2.092/2.093

FINITE ELEMENT ANALYSIS OF SOLIDS AND FLUIDS I FALL 2009

Homework 8

Instructor:	Prof. K. J. Bathe	Assigned: Session 23
TA:	Seounghyun Ham	Due: Session 25

Problem 1 (20 points):

Consider Problem 1 of Homework 7.

- a) Calculate the static correction to the analysis performed in Homework 7.
- b) <u>Compare</u> by plots the solutions obtained with (i) using one mode plus the static correction and (ii) using two modes, and discuss your results.

Problem 2 (10 points):

Establish a Rayleigh damping matrix <u>C</u> for the system of Problem 1 of Homework 7, which gives modal damping parameters, $\xi_1=0.02$ and $\xi_2=0.10$.

Problem 3 (20 points):

Consider the generalized eigenvalue problem

	4	-1	0		2	0	0	
	-1	3	-1	$\underline{\phi} = \lambda$	0	2	1	ϕ
ļ	0	-1	4		0	1	2_	

- a) Calculate the eigenvalues and eigenvectors and show explicitly that these vectors are \underline{M} and \underline{K} orthogonal.
- b) Find (any) two vectors that are \underline{M} and \underline{K} orthogonal but are not eigenvectors.

Problem 4 (20 points):

Consider the system in Problem 3.

Perform two subspace iterations with the starting vectors

$$\underline{\mathbf{X}}_{1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & -1 \end{bmatrix}$$

That is, calculate \underline{X}_2 and \underline{X}_3 , and hence the approximations to the exact eigenvalues and eigenvectors (obtained in Problem 3).

2.092 / 2.093 Finite Element Analysis of Solids and Fluids I $_{\mbox{Fall }2009}$

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.