In this system, (X, Y, Z) is the global coordinate system, and (x, y, z) is the local coordinate system for the element i.

We want to satisfy the following equations:

$$
\begin{align*}
& \left.\begin{array}{ll}
\tau_{i j, j}+f_{i}^{B}=0 & \text { in } V \\
\tau_{i j} n_{j}=f_{i}^{S_{f}} & \text { on } S_{f}
\end{array}\right\} \quad \rightarrow \quad \text { Equilibrium Conditions } \\
& \left.u_{i}\right|_{S_{u}}=u_{i}^{S_{u}} \quad \rightarrow \quad \text { Compatibility Conditions } \tag{A}\\
& \tau_{i j}=f\left(\varepsilon_{k l}\right) \quad \rightarrow \quad \text { Stress-strain Relations }
\end{align*}
$$

Then we have the exact solution.

Principle of Virtual Displacements

$$
\begin{equation*}
\int_{V} \bar{\varepsilon}^{T} \boldsymbol{C} \boldsymbol{\varepsilon} d V=\int_{V} \overline{\boldsymbol{u}}^{T} \boldsymbol{f}^{\boldsymbol{B}} d V+\int_{S_{f}} \overline{\boldsymbol{u}}^{S_{f} T} \boldsymbol{f}^{S_{f}} d S_{f} \tag{B}
\end{equation*}
$$

Here, real stresses $(\boldsymbol{C} \boldsymbol{\varepsilon})$ are in equilibrium with the external forces $\left(\boldsymbol{f}^{B}, \boldsymbol{f}^{S_{f}}\right)$. Note that Eq. (B) is equivalent to Eq. (A). Recall that we defined

$$
\begin{aligned}
& \varepsilon^{T}=\left[\begin{array}{llllll}
\varepsilon_{x x} & \varepsilon_{y y} & \varepsilon_{z z} & \gamma_{x y} & \gamma_{y z} & \gamma_{z x}
\end{array}\right] \\
& \bar{\varepsilon}^{T}=\left[\begin{array}{llllll}
\bar{\varepsilon}_{x x} & \bar{\varepsilon}_{y y} & \bar{\varepsilon}_{z z} & \bar{\gamma}_{x y} & \bar{\gamma}_{y z} & \bar{\gamma}_{z x}
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial \bar{u}}{\partial x} \ldots
\end{array}\right]
\end{aligned}
$$

Basic assumptions:

$$
\boldsymbol{u}^{(m)}=\left[\begin{array}{c}
u(x, y, z) \tag{1}\\
v(x, y, z) \\
w(x, y, z)
\end{array}\right]^{(m)}=\underset{3 \times n}{\boldsymbol{H}}{ }^{(m)} \underset{n \times 1}{\hat{\boldsymbol{u}}}
$$

$$
\hat{\boldsymbol{u}}=\left[\begin{array}{c}
u_{1} \\
v_{1} \\
w_{1} \\
\vdots \\
u_{N} \\
v_{N} \\
w_{N}
\end{array}\right]
$$

N is the number of nodes $(3 N=n)$ and \boldsymbol{H} is the displacement interpolation matrix. For the moment, let's assume $S_{u}=0$. We use

$$
\hat{\boldsymbol{u}}^{T}=\left[\begin{array}{lllll}
u_{1} & u_{2} & u_{3} & \ldots & u_{n}
\end{array}\right]
$$

Then, we obtain

$$
\begin{equation*}
\underset{6 \times 1}{\boldsymbol{\varepsilon}}{ }^{(m)}=\underset{6 \times n}{\boldsymbol{B}}{ }^{(m)} \underset{n \times 1}{\hat{\boldsymbol{u}}} \tag{2}
\end{equation*}
$$

We also assume

$$
\begin{align*}
\overline{\boldsymbol{u}}^{(m)} & =\boldsymbol{H}^{(m)} \overline{\hat{\boldsymbol{u}}} \tag{3}\\
\overline{\boldsymbol{\varepsilon}}^{(m)} & ={\underset{6 \times n}{ }{ }^{(m)}{ }_{n \times 1}^{\overline{\hat{\boldsymbol{u}}}}}^{\text {and }} \tag{4}
\end{align*}
$$

where \boldsymbol{B} is the strain-displacement matrix. Substitute equations (1) through (4) into (B):

$$
\begin{align*}
& \sum_{m} \int_{V} \overline{\boldsymbol{\varepsilon}}^{(m) T} \boldsymbol{C}^{(m)} \boldsymbol{\varepsilon}^{(m)} d V^{(m)}= \\
& \quad \sum_{m} \int_{V} \overline{\boldsymbol{u}}^{(m) T} \boldsymbol{f}^{B(m)} d V^{(m)}+\sum_{m} \Sigma_{i} \int_{S_{f}^{i(m)}} \overline{\boldsymbol{u}}^{S_{f}^{i(m)} T} \boldsymbol{f}^{S_{f}^{i(m)}} d S_{f}^{i(m)} \tag{*}
\end{align*}
$$

where i sums over the element surfaces composing $S_{f}^{(m)}$. The equation now becomes

$$
\begin{aligned}
\overline{\hat{\boldsymbol{u}}}^{T}\left\{\sum_{m}\right. & \left.\int_{V^{(m)}} \boldsymbol{B}^{(m) T} \boldsymbol{C}^{(m)} \boldsymbol{B}^{(m)} d V^{(m)}\right\} \hat{\boldsymbol{u}}= \\
& \overline{\hat{\boldsymbol{u}}}^{T}\left\{\sum_{m} \int_{V^{(m)}} \boldsymbol{H}^{(m) T} \boldsymbol{f}^{B(m)} d V^{(m)}+\sum_{m i} \sum_{S_{f}^{i(m)}} \boldsymbol{H}^{S_{f}^{i(m)} T} \boldsymbol{f}^{S_{f}^{i(m)}} d S_{f}^{i(m)}\right\}
\end{aligned}
$$

$\hat{\boldsymbol{u}}$ is the unknown to be found. When evaluated on $S_{f}^{i(m)}$,

$$
\begin{aligned}
& \overline{\boldsymbol{u}}_{f}^{S_{f}^{i(m)}}=\boldsymbol{H}^{S_{f}^{i(m)}} \overline{\hat{\boldsymbol{u}}} \\
& \boldsymbol{H}_{f}^{S_{S}^{i(m)}}=\left.\boldsymbol{H}^{(m)}\right|_{S_{f}^{i(m)}}
\end{aligned}
$$

With the transformed equation above, we can insert the following identity matrices:
Let $\overline{\hat{\boldsymbol{u}}}^{T}=\left[\begin{array}{lllll}1 & 0 & 0 & \ldots & 0\end{array}\right] \quad \rightarrow \quad$ Gives the first equation to solve for
Then $\overline{\hat{\boldsymbol{u}}}^{T}=\left[\begin{array}{lllll}0 & 1 & 0 & \ldots & 0\end{array}\right] \rightarrow$ Gives the second equation
Then $\overline{\hat{\boldsymbol{u}}}^{T}=\left[\begin{array}{lllll}0 & 0 & 1 & \ldots & 0\end{array}\right] \rightarrow \quad$ Gives the third equation
\ldots and so on.
We finally obtain $\boldsymbol{K} \hat{\boldsymbol{u}}=\boldsymbol{R}$. Now, let's drop off the hat!

$$
K U=\boldsymbol{R}
$$

$$
\begin{array}{ccl}
\boldsymbol{K}=\sum_{m} \boldsymbol{K}^{(m)} & ; & \boldsymbol{K}^{(m)}=\int_{V^{(m)}} \boldsymbol{B}^{(m) T} \boldsymbol{C}^{(m)} \boldsymbol{B}^{(m)} d V^{(m)} \\
\boldsymbol{R}=\boldsymbol{R}_{B}+\boldsymbol{R}_{S} & \\
\boldsymbol{R}_{B}=\sum_{m} \boldsymbol{R}_{B}^{(m)} \quad ; \quad \boldsymbol{R}_{B}^{(m)}=\int_{V^{(m)}} \boldsymbol{H}^{(m) T} \boldsymbol{f}^{B(m)} d V^{(m)} \\
\boldsymbol{R}_{S}=\sum_{m} \boldsymbol{R}_{S}^{(m)} \quad ; \quad \boldsymbol{R}_{S}^{(m)}=\sum_{i} \int_{S_{f}^{i(m)}} \boldsymbol{H}^{S_{f}^{i(m)} T} \boldsymbol{f}^{S_{f}^{i(m)}} d S_{f}^{i(m)}
\end{array}
$$

Example 4.5

Reading assignment: Section 4.2

For this system, we can define $\boldsymbol{U}^{T}=\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]$. We want to find:

$$
\boldsymbol{u}^{(1)}(x)=\boldsymbol{H}^{(1)}\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \quad ; \quad \boldsymbol{u}^{(2)}(x)=\boldsymbol{H}^{(2)}\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]
$$

MIT OpenCourseWare
http://ocw.mit.edu
2.092 / 2.093 Finite Element Analysis of Solids and Fluids I Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

