2.092/2.093 — Finite Element Analysis of Solids & Fluids I	Fall '09
Lecture 5 - The Finite Element Formulation	
Prof. K. J. Bathe	MIT OpenCourseWare

In this system, (X, Y, Z) is the global coordinate system, and (x, y, z) is the local coordinate system for the element i.

We want to satisfy the following equations:

$$\begin{aligned} \tau_{ij,j} + f_i^B &= 0 \quad \text{in } V \\ \tau_{ij}n_j &= f_i^{S_f} \quad \text{on } S_f \end{aligned} \right\} & \to \quad \text{Equilibrium Conditions} \\ u_i \mid_{S_u} = u_i^{S_u} \quad \to \quad \text{Compatibility Conditions} \\ \tau_{ij} &= f(\varepsilon_{kl}) \quad \to \quad \text{Stress-strain Relations} \end{aligned}$$
(A)

Then we have the exact solution.

Principle of Virtual Displacements

$$\int_{V} \overline{\boldsymbol{\varepsilon}}^{T} \boldsymbol{C} \boldsymbol{\varepsilon} dV = \int_{V} \overline{\boldsymbol{u}}^{T} \boldsymbol{f}^{B} dV + \int_{S_{f}} \overline{\boldsymbol{u}}^{S_{f}T} \boldsymbol{f}^{S_{f}} dS_{f}$$
(B)

Here, real stresses ($C\varepsilon$) are in equilibrium with the external forces (f^B , f^{S_f}). Note that Eq. (B) is equivalent to Eq. (A). Recall that we defined

$$\boldsymbol{\varepsilon}^{T} = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{yy} & \varepsilon_{zz} & \gamma_{xy} & \gamma_{yz} & \gamma_{zx} \end{bmatrix} \\ \boldsymbol{\overline{\varepsilon}}^{T} = \begin{bmatrix} \bar{\varepsilon}_{xx} & \bar{\varepsilon}_{yy} & \bar{\varepsilon}_{zz} & \bar{\gamma}_{xy} & \bar{\gamma}_{yz} & \bar{\gamma}_{zx} \end{bmatrix} = \begin{bmatrix} \frac{\partial \overline{u}}{\partial x} \dots \end{bmatrix}$$

Basic assumptions:

$$\boldsymbol{u}^{(m)} = \begin{bmatrix} u(x,y,z) \\ v(x,y,z) \\ w(x,y,z) \end{bmatrix}^{(m)} = \underset{3 \times n}{\boldsymbol{H}} \underset{n \times 1}{\overset{(m)}{\overset{\circ}{}}} \hat{\boldsymbol{u}}$$
(1)

	u_1
	v_1
	w_1
$\hat{m{u}} =$:
	u_N
	v_N
	w_N

N is the number of nodes (3N = n) and **H** is the displacement interpolation matrix. For the moment, let's assume $S_u = 0$. We use

$$\hat{\boldsymbol{u}}^T = \begin{bmatrix} u_1 & u_2 & u_3 & \dots & u_n \end{bmatrix}$$

Then, we obtain

$$\boldsymbol{\varepsilon}_{6\times1}^{(m)} = \boldsymbol{B}_{6\times n}^{(m)} \hat{\boldsymbol{u}}_{n\times1}$$
(2)

We also assume

$$\bar{\boldsymbol{u}}^{(m)} = \boldsymbol{H}^{(m)} \bar{\hat{\boldsymbol{u}}} \tag{3}$$

$$\bar{\boldsymbol{\varepsilon}}_{3\times 1}^{(m)} = \boldsymbol{B}_{6\times n}^{(m)} \frac{\bar{\boldsymbol{u}}}{n\times 1}$$

$$\tag{4}$$

where \boldsymbol{B} is the strain-displacement matrix. Substitute equations (1) through (4) into (B):

$$\sum_{m} \int_{V} \bar{\boldsymbol{\varepsilon}}^{(m)T} \boldsymbol{C}^{(m)} \boldsymbol{\varepsilon}^{(m)} dV^{(m)} = \sum_{m} \int_{V} \bar{\boldsymbol{u}}^{(m)T} \boldsymbol{f}^{B(m)} dV^{(m)} + \sum_{m} \sum_{i} \int_{S_{f}^{i(m)}} \bar{\boldsymbol{u}}^{S_{f}^{i(m)}T} \boldsymbol{f}^{S_{f}^{i(m)}} dS_{f}^{i(m)}$$
(B*)

where *i* sums over the element surfaces composing $S_f^{(m)}$. The equation now becomes

$$\bar{\hat{\boldsymbol{u}}}^T \left\{ \sum_m \int_{V^{(m)}} \boldsymbol{B}^{(m)T} \boldsymbol{C}^{(m)} \boldsymbol{B}^{(m)} dV^{(m)} \right\} \hat{\boldsymbol{u}} = \\ \bar{\hat{\boldsymbol{u}}}^T \left\{ \sum_m \int_{V^{(m)}} \boldsymbol{H}^{(m)T} \boldsymbol{f}^{B(m)} dV^{(m)} + \sum_{m \ i} \sum_{s_f^{i(m)}} \boldsymbol{H}^{S_f^{i(m)}T} \boldsymbol{f}^{S_f^{i(m)}} dS_f^{i(m)} \right\}$$

 $\hat{\boldsymbol{u}}$ is the unknown to be found. When evaluated on $S_{f}^{i(m)},$

$$ar{oldsymbol{u}}^{S_f^{i(m)}} = oldsymbol{H}^{S_f^{i(m)}}ar{oldsymbol{u}}$$

 $oldsymbol{H}^{S_f^{i(m)}} = oldsymbol{H}^{(m)} \left|_{S_f^{i(m)}}
ight|$

With the transformed equation above, we can insert the following identity matrices:

Let $\bar{\boldsymbol{u}}^T = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \end{bmatrix} \longrightarrow$ Gives the first equation to solve for Then $\bar{\boldsymbol{u}}^T = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \end{bmatrix} \longrightarrow$ Gives the second equation Then $\bar{\boldsymbol{u}}^T = \begin{bmatrix} 0 & 0 & 1 & \dots & 0 \end{bmatrix} \longrightarrow$ Gives the third equation \dots and so on.

We finally obtain $K\hat{u} = R$. Now, let's drop off the hat!

$$\begin{split} \hline \boldsymbol{KU} &= \boldsymbol{R} \\ \boldsymbol{K} &= \sum_{m} \boldsymbol{K}^{(m)} \quad ; \quad \boldsymbol{K}^{(m)} = \int_{V^{(m)}} \boldsymbol{B}^{(m)T} \boldsymbol{C}^{(m)} \boldsymbol{B}^{(m)} dV^{(m)} \\ \boldsymbol{R} &= \boldsymbol{R}_{B} + \boldsymbol{R}_{S} \\ \boldsymbol{R}_{B} &= \sum_{m} \boldsymbol{R}_{B}^{(m)} \quad ; \quad \boldsymbol{R}_{B}^{(m)} = \int_{V^{(m)}} \boldsymbol{H}^{(m)T} \boldsymbol{f}^{B(m)} dV^{(m)} \\ \boldsymbol{R}_{S} &= \sum_{m} \boldsymbol{R}_{S}^{(m)} \quad ; \quad \boldsymbol{R}_{S}^{(m)} = \sum_{i} \int_{S_{f}^{i(m)}} \boldsymbol{H}^{S_{f}^{i(m)T}} \boldsymbol{f}^{S_{f}^{i(m)}} dS_{f}^{i(m)} \end{split}$$

Example 4.5

Reading assignment: Section 4.2

For this system, we can define $U^T = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$. We want to find:

$$\boldsymbol{u}^{(1)}(x) = \boldsymbol{H}^{(1)} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
; $\boldsymbol{u}^{(2)}(x) = \boldsymbol{H}^{(2)} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$

2.092 / 2.093 Finite Element Analysis of Solids and Fluids I $_{\mbox{Fall 2009}}$

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.