
Assignment 5	 

Released: Friday, 19 April, at 5 PM. 

Due: Friday, 3 May, at 5 PM. 

Upload your solution   as a zip file “YOURNAME_ASSIGNMENT_5” which includes for each question
 the AxQy script as well as any Matlab functions (of your own creation) which are called by

 
your

 script. Note the Matlab functions of your own creation should include both specific Mat-lab

 functions requested in the question statement as well as any other Matlab functions (called 
directly or indirectly by your script or by other functions) which you choose to develop as part of 
your answer. Both the scripts and (requested) functions must conform to the formats described in 
Instructions and Questions below. You should also include in your folder all the grade_o_matic 
.p files for Assignment 5. 

Instructions 

Before embarking on this assignment you should 

(1) Complete the Textbook reading for Unit V and review the Lecture Notes for Unit V 
      You should also review the Lecture Notes for Unit IV on Eigen­problems (relevant to 

Question 1). 

(2) Execute (“cell-by-cell”) the Matlab Tutorial(s) for Unit V      Mat-lab Sparse Matrix 
Operations; Matlab Sparse Backslash Operator. Note also that the Textbook

 Chapter 28 addresses Matlab issues (such as “declared sparse”) relevant to As­
signment 5. 

(3) Download     the Assignment_5_Materials folder. This folder contains a template for the
 script associated with each question (A5Qy_Template for Question y), as well as a template
 for each function which we ask you to create (func_Template for a function func).

 
The

 Assignment_5_Materials folder also contains the grade_o_matic codes needed for
 Assignment 5. (Please see Assignment 1 for a description of grade_o_matic.) 
We indicate here several general format and performance requirements: 

(a.) Your script for Question y of Assignment x must be a proper Matlab “.m” script file 
and must be named AxQy.m (or, if explicitly indicated as such for a particular question, 
AxQy.p). In some cases the script will be trivial and you may submit the template “as is” 
— just remove the _Template — in your “YOURNAME_ASSIGNMENT_5” folder. But note 
that you still must submit a proper AxQy.m script (or, if explicitly indicated as such for 
a particular question, AxQy.p script) or grade_o_matic_A5 will not perform correctly. 

(b.) In this assignment, for each question	 y, we will specify inputs and outputs both for 
the script A5Qy and (as is more traditional) any requested Matlab functions; we shall 
denote the former as script inputs and script outputs and the latter as function inputs 
and function outputs. For each question and hence each script, and also each function, 
we will identify allowable instances for the inputs — the parameter values or “parameter 
domains” for which the codes must work. 
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(c.) Recall that for scripts, input variables must be assigned outside your script (of course 
before the script is executed) — not inside your script — in the workspace; all other 
variables required by the script must be defined inside the script. Hence you should test 
your scripts in the following fashion: clear the workspace; assign the input variables 
in the workspace; run your script. Note to test your Matlab functions you need not 
take such precautions: all inputs and outputs are passed through the input and output 
argument lists; a function enjoys a private workspace. 

(d.) We ask that you not end any of your script names or function names with the suf­
fix _ref in order to prevent conflicts with scripts or functions provided in the folder 
Assignment_5_Materials (and needed by grade_o_matic_A5). 

(e.) We ask that in the submitted version of your scripts and functions you suppress all 
display by placing a “;” at the end of each line of code. (Of course during debugging 
you will often choose to display many intermediate and final results.) We also require 
that before you upload your solution   you should run grade_o_matic_A5 (from your

 YOURNAME_ASSIGNMENT_5 folder) for final confirmation that all is in order. 

· 

Questions 

1. (40 points: 10 points for the correct entries for B but also B must be “declared sparse” (or no 
credit); 10 points for omega_min; 10 points for chi; 10 points for num_iter.) 

We consider in this question a string of length L and mass per unit length m' under tension 
T which is furthermore attached to “ground” at x = L/2 to a Hookean spring with spring 
constant kmid. We discretize the string as n masses massi, 1 ≤ i ≤ n, each of mass m'h, 
located at respective x locations xi = i · h, 1 ≤ i ≤ n. Here h = L/(n + 1) is the length of 
the string segment between successive masses (and from the left wall at x = 0 to the first 
mass, and from the last mass to the right wall at x = L). The y (vertical) displacement of 
massi is given by ui, 1 ≤ i ≤ n. We presume that n is chosen odd such that the Hookean 
spring is attached to massnmid for nmid = (n + 1)/2; the force (in the y direction) exerted 
by the Hookean spring on massnmid is given by −kmid unmid . We show in Figure 1 a string 
discretization for the particular case n = 5.1 

Figure 1: Discretization of the string for the particular case n = 5. 

We shall consider here the case in which the string angles are small and furthermore there is 
no damping present in the system. It then follows from Newton’s second law applied in the y 

1You may assume that all quantities in this question are prescribed in kg-m-s units. 
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direction (and in the absence of applied forces) that the displacements of the masses satisfy2  
τ 2 ≤ i ≤ nmid − 1 

üi + (−ui−1 + 2ui − ui+1) = 0 , (1)
h2 nmid + 1 ≤ i ≤ n 

τ 
üi + (2ui − ui+1) = 0 i = 1 , (2)

h2 

τ 
üi + (−ui−1 + 2ui) = 0 i = n , (3)

h2 

üi + α1ui−1 + α2ui + α3ui+1 = 0 i = nmid , (4) 

uiwhere τ ≡ T/m ' and “dot” refers to differentiation in time (i.e., üi ≡ d
2

); we also introduce 
dt2 

η ≡ kmid/m ' . You will need to determine the constants α1, α2, and α3 of (4) — which may 
depend on τ, η, L, and h — in order to create the Matlab function string_frequency we 
request below. (We recommend that you start with the equations in the form m ' hüi = . . . 

' or you are likely to misplace a factor of h. Recall that m is the mass per unit length of the 
string.) In practice we would also supplement these dynamical equations with appropriate 
initial conditions. 

We next express in matrix form (with proper care for special case n = 1) our system of n 
Equations (1)–(4) in the n unknowns ui, 1 ≤ i ≤ n: 

Bu = −ü ; (5) 

here B is an n × n SPD matrix, u ≡ (u1 u2 · · · un)T is the n × 1 vector of mass displacements, 
and ü = (ü1 ü2 · · · ün)T is the n × 1 vector of mass accelerations. You will need to determine 
the entries of B — which will depend on τ, η, L, and h — from Equations (1)–(4) in order to 
create your Matlab function string_frequency. 

Finally, we now assume solutions of the form u = χeiωt to arrive from (5) to an eigenproblem 

Bχ = λχ , (6) 

for eigenvector χ and eigenvalue λ ≡ ω2 . (We recall that in the absence of dissipation u will 
oscillate indefinitely — without decay.) We may order the eigenvalues of (6) as 0 < λmin ≡√ 
λ1 ≤ λ2 ≤ · · · λn with respective eigenvectors χ1, χ2, . . . , χn. Our interest is in ωmin ≡ λmin, 
the lowest natural frequency of our string system. 

Towards that end we will ask you to write a function string_frequency with signature 

function [B,omega_min,chi_1,num_iter] = ...  
string_frequency(tau,eta,L,n,epsilon,chi_init,lam_init)  

which applies the inverse power iteration Algorithm 2 of Slide 37 of Lecture Notes 17 
 to (6) in order to find λmin and hence ωmin. Note that ωmin will depend on τ, η, L, and 
h; ω will constitute a good approximation to the lowest natural frequency of 

2Note for the case in which n = 1 we consider only Equation (4) and we discard the other three equations; for the 
case in which n = 3 we consider only Equations (2), (3), and (4) and we discard (1). 
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the (continuous) string system only for a sufficiently fine discretization — h sufficiently small 
and hence n (Matlab n) sufficiently large. Nevertheless, your code should perform correctly 
for any finite positive integer n. 

Your Matlab function must be named string_frequency and furthermore must be stored 
in a file named string_frequency.m. The function takes seven function inputs. The first 
input is the scalar tau which corresponds to τ ; the set of allowable instances is 1 ≤ τ ≤ 100. 
The second input is the scalar eta which corresponds to η; the set of allowable instances is 
0 ≤ η ≤ 1000. The third input is the scalar L which corresponds to L; the set of allowable 
instances is .3 ≤ L ≤ 1.5. The fourth input is the scalar n which corresponds to n; the set 
of allowable instances is 1 ≤ n ≤ 10000 for n odd. The fifth input is the scalar epsilon 
which corresponds to ε of the inverse power iteration Algorithm 2 and constitutes our error 
tolerance; the set of allowable instances is 1 × 10−6 ≤ ε ≤ .01. The sixth input is the n × 1 
vector chi_init which is the initial guess for the eigenvector and corresponds to χ̂ prescribed 
in Algorithm 2 prior to entering the while loop; there is no restriction on this input. Note, 
however, that, for testing purposes, setting chi_init to zeros(n, 1) will cause Algorithm 
2 to return a trivial solution. The seventh and final input is the scalar lam_init which is 
the initial guess for the eigenvalue and corresponds to λ̂ prescribed in Algorithm 2 prior to 
entering the while loop. The function yields four function outputs. The first output is the 
n × n matrix B which corresponds to B; note the output B must be “declared sparse.” The 
second output is the real scalar omega_min which corresponds to ωmin (more precisely, the 
square root of λ̂ for λ̂ provided by Algorithm 2 upon exit from the while statement). The 
third output is chi_1 which corresponds to the eigenvector χ1 (more precisely, χ̂ provided by 
Algorithm 2 upon exit from the while statement). The fourth output is num_iter which is 
the number of iterations — the number of times through the while loop of Algorithm 2, or 
equivalently the number of Matlab backslash operations — required by your inverse power 
iteration to achieve the desired tolerance. 

The script for this question is provided in A5Q1.p; you should not modify it in any way. We 
also provide a template for your inverse iteration function, string_frequency_Template. 
You should include both A5Q1.p and string_frequency.m in the YOURNAME_ASSIGNMENT_5 
folder you upload 

Hints and Guidelines. As always you should test your code thoroughly and in particular 
you should not rely on the few student instances of grade_o_matic_A5 to confirm that your 
code is performing correctly in all allowable instances. You can inspect B “by hand” (for 
smaller n). And you can compare your prediction for omega_min (and chi_1) to the results 
provided by Matlab eig (for n not too large3). More ambitiously you can develop some 
simple closed–form expressions for ωmin and χ1 in certain limits — see the Challenge below 
for several suggestions. 

Challenge. Develop simple closed–form expressions for ωmin and χ1 in the following cases: 
n = 1 (not too difficult); η = 0 and h → 0 (the first natural frequency of a “standard” (un­
damped) string in tension); τ/(Lη) « 1 and h → 0 (a bit trickier — inspection of chi_hat 
from your code might provide a hint). 

3For larger n the Matlab function eig will be too slow because eig determines all n eigenvalues of B. The Matlab 
function eigs is much more efficient for just a few (e.g., the smallest or largest) eigenvalues; do help eigs if you 
wish to (electively) add eigs to your Matlab repertoire. 
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2. (15 points) Preamble: You are not to use Matlab for this question (except of course for the 
multiple-choice script file AxQy.m for grade_o_matic_A5) either to identify or confirm the 
correct result — you should develop your answer without recourse to a computer or even a 
calculator. The point of this question is to make sure that you understand the basic matrix 
operations. 
We consider in this problem the system of linear equations 

Au = f (7) 

where A is a given 3 × 3 matrix, f is a given 3 × 1 vector, and u is the 3 × 1 vector we wish 
to find. 
We introduce two matrices  ⎞⎛ 

1 −1 0  ⎜⎜⎝  
⎟⎟⎠ AI 1 1 0  (8) =  ,  

0 0 1  

and ⎞⎛ 
1 −1 1  ⎜⎜⎝  

⎟⎟⎠ AII 1 1 −1  (9) =  ,  

0 0 0 

which will be relevant in Parts (i),(ii) and Parts (iii),(iv) respectively. 
In Parts (i),(ii), A of equation (7) is given by AI of equation (8). In other words, we consider 
the system AIu = f given by ⎞⎛⎞⎛⎞⎛ 

1 −1 0  ⎜⎜⎜⎜⎝  

⎟⎟⎟⎟⎠  

u1 

u2 

⎟⎟⎟⎟⎠ =  

⎜⎜⎜⎜⎝  

f1 

f2 

⎟⎟⎟⎟⎠  
,  

⎜⎜⎜⎜⎝  
1 1 0  

0 0 1 u3 f3 

AI u f 

for f to be specified below. 

(i) (3.75 points) For f = (1 1 1)T (recall T denotes transpose), 
(a) AIu = f has a unique solution 

(b) AIu = f has no solution 

(c) AIu = f has an infinity of solutions of the form ⎞⎛⎞⎛ 
1 0  

u =  
⎜⎜⎝ 0  

⎟⎟⎠ + α  
⎜⎜⎝ 1  

⎟⎟⎠  
0 1 

for any (real number) α 
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(d) AIu = f has an infinity of solutions of the form ⎞⎛⎞⎛ 
1  0  

u =  
⎜⎜⎝ 0  

⎟⎟⎠ + α  
⎜⎜⎜⎝  

0  
⎟⎟⎟⎠  

10 

for any (real number) α. 
(ii) (3.75 points) For f = (1 1 0)T , 

(a) AIu = f has a unique solution 

(b) AIu = f has no solution 

(c) AIu = f has an infinity of solutions of the form ⎞⎛⎞⎛ 
1 0  

u =  
⎜⎜⎝ 0  

⎟⎟⎠ + α  
⎜⎜⎝ 1  

⎟⎟⎠  
0 1 

for any (real number) α 

(d) AIu = f has an infinity of solutions of the form ⎞⎛⎞⎛ 
0 1  ⎟⎟⎠ + α  

⎜⎜⎜⎝  

⎟⎟⎟⎠  
u =  

⎜⎜⎝  0 0  
10 

for any (real number) α. 

Now, in Parts (iii), (iv), A of equation (7) is given by AII of equation (9). In other words, 
we consider the system AIIu = f given by ⎞⎛⎞⎛⎞⎛ 

1 −1 1  ⎜⎜⎜⎜⎝  

⎟⎟⎟⎟⎠  

u1 

u2 

⎟⎟⎟⎟⎠ =  

⎜⎜⎜⎜⎝  

f1 

f2 

⎟⎟⎟⎟⎠  
,  

⎜⎜⎜⎜⎝  
1 1 −1  

0 0 0 u3 f3 

AII u f 

for f to be specified below. 

(iii) (3.75 points) For f = (1 1 1)T (recall T denotes transpose), 
(a) AIIu = f has a unique solution 

(b) AIIu = f has no solution 
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(c) AIIu = f has an infinity of solutions of the form ⎞⎛⎞⎛ 
1 0  

u =  
⎜⎜⎝ 0  

⎟⎟⎠ + α  
⎜⎜⎝ 1  

⎟⎟⎠  
0 1 

for any (real number) α 

(d) AIIu = f has an infinity of solutions of the form ⎞⎛⎞⎛ 
0 1  ⎟⎟⎠ + α  

⎜⎜⎜⎝  

⎟⎟⎟⎠  
u =  

⎜⎜⎝  0 0  
10 

for any (real number) α. 
(iv) (3.75 points) For f = (1 1 0)T , 

(a) AIIu = f has a unique solution 

(b) AIIu = f has no solution 

(c) AIIu = f has an infinity of solutions of the form ⎞⎛⎞⎛ 
1 0  

u =  
⎜⎜⎝ 0  

⎟⎟⎠ + α  
⎜⎜⎝ 1  

⎟⎟⎠  
0 1 

for any (real number) α 

(d) AIIu = f has an infinity of solutions of the form ⎞⎛⎞⎛ 
0 1  ⎟⎟⎠ + α  

⎜⎜⎜⎝  

⎟⎟⎟⎠  
u =  

⎜⎜⎝  0 0  
10 

for any (real number) α. 

3. (15 points) Preamble: You are not to use Matlab for this question (except of course for the 
multiple-choice script file AxQy.m for grade_o_matic_A5) either to identify or confirm the 
correct result — you should develop your answer without recourse to a computer or even a 
calculator. The point of this question is to make sure that you understand the basic matrix 
operations. 

We consider the system of three springs and masses shown in Figure 2. 
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Figure 2: The spring-mass system for Question 3.  

The equilibrium displacements satisfy the linear system of three equations in three unknowns,  
Au = f , given by ⎞⎛⎞⎛⎞⎛ 

3 −2 0 u1 0 ⎜⎜⎜⎜⎝  

⎜⎜⎜⎜⎝  

⎟⎟⎟⎟⎠  

⎟⎟⎟⎟⎠  

⎜⎜⎜⎜⎝  

⎟⎟⎟⎟⎠  
−2 3 −1  1 u2 .  

(10) =  
0 −1 1 u3 0 

A u f 

The matrix A is SPD (Symmetric Positive Definite). Note you should only consider the 
particular right-hand side f (forces) indicated. 
We now reduce the system by Gaussian Elimination to form Uu = f̂ , where U is an upper 
triangular matrix. We may then find u by Back Substitution. Note that we do not perform 
any partial pivoting — reordering of the rows of A — for stability (since the matrix is SPD 
there is no need), and furthermore we do not perform any reordering of the columns of the 
matrix A for optimization: we work directly on the matrix A as given by equation (10). 

(i) (3 points) The element U2 2 (i.e., the entry in the i = second row, j = second column) 
of U is given by 
(a) 3 

(b) 13/3 

(c) 5/3 

(d) 2/3 

(ii) (3 points) The element U3 3 (i.e., the entry in the i = third row, j = third column) of U 
is given by 
(a) −1 

(b) 2/5 

(c) 1 

(d) 3/5 
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(iii) (3 points) The element f̂2 (i.e., the second entry in the f̂  vector) is given by 
(a) 2/3 

(b) 1 

(c) 0 

(d) 5/3 

(iv) (3 points) The element f̂3 (i.e., the third entry in the f̂  vector) is given by 
(a) −3/5 

(b) 0 

(c) 3/5 

(d) 8/5 

(v) (3 points) The displacement of the third mass, u3, is given by 
(a) 5/2 

(b) −2/3 

(c) 3/2 

(d) 2/3 

4. (15 points) Preamble: You are not to use Matlab for this question (except of course for the 
multiple-choice script file AxQy.m for grade_o_matic_A5) either to identify or confirm the 
correct result — you should develop your answer without recourse to a computer or even a 
calculator. The point of this question is to make sure that you understand the basic matrix 
operations. 

We consider the system of springs and masses shown in Figure 3. Equilibrium — force balance 
on each mass and Hooke’s law for the spring constitutive relation — leads to the system of 
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ff33

uu33

mm

ff44

uu44

mm

ff55

uu55

mm

ff66

uu66

mm

ff11

uu11

ff22

uu22
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kk == 22 kk == 22 kk == 22 kk == 22 kk == 22 kk == 22
mm11

kkspspeciaeciall == 11

Figure 3: The spring-mass system for Question 4. All the spring constants are two (k = 2), except 
for the “special” spring which links mass 3 and mass 6 (kspecial = 1); you may assume that all 
quantities are provided in consistent units. Note that all the springs are described by the linear 
Hooke relation. 

six equations in six unknowns, Au = f , ⎞⎛⎞⎛⎞⎛ 
4 −2 0 0 0 0 u1 f1 ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝  

−2 4 −2 0 0 0  

0 −2 a −2 0  c  

0 0 −2 4 −2 0  

0 0 0 −2 4 −2  

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝  

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠  

u2 

u3 

u4 

u5 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠  

=  

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝  

f2 

f3 

f4 

f5 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠  

.  
(11)  

0 0 c 0 −2 b u6 f6 

A u f 

where we will ask you to specify a, b, and c in the questions below. Note for the correct 
choices of a, b, and c the matrix A is SPD. 

We now reduce the system Au = f by Gaussian Elimination to form Uu = f̂ , where U is an 
upper triangular matrix. Note that we do not perform any partial pivoting — reordering of 
the rows of A — for stability (since the matrix is SPD there is no need), and furthermore 
we do not perform any reordering of the columns of the matrix A for optimization: we work 
directly on the matrix A as given by equation (11). Recall that since A is SPD we are sure 
that we will not encounter a zero pivot. 

(i) (3 points) The value of a is 
(a) 1 

(b) 2 

(c) 3 

(d) 4 
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(e) 5  

(ii) (3 points) The value of b is 
(a) 1 

(b) 2 

(c) 3 

(d) 4 

(e) 5 

(iii) (3 points) The value of c is 
(a) −1 

(b) −2 

(c) −3 

(d) −4 

(e) −5 

(iv) (3 points) The number of nonzero elements in the (upper triangular) matrix U is 
(a) 36 

(b) 13 

(c) 6 

(d) 21 

(e) 15 

Hint : Consider Gaussian Elimination (and the fill-in process) to deduce the only possibly 
correct option from the available choices. 

(v) (3 points) The entry (A−1)6 6, (i.e., the entry in the i = sixth row, j = sixth column of 
the inverse matrix of A) is 
(a) 1/A6 6 

(b) 1/U6 6 
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(c) A6 6 

(d) U6 6 

(e) (f1 + f2 + f3 + f4 + f5 + f6)/U6 6 

where in each case subscript 6 6 refers to the entry in the i = sixth row, j = sixth column. 
Hint : Recall the physical interpretation of the sixth column of A−1 . 

5. (15 points) Preamble: You should develop your responses based on theoretical considerations. 
However, you may use Matlab to motivate or confirm (or perhaps rectify) your theoretical 
predictions. 

We consider the system of n springs and masses shown in Figure 4. We consider the particular 
case in which ki = 1, 1 ≤ i ≤ n, and fi = 1, 1 ≤ i ≤ n; you may assume that all quantities are 
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Figure 4: The spring-mass system for Question 5. 

provided in consistent units. The displacements of the masses, u, satisfies a linear system of 
n equations in n unknowns, Au = f . The Matlab script provided below forms the stiffness 
matrix A ( = A in Matlab) and force vector f ( = f in Matlab) and then solves for the 
displacements u ( = u in Matlab) in three different fashions. You may assume that prior to 
execution of the script the workspace contains only n (Matlab n) which is a positive integer 
scalar. 

% begin script 

% form A and f 

A = spalloc(n,n,3*n); 

A(1,1) = 2; 
A(1,2) = -1; 
for i = 2:n-1 

A(i,i) = 2; 
A(i,i-1) = -1; 
A(i,i+1) = -1; 

end 
A(n,n) = 1; 
A(n,n-1) = -1; 
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numnonzero_of_A = nnz(A); 

f = ones(n,1); 

% solve A u = f in three different ways 

numtimes_compute = 20; 

tic 
for itimes = 1:numtimes_compute 

u = A\f; % REFER TO THIS LINE in Question 5(ii) 
end  
avg_time_first_way = toc/numtimes_compute;  

A_declare_full = full(A);  
tic  
for itimes = 1:numtimes_compute  

u = A_declare_full\f; 
end  
avg_time_second_way = toc/numtimes_compute;  

Ainv_declare_sparse = sparse(inv(A));  
% in fact if A is "declared sparse" then inv(A) will automatically be "declared sparse"  
tic 
for itimes = 1:numtimes_compute 

u = Ainv_declare_sparse*f; 
end 
avg_time_third_way = toc/numtimes_compute; 
% note that we do not include the time to compute inv(A) in avg_time_third_way 

% end script 

The Matlab backslash operator will not perform any partial pivoting — reordering of the 
rows of A — for stability (since the matrix is SPD there is no need); furthermore Matlab 
will not perform any reordering of the columns of the matrix A for efficiency (since the matrix 
is tri–diagonal the structure is already optimal). In short, Matlab backslash works directly 
on the matrix A as given — Gaussian Elimination to obtain U ( = U in Matlab) and f̂  
followed by Back Substitution to obtain u. 

We now run the script. In the questions below you should assume that the computational 
time to perform the operations is proportional to the number of FLOPs. (In actual practice, 
computational time and FLOPs is not synonymous since the former is affected by memory 
access, competition for cores, network speed, and other “real–life” considerations; further­
more, these “real–life” considerations become more important for the larger n of interest in 
this question. Inasmuch, your computational times should serve to guide, but not dictate, 
your answers.) 
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(i) (3 points) For n = 5000 the script will set the value of numnonzero_of_A to 
(a) 25,000,000 

(b) 14,998 

(c) 30,000 

(d) 5,000 

(ii) (3 points) For n=5000 the number of nonzero elements of U will be 

(a) 12,507,501 

(b) 15,000 

(c) 5,000 

(d) 9,999 

Note you do not see U explicitly in the script of the previous page. Here U is the upper 
triangular matrix U formed internally as part of the backslash operation u = A\f on the 
line of the script with comment % REFER TO THIS LINE in Question 5(ii) . 
Hint : Recall Gaussian Elimination for tridiagonal matrices. 

(iii) (3 points) The ratio 
avg_time_second_way 
avg_time_first_way 

will behave asymptotically as Cnρ for n → ∞ for C a constant independent of n and ρ 
given by 
(a) -3 

(b) -2 

(c) -1 

(d) 0 

(e) 1 

(f ) 2 

(g) 3 

(iv) (3 points) The ratio 
avg_time_third_way 
avg_time_first_way 
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will behave asymptotically as Cnρ for n → ∞ for C a constant independent of n and ρ 
given by 
(a) -3 

(b) -2 

(c) -1 

(d) 0 

(e) 1 

(f ) 2 

(g) 3 

(v) (3 points) The ratio 
avg_time_third_way 
avg_time_second_way 

will behave asymptotically as Cnρ for n → ∞ for C a constant independent of n and ρ 
given by 
(a) -3 

(b) -2 

(c) -1 

(d) 0 

(e) 1 

(f ) 2 

(g) 3 
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