In the last lecture, we used the principle of virtual displacements to obtain the following equations:

$$
\begin{equation*}
\boldsymbol{K} \boldsymbol{U}=\boldsymbol{R} \tag{1}
\end{equation*}
$$

$$
\begin{array}{rlrl}
\boldsymbol{K}=\sum_{m} \boldsymbol{K}^{(m)} & ; & \boldsymbol{K}^{(m)} & =\int_{V^{(m)}} \boldsymbol{B}^{(m) T} \boldsymbol{C}^{(m)} \boldsymbol{B}^{(m)} d V^{(m)} \\
\boldsymbol{R}=\boldsymbol{R}_{B}+\boldsymbol{R}_{S} & \\
\boldsymbol{R}_{B}=\sum_{m} \boldsymbol{R}_{B}^{(m)} \quad ; \quad \boldsymbol{R}_{B}^{(m)} & =\int_{V^{(m)}} \boldsymbol{H}^{(m) T} \boldsymbol{f}^{B(m)} d V^{(m)} \\
\boldsymbol{R}_{S}=\sum_{m} \boldsymbol{R}_{S}^{(m)} \quad ; \quad \boldsymbol{R}_{S}^{(m)} & =\sum_{i} \int_{S_{f}^{i(m)}} \boldsymbol{H}^{S_{f}^{i(m)} T} \boldsymbol{f}^{S_{f}^{i(m)}} d S_{f}^{i(m)} \\
& & \\
\boldsymbol{u}^{(m)} & =\boldsymbol{H}^{(m)} \boldsymbol{U} \tag{3}\\
& \downarrow \\
\boldsymbol{\varepsilon}^{(m)} & =\boldsymbol{B}^{(m)} \boldsymbol{U}
\end{array}
$$

Note that the dimension of $\boldsymbol{u}^{(m)}$ is in general not the same as the dimension of $\boldsymbol{\varepsilon}^{(m)}$.

Example: Static Analysis

Reading assignment: Example 4.5

x is a local coordinate which is different from $\mathrm{X} . \quad f_{x}^{B}=0.1 f_{2}(t)\left[\mathrm{N} / \mathrm{cm}^{3}\right]$

Assume:
i. Plane sections remain plane
ii. Static analysis \rightarrow no vibrations/no transient response
iii. One-dimensional problem; hence, only one degree of freedom per node

Elements 1 and 2 are compatible because they use the same U_{2}. Next, use a linear interpolation function.

$$
\begin{aligned}
& u^{(1)}(x)=\underbrace{\left[\begin{array}{lll}
\left(1-\frac{x}{100}\right) & \frac{x}{100} & 0
\end{array}\right]}_{\boldsymbol{H}^{(1)}}\left[\begin{array}{c}
U_{1} \\
U_{2} \\
U_{3}
\end{array}\right] ; u^{(2)}(x)=\underbrace{\left[\begin{array}{lll}
0 & \left(1-\frac{x}{80}\right) & \frac{x}{80}
\end{array}\right]}_{\boldsymbol{H}^{(2)}}\left[\begin{array}{c}
U_{1} \\
U_{2} \\
U_{3}
\end{array}\right] \\
& \varepsilon^{(1)}(x)=\underbrace{\left[\begin{array}{lll}
-\frac{1}{100} & \frac{1}{100} & 0
\end{array}\right]}_{\boldsymbol{B}^{(1)}}\left[\begin{array}{c}
U_{1} \\
U_{2} \\
U_{3}
\end{array}\right] ; \varepsilon^{(2)}(x)=\underbrace{\left[\begin{array}{lll}
0 & -\frac{1}{80} & \frac{1}{80}
\end{array}\right]}_{\boldsymbol{B}^{(2)}}\left[\begin{array}{c}
U_{1} \\
U_{2} \\
U_{3}
\end{array}\right] \\
& \boldsymbol{K}=E \cdot 1 \cdot \int_{0}^{100}\left[\begin{array}{c}
-\frac{1}{100} \\
\frac{1}{100} \\
0
\end{array}\right]\left[\begin{array}{lll}
-\frac{1}{100} & \frac{1}{100} & 0
\end{array}\right] d x+E \int_{0}^{80}\left(1+\frac{x}{40}\right)^{2}\left[\begin{array}{c}
0 \\
-\frac{1}{80} \\
\frac{1}{80}
\end{array}\right]\left[\begin{array}{lll}
0 & -\frac{1}{80} & \frac{1}{80}
\end{array}\right] d x \\
&=\frac{E}{100}\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{13 E}{3 \cdot 80}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]
\end{aligned}
$$

The "equivalent cross-sectional area" of element 2 is $A=\frac{13}{3} \mathrm{~cm}^{2}$. This equivalent area must lie between the areas of the end faces $A=1$ and $A=9$.

We note:

- Diagonal terms must be positive. If the diagonal terms are zero or negative, then the system is unstable physically. A positive diagonal implies that the degree of freedom has stiffness at that node.
- \boldsymbol{K} is symmetric.
- \boldsymbol{K} is singular if rigid body motions are possible. To be able to solve the problem, all rigid body modes must be removed by adequately constraining the structure. i.e. \boldsymbol{K} is reduced by applying boundary conditions to the nodes.

The \boldsymbol{K} used to solve for \boldsymbol{U} is, then, positive definite ($\operatorname{det} \boldsymbol{K}>0$). This ensures that the elastic strain energy is positive and nonzero for any displacement field \boldsymbol{U}. In the analysis, each element is in equilibrium under its nodal forces, and each node is in equilibrium when summing element forces and external loads.

Homework Problem 2

$$
\left[\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{z z}
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial u}{\partial x} \\
\frac{u}{x}
\end{array}\right]
$$

$\varepsilon_{z z}$ is frequently called the "hoop strain", $\varepsilon_{\theta \theta}$.

$$
\begin{gathered}
\varepsilon_{z z}=\frac{2 \pi(u+x)-2 \pi x}{2 \pi x}=\frac{u}{x} \\
\boldsymbol{C}=\frac{E}{1-\nu^{2}}\left[\begin{array}{cc}
1 & \nu \\
\nu & 1
\end{array}\right] \\
\boldsymbol{f}^{B}=\rho \omega^{2} R\left[N / \mathrm{cm}^{3}\right] \quad ; \quad R=x
\end{gathered}
$$

MIT OpenCourseWare
http://ocw.mit.edu
2.092 / 2.093 Finite Element Analysis of Solids and Fluids I Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

