2.092/2.093 - Finite Element Analysis of Solids \& Fluids I
 Fall '09
 Lecture 3 - Analysis of Solids/Structures and Fluids
 Prof. K. J. Bathe MIT OpenCourseWare

The fundamental conditions to be satisfied are:
I. Equilibrium: in solids, $\boldsymbol{F}=m \boldsymbol{a}$; in fluids, conservation of momentum
II. Compatibility: continuity and boundary conditions
III. Constitutive relations: Stress/strain law

Each joint and each element must be in equilibrium. From last lecture:

We want to solve $\boldsymbol{K} \boldsymbol{U}=\boldsymbol{R}$ for this system. We know that

$$
\boldsymbol{R}=\left[\begin{array}{c}
0 \\
-P \\
0 \\
0 \\
0
\end{array}\right]
$$

To solve for \boldsymbol{K}, assume $u_{5}=1, u_{1}=u_{2}=u_{3}=u_{4}=0$. Then, the left hand side becomes

$$
\left[\begin{array}{l}
k_{15} \\
k_{25} \\
k_{35} \\
k_{45} \\
k_{55}
\end{array}\right]=\boldsymbol{R}
$$

where \boldsymbol{R} are the external applied forces corresponding to the imposed displacement.

Example

Consider a simple bar:

$$
F=\frac{E A}{L} \times[\text { Displacement u }] \quad \rightarrow \quad \tilde{K}=\frac{E A}{L}
$$

Truss bars can only resist axial forces. Note that the length of bar 3 does not change in infinitesimal displacement analysis!

We use the approximations $\cos \theta=1, \sin \theta=\theta$ because the displacements are small, and we are performing an infinitesimal displacement analysis. So, $L^{\prime}=a$.

$$
L_{1}=L_{2}
$$

$$
\Delta L=\frac{1}{\sqrt{2}}
$$

$$
\begin{aligned}
& \mathrm{F}_{1}=\frac{A E}{a} \quad \underset{\mathrm{~F}_{2}=\frac{A E}{\sqrt{2} a} \frac{1}{\sqrt{2}}}{k_{55}=\frac{A E}{2 \sqrt{2} a}+\frac{A E}{a} \quad ; \quad k_{15}=-\frac{A E}{2 \sqrt{2} a} \quad ; \quad k_{25}=-\frac{1}{\sqrt{2}}} \begin{array}{l}
\mathrm{F}_{1}=\frac{A E}{a}
\end{array},
\end{aligned}
$$

$$
\boldsymbol{K}=\frac{A E}{a}\left[\begin{array}{cccc}
. & . & . & . \\
. & -\frac{1}{2 \sqrt{2}} \\
. & . & . & . \\
. & . & -\frac{1}{2 \sqrt{2}} \\
. & . & 0 \\
. & . & . & 0 \\
. & . & . & .
\end{array} \frac{1}{2 \sqrt{2}}+1\right]
$$

Using this method, we can construct the whole stiffness matrix with the displacement boundary conditions removed. Our $\boldsymbol{K} \boldsymbol{U}=\boldsymbol{R}$ becomes

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\boldsymbol{K}_{a a} & \boldsymbol{K}_{a b} \\
5 \times 5 & 5 \times 3 \\
\boldsymbol{K}_{b a} & \boldsymbol{K}_{b b} \\
3 \times 5 & 3 \times 3
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{u}_{a} \\
\boldsymbol{u}_{b}
\end{array}\right] }=\left[\begin{array}{c}
\boldsymbol{R}_{a} \\
\boldsymbol{R}_{b}
\end{array}\right] \\
& \boldsymbol{u}_{a}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5}
\end{array}\right] \text { and } \boldsymbol{u}_{b}=\left[\begin{array}{c}
u_{6} \\
u_{7} \\
u_{8}
\end{array}\right] \quad ; \quad \boldsymbol{R}_{a}=\left[\begin{array}{c}
R_{1} \\
R_{2} \\
R_{3} \\
R_{4} \\
R_{5}
\end{array}\right] \text { and } \boldsymbol{R}_{b}=\left[\begin{array}{c}
R_{6} \\
R_{7} \\
R_{8}
\end{array}\right]
\end{aligned}
$$

Now we have the simplified equation $\boldsymbol{K}_{a a} \boldsymbol{U}_{a}=\boldsymbol{R}_{a}$. Solve for \boldsymbol{U}_{a}, and then the reactions are $\boldsymbol{R}_{b}=\boldsymbol{K}_{b a} \boldsymbol{U}_{a}$. Also note: "Linear analysis" means that for any constants α, β,

$$
\boldsymbol{K} \boldsymbol{U}_{1}=\boldsymbol{R}_{1}, \boldsymbol{K} \boldsymbol{U}_{2}=\boldsymbol{R}_{2} \rightarrow \boldsymbol{K}\left(\alpha \boldsymbol{U}_{1}+\beta \boldsymbol{U}_{2}\right)=\alpha \boldsymbol{R}_{1}+\beta \boldsymbol{R}_{2}
$$

To see why the solutions in linear analysis are unique, please see p. 239 in the textbook: Bathe, K.J. Finite Element Procedures. Cambridge, MA: Klaus-Jürgen Bathe, 2007. ISBN: 978-0979004902.

MIT OpenCourseWare
http://ocw.mit.edu
2.092 / 2.093 Finite Element Analysis of Solids and Fluids I Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

