2.092/2.093

FINITE ELEMENT ANALYSIS OF SOLIDS AND FLUIDS I FALL 2009

Homework 1

Instructor:	Prof. K. J. Bathe	Assigned: Session 3
TA:	Seounghyun Ham	Due: Session 5

Problem 1 (30 points):

Consider the truss problem already discussed in class, in linear elastic analysis, but with all displacement boundary conditions removed and no applied load.

A $[m^2]$ = cross-sectional area of each bar, E $[N/m^2]$, and a[m].

a) Develop by the physical reasoning used in class that is "by inspection" the $\underline{\mathbf{K}}$ matrix for

$$\mathbf{\underline{K}}\begin{bmatrix}U_1\\\vdots\\U_8\end{bmatrix} = \begin{bmatrix}R_1\\\vdots\\R_8\end{bmatrix}$$

- b) Now assume $U_1 = U_2 = U_4 = U_7 = U_8 = 0$ and the external loads, $R_3 = 0$, $R_5 = 60kN$, and $R_6 = 0$. Calculate the displacements, U_3 , U_5 , and U_6 and sketch the deflected shape of the structure.
- c) Calculate all internal element forces and the reactions corresponding to U_1, U_2, U_4, U_7 and U_8 .
- d) Show explicitly that element 3 and joint (node) 3 are in equilibrium. Show that the complete structure is in equilibrium.

2.092 / 2.093 Finite Element Analysis of Solids and Fluids I $_{\mbox{Fall 2009}}$

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.