2.092/2.093

FINITE ELEMENT ANALYSIS OF SOLIDS AND FLUIDS I FALL 2009

Quiz #2

Instructor:Prof. K. J. BatheTA:Seounghyun Ham

Problem 1 (10 points):

A planar (two-dimensional) analysis of a fluid-structure system is to be performed. The simple model shown below is considered.

<u>Fig. 1</u>

Infinitesimally small motions are assumed to take place. The solid is in plane strain conditions with \underline{C} known,

$$\begin{bmatrix} \tau_{xx} \\ \tau_{yy} \\ \tau_{xy} \end{bmatrix} = \underline{C} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{bmatrix}$$

and mass density ρ_s .

The fluid is inviscid with bulk modulus β ,

$$p = -\beta \varepsilon_{v}; \quad \varepsilon_{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$

and mass density ρ_f . Here *u* and *v* are displacements for the fluid and acoustic motions are considered.

- (a) Establish the expressions for the "stiffness elements" for the degrees of freedom u_i and v_i .
- (b) Establish the expressions for the "consistent mass elements" for these degrees of freedom.

In other words: Establish for

x	X	…]	$\begin{bmatrix} \ddot{u}_i \end{bmatrix}$		X	х	…]	u _i	
x	X		ÿ,	+	X	х		v _i	= <u>R</u>
:	÷]	[:]		_:	÷]		

<u>ONLY</u> the entries shown as "x" above in <u>M</u> and <u>K</u> for the two degrees of freedom shown in Fig. 1.

Note:

Give all answers but write as little as possible, and do not perform any integration.

Problem 2 (10 points):

A system is governed by the dynamic equilibrium equations

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{U}}_1 \\ \ddot{\mathbf{U}}_2 \\ \ddot{\mathbf{U}}_3 \end{bmatrix} + \begin{bmatrix} 2 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} \mathbf{U}_1 \\ \mathbf{U}_2 \\ \mathbf{U}_3 \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{R}_2(t) \\ 0 \end{bmatrix}; \quad {}^{\mathbf{0}}\underline{\mathbf{U}} = \underline{\mathbf{0}}; \quad {}^{\mathbf{0}}\underline{\mathbf{U}} = \underline{\mathbf{0}};$$

You are required to use the <u>central difference direct time integration method</u> to calculate the response for U_1 , U_2 , and U_3 .

- (a) Give the solution steps you would use to calculate the response, but do not perform any actual step by step solution.
- (b) Give the time step Δt you would employ for an efficient solution, and give your reasons for the choice.

Note:

You can get the solution, although there are zero masses at the degrees of freedom U₁ and U₃!

2.092 / 2.093 Finite Element Analysis of Solids and Fluids I $_{\mbox{Fall 2009}}$

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.