
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Figure 2: Illustration of piecewise-constant left-endpoint interpolation over the segment Si. 
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Figure 3: Illustration of the piecewise-constant left-endpoint interpolant over the full interval [a ≡ 
0, b ≡ 1]. 

point x in Si∗ ≡ [xi∗ , xi∗+1], the closest-but-smaller input in our “look-up table” is xi∗ , and the 
output in our look-up table associated to xi∗ is f(xi∗ ) — precisely as reproduced by (1). 

CYAWTP 1. Evaluate the speed of sound by piecewise-constant, left-endpoint interpolation of 
the (temperature, speed of sound) data of Table 1 at temperatures of 257K and 291K, respectively. 

We now wish to understand how well our interpolant If approximates f . This is an exercise 
in error analysis. We again focus our attention to a segment Si. We first recall that, from the 
fundamental theorem of calculus, 

x 

f(x) − f(xi) = f '(ξ)dξ, 
ξ=xi 

presuming that the derivative f '(ξ) exists (in an appropriate sense). We can then readily show 
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that, for any x in Si, 

|f(x) − (If)(x)| = |f(x) − f(xi)| (by the definition of the interpolant) 
x 

= | f ' (ξ)dξ| (fundamental theorem of calculus) 
xi 
x 

≤ |f ' (ξ)|dξ 
xi 

x 

≤ max |f ' (ξ)| dξ 
ξ∈Si xi 

xi+1 

≤ h max |f ' (ξ)| (by the definition of h ≡ dξ). 
ξ∈Si xi 

We conclude that the local interpolation error, ei, over the interval Si satisfies 

ei ≡ max |f(x) − (If)(x)| ≤ h max |f ' (x)| . (2) 
x∈Si x∈Si 

(We recall that “z ∈ Z” means that the variable z is in the set Z. We also recall that “maxz∈Z G(z)” 
for some variable z and any function G(z) asks us to find the maximum value of G(z) for all values 

' of z in the set Z. For example, maxx∈Si |f ' (x)| is the maximum of the absolute value of f over 
all values of x in the segment Si.) Note that the interpolation error depends on two factors. The 
first is the discretization resolution parameter h: the shorter the segment, the better the estimate. 
The second is the first derivative of the underlying function f : the slower the rate of the change of 
the function, the better the estimate. These results are consistent with our intuition suggested by 
a Taylor series expansion. The error bound (2) is also sharp: there exists a function for which the 
bound statement holds with equality. 

We now study the behavior of the (global) interpolation error over the entire interval [a, b]. We 
appeal to the local interpolation error bound to obtain 

emax ≡ max |f(x) − (If)(x)| = max max |f(x) − (If)(x)| ≤ max ei 
x∈[a,b] i∈{1,...,N−1} x∈Si i∈{1,...,N−1} 

= max h max |f ' (x)| ≤ h max |f ' (x)|. 
i∈{1,...,N−1} x∈Si x∈[a,b] 

(We recall that {1, . . . , N − 1} refers to the set of integers from 1 to N − 1.) More concisely, 

emax ≤ Ch for C = max |f ' (x)|. (3) 
x∈[a,b] 

The global error bound consists again of two contributions: the discretization resolution parameter 
h; a constant C which characterizes the underlying function f — in the case of piecewise-constant, 
left-endpoint interpolation, C depends on the first derivative of f . Note that C is independent of 
h. 

Given some x, we may find i∗ such that x resides in Si∗ . We may then bound |f(x) − (If)(x)|
by ei∗ of (2) or emax of (3). In general, the local bound of ei∗ will be sharper — closer to the true 
error — than the global bound, since the local bound reflects the derivative in the vicinity of x, and 
not the worst case over the entire interval [a, b]. These error bounds can serve several purposes, 
often quite pragmatic, as we will describe shortly. 
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CYAWTP 2. Laplace first derived — correcting Newton — that (for air) at temperature x the√ 
speed of sound can be very accurately predicted by f(x) = γRx; here γ = 1.4 is the ratio of specific 
heats, R = 287J/(kg·K) is the specific gas constant of air, and x is the temperature in Kelvins. 
It follows that f ' (x) = 

√ 
γR/(2 

√ 
x). On the basis of this derivative information (admittedly not 

often available in practice, since f is typically not known), evaluate the local error bound (2) 
for temperatures 257K and 291K, respectively, and the global error bound (3), associated with 
piecewise-constant, left-endpoint interpolation of the data of Table 1 over the interval [230, 310]. 

CYAWTP 3. Find a function f (preferably not the constant function) such that the maximum 
difference between f(x) and (If)(x) over an interval [0, 1] is given precisely by the maximum of 
|f ' (x)| over [0, 1] — as predicted by our bound of (3). (Recall that because such a function exists, 
we say the bound (3) is sharp.) 

Numerical Experiment 4. Invoke the interpolation GUI for the function f(x) = sin(x) and 
piecewise-constant, left-endpoint interpolation: visualize the geometric interpretation of the local 
interpolation error; confirm empirically the decrease of the global interpolation error as h decreases. 

Numerical Experiment 5. Invoke the interpolation GUI for the function obtained in CYAWTP 3 
and confirm empirically that the error bound holds with equality. 

We now generalize the result of the error analysis. Very often in the analysis of numerical 
approximations we encounter error bounds of the form 

emax ≤ Chp for C independent of h. 

We say a scheme is convergent if emax → 0 as h → 0; for the form above, convergence is achieved 
for any p > 0. Convergence is an attractive property because it tells us that, as h → 0, the scheme 
can eventually replicate the exact solution to any desired accuracy. (Actually, not quite true: we 
discuss the issue of finite-precision arithmetic and round-off errors in a subsequent nutshell.) The 
convergence rate, which tells us how fast the scheme converges in the limit of h → 0, is reflected in 
the order p. If p = 1, we say the scheme is first-order accurate; for h sufficiently small, reduction of 
h by a factor of two will reduce the error by a factor of two. The piecewise-constant, left-endpoint 
interpolation is an example of a first-order scheme. If p = 2, we say the scheme is second-order 
accurate; for h sufficiently small, reduction of h by a factor of two will reduce the error by a factor 
of four. We shall shortly introduce an example of a second-order scheme. 

We may also empirically characterize the convergence behavior of schemes. For instance, Fig
ure 4 shows the convergence behavior of the piecewise-constant, left-endpoint interpolant for the 
function f(x) = sin(10πx) over x ∈ [a ≡ 0, b ≡ 1]. We present two results, both plotted on a log-log 
scale. The first result is the logarithmic convergence curve, which is the (non-straight) curve of 
the logarithm of the error, log10(emax), plotted against the logarithm of the number of segments, 
log10(1/h). The second result is the logarithmic convergence asymptote, which is the (straight-line) 
asymptote of the logarithmic convergence curve for h tends to zero (hence 1/h ≡ N − 1 tends to 
infinity). Recall that we say a function A(z) asymptotes to a function B(z) as z → s if the ratio 

A(z)of the two functions approaches unity: limz→s → 1; in our context, s is typically either 0 or B(z) 

∞. We write A(z) asymptotes to B(z) as z → s more succinctly as A(z) ∼ B(z) as z → s. Our 
logarithmic convergence asymptote is of the form 

log10(emax) ∼ log10(Casymp) − p × log10(1/h) as h → 0; 
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here, log10(Casymp) is the intercept of the logarithmic convergence asymptote (typically Casymp = C 
of our bound), p is the slope of the logarithmic convergence asymptote (and the order of the scheme, 
under certain smoothness assumptions), and log10(1/h) is the logarithm of the number of segments. 
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Figure 4: Convergence of the piecewise-constant, left-endpoint interpolation for f(x) = sin(10πx) 
over the interval x ∈ [0, 1]. 

CYAWTP 6. Consider functions 

√ 
g1(z) = z 3 + z 2 + z 

g2(z) = 3z 2 + 3 

g3(z) = cos(3z) + sin(z) 
g4(z) = z4 + 3z3 + z + 1. 

2Which functions are asymptotic to z as z → ∞? 

The length of the segments, h, is known as the discretization parameter: from our assumption 
of equispaced points, the value of h (= (b − a)/N , for some integer N) suffices to specify the 
segment endpoints and the segments — in short, the complete discretization. We say, when we 
decrease h, that we refine the discretization (or grid). In practice — to obtain the desired accuracy, 
or to construct our logarithmic convergence curve — we consider a particular refinement strategy. 
For example, the Interpolation GUI implements a “doubling” uniform refinement strategy (for the 
interval [a, b] = [0, 1]): we choose the discretization parameters as h = 1, h = 1/2, h = (1/2)2 , 
h = (1/2)3 , . . . such that at each successive refinement we double the number of segments. A 
sequence of discretizations in which h is decreased only slightly from level to level, h = 1, h = 
1/2, h = 1/3, h = 1/4, h = 1/5, . . ., is not of much interest: the decrease in the error from level to 
level will be very modest. 

We present in Figure 4 the logarithmic convergence curve and logarithmic convergence asymp
tote for piecewise-constant, left-endpoint interpolation of f(x) = sin(10πx). (Although we draw a 
suggestive curve, we only calculate emax for values of the discretization parameter h corresponding 
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to a doubling uniform refinement strategy: h = 1, h = 1/2, h = (1/2)2 , . . ..) Note that the intercept 
of the logarithmic convergence asymptote is log10(Casymp) = log10(C) = log10(maxx∈[0,1] |f ' (x)|) = 
log10(10π). We observe that there are two qualitatively different regimes in the convergence behav
ior: the pre-asymptotic regime in which the error does not behave in a predictable manner with h, 
and indeed does not decrease in any systematic fashion; the asymptotic regime in which the con
vergence curve closely tracks the convergence asymptote — and realizes the predicted convergence 
rate of p = 1 (as expected, since sin(10πx) is smooth, even if wiggly relative to the length of the 
interval [a, b]). The resolution requirement — the value of the discretization parameter h required 
to enter the asymptotic regime of convergence — is problem dependent. 

CYAWTP 7. Sketch the logarithmic convergence curve, log10(emax) vs log10(1/h), and the cor
responding logarithmic convergence asymptote associated with piecewise-constant, left-endpoint 
interpolation of (a) the function f1(x) = sin(πx), and (b) the function f2(x) = sin(10πx), in both 
cases over the interval [0, 1]. How are the slopes of the two logarithmic convergence asymptotes 
related? How are the intercepts log10(Casymp) of the two logarithmic convergence asymptotes re
lated? 

Numerical Experiment 8. Invoke the Interpolation GUI to confirm your sketches of CYAWTP 7. 

We now consider the cost associated with piecewise-constant left-endpoint interpolation. To
wards this end, we introduce the notion of floating point operations. A floating point operation 
is an arithmetic operation: an addition, subtraction, multiplication, or division. We abbreviate 
the term floating point operation as FLOP (FLoating-point OPeration) and in plural as FLOPs 
(FLoating-point OPerations). (Note the lowercase s; with a capital final letter, FLOPS refers to the 
speed of a computer as measured by the number of FLOPs which may be performed in a second.) 
We characterize the cost of a particular computational task by the operation count: the number of 
floating point operations — FLOPs — required to perform the necessary operations.2 As a very 
simple example, the computation of 2 + 3 × 4 requires 2 FLOPs: a multiplication and an addition. 

Most often we are much less concerned by factors of two or three and much more concerned 
with the dependence of the operation count on our discretization parameter, h, or equivalently the 
number of degrees of freedom, N . For that reason, operation counts are often provided in big-O 
notation. We say “Task A requires O(g(K))” operations if the operation count associated with 
Task A, as measured in FLOPs, is bounded by cg(K) as K → ∞ for some finite c independent of K. 
By this construction, we obtain, for example, O(K2 + K) = O(K2), O(100K2 +0.01K3) = O(K3), 
O(10K5 + K!) = O(K!) (where ! denotes factorial). The big-O notation is convenient for the 
characterization of the predominant cost associated with a particular task as the problem size — 
measured by K (in our case, N) — grows. Note big-O is not unique, in that 10K2 is O(10K2) but 
also O(K2) and even O(5K2); the convention is to choose unity as the multiplicative factor.  K 2CYAWTP 9. Given a set of K numbers {x1, . . . , xK }, consider the computation of k=1(xk +xk). 
What is the precise operation count, measured in FLOPs, as a function of K? What is the operation 
count expressed in big-O notation as K → ∞? 

2In practice, the number of floating point operations will not directly predict “wall clock” time — the time 
to perform the computations. There are various pieces of overhead, and in particular the process by which data 
(numbers) are brought into the arithmetic units — access to storage — plays a large role. Modern computer 
architectures mitigate many of the impediments to rapid computation, for example through a hierarchy of memory. 
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In the context of interpolation, we are interested in understanding how the cost varies with the 
number of data points N . We consider two different types of cost. First is the Offline cost, which is 
associated with the construction of our data (x1, f(x1)), . . . , (xN , f(xN )). To construct this look-up 
table we must evaluate the function f for N different input values, x1, . . . , xN ; each evaluation — 
which might entail collecting experimental data or performing a large numerical simulation — can 
be very expensive. This Offline cost is O(N). 

Second is the Online cost, which is associated with the construction of the interpolation estimate 
based on the look-up table constructed in the Offline stage. Given x, we must first locate the 
closest-but-smaller input value in our table, xi∗ . If the values of the input are equispaced, hi = h, 
i = 1, . . . , N − 1, then i∗ = floor((x − a)/h) + 1, a calculation which we can perform in O(1) 
operations; here floor() rounds down the argument to the nearest integer. If the data is not 
equispaced, then we can find i∗ by binary search in O(log(N)) operations (or, by more brute force 
approaches, in O(N)). Once we identify xi∗ , the look-up of f(xi∗ ) takes O(1) operations. Thus the 
overall Online cost for piecewise-constant, left-endpoint interpolation is O(1) for equispaced data 
and O(log(N)) (or O(N), brute force) for variably spaced data. 

We close this section with two comments, one philosophical, the other pragmatic. From the 
philosophical side, we note the crucial role that discretization plays in the success of our interpo
lation approach: the computational cost is small because once we identify i∗ the function is very 
simple — constant — over Si∗ ; but we achieve reasonable accuracy despite this simple represen
tation precisely thanks to discretization — we enlist a different constant over each segment. The 
beneficial effect of the latter is reflected in the convergence of our approximation as h tends to 
zero. From the pragmatic side, we observe that the error is inversely proportional to the number 
of entries in our look-up table, N . In order to reduce N we might consider different “whats,” in 
particular higher-order schemes, over each segment; an example is discussed in the next section. 
But we can also, for the same piecewise constant “what,” consider segments of different lengths — 
smaller hi for the segments Si over which f ' (x) is larger, as suggested by the local interpolation 
error bound (2). Of course, to effect this strategy, we must be able to estimate f ' (x); numerical 
differentiation is the topic of a subsequent nutshell. 

4 Piecewise-Linear Interpolation 

We now consider arguably the most ubiquitous interpolation scheme: piecewise-linear interpolation. 
As the name suggests, this interpolant is linear over each segment and is hence piecewise-linear over 
the entire interval [a, b]. 

To construct the interpolant, we again start with the (N − 1)-segment discretization as shown 
in Figure 1. We first focus our attention on the interpolation of data over a single segment Si 

delineated by the endpoints xi and xi+1, as shown in Figure 5. We construct our approximation in 
terms of (xi, f(xi)) and f(xi+1, f(xi+1)) — the available data over Si — which furthermore satisfies 
the following two conditions: 1) “what”: the approximation is linear over the segment Si, and 2) 
“where”: the approximation matches the exact function at the two endpoints, 

(If)(xi) = f(xi) and (If)(xi+1) = f(xi+1) . (4) 

These “what” and “where” conditions define a unique interpolant: two points determine a straight 
line; we depict the resulting interpolant in Figure 5. We can express the interpolant in functional 
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form as 

f(xi+1) − f(xi)
(If)(x) = f(xi) + (x − xi) for x in Si = [xi, xi+1] ; (5) 

xi+1 − xi 

clearly (If)(x) is linear over the segment Si, and furthermore If satisfies (4). We recognize that 
f(xi) is the left-endpoint of the interpolant and (f(xi+1) − f(xi))/(xi+1 − xi) is the slope of the 
interpolant. 

xi xi+1

Si

f

(I f )(xi, f (xi))

(xi+1, f (xi+1))

Figure 5: Illustration of piecewise-linear interpolation over the segment Si. 

We can now directly extend our result to the full interval: Given any x in [a, b], we first identify 
the interval in which x resides, Si∗ (as before, i∗ of course depends on x); we then apply our 
formula (5) for xi ≡ xi∗ and xi+1 ≡ xi∗+1. We depict the interpolant over the entire interval 
in Figure 6. As a concrete example, we apply piecewise-linear interpolation to predict the speed 
of sound as a function of temperature from the look-up table of Table 1; we consider x = 248K 
as the temperature at which we wish to estimate the speed of sound. We identify i∗ = 2 since 
xi∗ ≡ 240 ≤ x < xi∗+1 ≡ 250; we then apply (5) for i = i∗ to obtain (If)(248) = f(240)+(f(250)− 
f(240))/(250 − 240) · (248 − 240) = 310.5 + (316.9 − 310.5)/(250 − 240) · (248 − 240) = 315.6 (m/s). 
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Figure 6: Illustration of the piecewise-linear interpolant over the full interval [a ≡ 0, b ≡ 1]. 

CYAWTP 10. Evaluate the speed of sound by piecewise-linear interpolation of the (temperature, 
speed of sound) data of Table 1 at temperatures of 257K and 291K, respectively. 

We may analyze the error associated with our piecewise-linear approximation If of f . In 
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particular, we may obtain bounds (see Appendix A) for the local interpolation error,
 

h2 

ei ≤ max |f '' (x)| , (6)
8 x∈Si 

as well as for the global interpolation error, 

h2 

emax ≤ max |f '' (x)| ; (7)
8 x∈[a,b] 

theses bounds are sharp. We make two observations. First, the convergence rate for the piecewise-
linear interpolation is p = 2 — the method is second-order accurate. Thus, we expect the piecewise-
linear interpolant to converge more rapidly with h than the piecewise-constant, left-endpoint in

'' terpolant for sufficiently small h. Second, the error bound depends on the second derivative, f ; 
in contrast, for piecewise-constant, left-endpoint interpolation the error bound depends on the first 

' '' derivative, f . If f does not exist, the bound (7) may not be valid. 
Note that interpolation only “works” because of smoothness: it is the property that the value of 

a function at one input point is related to the value of a function at a neighboring input point which 
permits us to accurately estimate the behavior of the function over the entire interval [a, b] based 
only on limited data — (xi, f(xi)), i = 1, . . . , N . Furthermore, the more smoothness available, 
the more we can predict from just a small snippet of genetic material, either function values on 
some small interval, or function values at a few select points. This argument also correctly suggests 
that interpolation is not a good strategy in the presence of noisy data — f(x) contaminated by 
measurement error, say; we shall consider (non-interpolatory) approximation schemes for noisy 
data in a subsequent nutshell. 

CYAWTP 11. Reconsider CYAWTP 2 but now for the case of piecewise-linear interpolation: 
evaluate the local error bound (6) for temperatures 257K and 291K, respectively, and the global 
error bound (7) associated with piecewise-linear interpolation of the data of Table 1 over the interval 
[230, 310]. 

CYAWTP 12. Which of the following functions f(x) can be exactly represented by a piecewise-
linear interpolant (such that If(x) − f(x) = 0 for all x ∈ [0, 1]): f(x) = constant; f(x) a linear 
polynomial in x; f(x) a quadratic polynomial in x; f(x) a sinusoidal function of x? 

CYAWTP 13. Sketch the logarithmic convergence curve and the logarithmic convergence asymp
tote associated with interpolation of f(x) = sin(10πx) over the interval [0, 1] for (a) piecewise-
constant, left-endpoint interpolation, and (b) piecewise-linear interpolation. How are the slopes of 
the two logarithmic convergence asymptotes related? How are the intercepts log10(Casymp) of the 
two logarithmic convergence asymptotes related? 

Numerical Experiment 14. Invoke the Interpolation GUI for f(x) = sin(10πx) to confirm your 
predictions of CYAWTP 13. 

CYAWTP 15. Sketch the logarithmic convergence curve and logarithmic convergence asymptote 
associated with interpolation of the discontinuous function  

0, 0 ≤ x < 1/3 
f(x) = (8)

1, 1/3 ≤ x ≤ 1 , 
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for (a) piecewise-constant, left-endpoint interpolation, and (b) piecewise-linear interpolation, re
spectively. Consider a sequence of discretizations corresponding to a “doubling” uniform refinement 
strategy h = 1, h = 1/2, h = (1/2)2 , h = (1/2)3 , . . . . Note that the jump in the function at x = 1/3 
will always reside inside a segment and not at a segment endpoint. Indicate the convergence rate 
— the negative of the slope of the logarithmic convergence asymptote — for each case. 

Numerical Experiment 16. Invoke the interpolation GUI for the discontinuous function (8) and 
confirm empirically your predictions of CYAWTP 15. Recall that the GUI considers a “doubling” 
uniform refinement strategy for h = 1, h = 1/2, h = (1/2)2 , h = (1/2)3, . . . , such that the jump in 
the function at x = 1/3 will always reside inside a segment and not at a segment endpoint. 

We briefly comment on the cost of piecewise-linear interpolation. In the Offline stage, the 
interpolation requires preparation of N data pairs (x1, f(x1)), . . . , (xN , f(xN )); the cost is O(N). 
In the Online stage, we first identify the segment Si∗ = [xi∗ , xi∗+1] to which x belongs; as before, 
this requires O(1) operations for a constant h and O(log N) (or more simply, O(N)) operations for 
variable h. We then look up r = f(xi∗ ) and s = f(xi∗+1) in O(1) operations and compute 

s − r 
(If)(x) = r + (x − xi∗ ) 

xi∗+1 − xi∗ 

in 6 FLOPs. 
We note that the cost of piecewise-linear interpolation is comparable to the cost of piecewise-

constant, left-endpoint interpolation. The Offline cost for both methods is O(N); the Online cost 
for both methods is O(1) for a constant h and O(log(N)) for variable h. However, for the same 
h (and hence N), the piecewise-linear interpolation is much more accurate than the piecewise-
constant, left-endpoint interpolation, at least in the asymptotic regime: the former is second-order 
accurate, whereas the latter is first-order accurate. We can thus conclude that the piecewise-
linear interpolation is more efficient than piecewise-constant, left-endpoint interpolation in terms 
of accuracy obtained for prescribed computational cost. It is for this reason — no pain, but gain 
— that piecewise-linear interpolation is perhaps the most commonly invoked data-interpolation 
scheme. 

A Point-Based Formulation 

In the previous sections, we have viewed interpolation as a global approximation problem over a 
finite interval [a, b] which we decompose into segments Si, i = 1, . . . , N − 1, the extent hi of each 
of which decreases as we refine our discretization. Alternatively, we may view interpolation as a 
local approximation problem, in which given some few pairs (x, f(x)), we interpolate f(x) over 
[xmin, xmax]; here xmin is the smallest value of x for which f(x) is provided, and xmax is the largest 
value of x for which f(x) is provided. 

As a first example, let us say we are given x̄1 and x̄2 for x̄1 < x̄2 and h = x̄2 − x̄1. We can then 
construct, say, a piecewise-constant, left-endpoint interpolant over [xmin ≡ x̄1, xmax ≡ x̄2] as 

(If)(x) = f(x̄1), x ∈ [xmin, xmax]. 

Similarly, we can construct a piecewise-linear interpolant over [xmin ≡ x̄1, xmax ≡ x̄2] as 

f(x̄2) − f(x̄1)
(If)(x) = f(x̄1) + (x − x̄1), x ∈ [xmin, xmax]. 

h 
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But we can now proceed further. 
Let us consider three points x̄1, x̄2, and x̄3 where x̄1 < x̄2 < x̄3; for simplicity, we assume 

the points are equispaced such that h ≡ x̄2 − x̄1 = x̄3 − x̄2. We can now construct a quadratic 
interpolant over [xmin ≡ x̄1, xmax ≡ x̄3] as 

1 1 
(If)(x) = f(x̄1)(x − x̄2)(x − x̄3) − f(x̄2)(x − x̄1)(x − x̄3)

2h2 h2 

1 
+ f(x̄3)(x − x̄1)(x − x̄2), x ∈ [xmin, xmax]. 

2h2 

Note we retain the two ingredients of interpolation: the “what” is a quadratic polynomial; the 
“where” is the three equally spaced points, x̄1, x̄2, x̄3 — it is easy to verify that (If)(x̄i) = f(x̄i), 
i = 1, 2, 3. Our interpolant is unique since a quadratic polynomial can be expressed in terms of 
three degrees of freedom and the interpolation condition (If)(x̄i) = f(x̄i), i = 1, 2, 3, imposes three 
constraints: three (independent) linear equations in three unknowns. 

There are many applications of the point-based formulation, in particular because there is 
no need for a underlying global discretization over the full domain. In a later nutshell, we will 
take advantage of this point-based formulation of interpolation to develop numerical differentiation 
formulas. 

6 Perspectives 

We have only here provided a first look at the topic of numerical interpolation. A more in-depth 
study may be found in Math, Numerics, and Programming (for Mechanical Engineers), M Yano, 
JD Penn, G Konidaris, and AT Patera, available on MIT OpenCourseWare, which adopts similar 
notation to these nutshells and hence can serve as a companion reference. For an even more compre
hensive view from both the computational and theoretical perspectives we recommend Numerical 
Mathematics, A Quarteroni, R Sacco, F Saleri, Springer, 2000. 

Of the many further topics of interest, perhaps the most important is the treatment of in
terpolation in higher dimensions. In this nutshell we consider interpolation of functions over an 
interval — functions of a single independent variable defined over a one-dimensional domain. How 
might we construct an interpolant if the domain is not an interval, but rather some region in two 
dimensions (two independent variables) or even three dimensions (three independent variables)? 
For instance, suppose we are given a table of the speed of sound of a dense gas for several values of 
the gas temperature and the gas pressure; how might we approximate the speed of sound for any 
given temperature and pressure? In fact, the interpolation methods we present here do extend to 
higher dimensions, however, the presentation and analysis is somewhat more involved, and more 
importantly convergence can be slow in very high dimensions. The latter is known as the curse of 
dimensionality. 
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Appendix A	 Derivation of Error Bound for Piecewise-Linear In
terpolation 

We first recall the mean-value theorem: if g is continuously differentiable on [c, d], then there exists 
∗a point x ∈ [c, d] such that g ' (x ∗) = (g(d) − g(c))/(d − c). We then appeal to the fundamental 

theorem of calculus and the mean-value theorem: 

x 

f(x) − (If)(x) = (f − If) ' (t) dt (fundamental theorem of calculus) 
xi
 

x t
 

= (f − If) '' (s) ds dt	 (mean-value theorem) 
∗ xi x
 

x t
 

= f '' (s) ds dt	 ((If) '' = 0 since If is linear) 
x ∗ xi 

x t 

≤ max |f '' (x)| ds dt 
∗x∈Si xi x 

h2 

≤ · max |f '' (x)| (integration over the s-t triangle);
2 x∈Si 

∗here, the second step follows from first invoking the mean-value theorem — there exists a point x ∈ 
[xi, xi+1] such that f ' (x ∗) = (f(xi+1) − f(xi))/(xi+1 − xi) = (If) ' (x ∗) and hence (f −If) ' (x ∗) = 0 

∗ — and then invoking the fundamental theorem of calculus with the limits x and t. We conclude 
that the local interpolation error is bounded from above by ei ≤ (h2/2) maxx∈Si |f '' (x)|. 

We can in fact obtain a tighter bound through a more careful analysis (see Math, Numerics, 
and Programming (for Mechanical Engineers), M Yano, JD Penn, G Konidaris, and AT Patera). 
We state here the result for the local interpolation error, 

h2 

ei ≤ max |f '' (x)| ,
8 x∈Si 

as well as for the global interpolation error, 

h2 

emax ≤ max |f '' (x)| ;
8 x∈[a,b] 

theses bounds are sharp. 
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