
NETWORK MODELS OF BERNOULLI’S EQUATION


The phenomenon described by Bernoulli's equation 
arises from momentum transport due to mass flow. 

EXAMPLE: A PIPE OF VARYING CROSS-SECTION. 
section 1 section 2 

A2Q1 Q2 
A1
v1
 v2ρ 

P1 P2ρ 

Assume: 
• incompressible flow 
• slug flow 
• lossless flow 
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Mass balance: 
Q1 = A1v1 = Q2 = A2v2 

Consider kinetic (co-)energy flux at each end: 
1dE* k,1 = 2 ρA1dx1(v12) 

Ė * k,1 = 1 
2 ρA1v1(v12) = 1 

2 ρ 
Q13 

A12 

Ė * k,2 = 1 
2 ρA2v2(v22) = 1 

2 ρ 
Q23 

A22 

Thus because Q1 = Q2, 

E *k,2 > ˙if A1 > A2 then ˙ E *k,1 
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The extra kinetic energy must come from somewhere. 
It comes from work done on the fluid. 

Power balance: 

1 ρ 
Q23 

P1Q1 + 1 ρ 
Q13 

= P2Q2 + 2 A222 A12 

Rearranging: 

⎜⎛ 1 Q12
⎟⎞ ⎜⎛ 1 

⎝⎜ 
P1 + 2 ρ A12⎠⎟ 

Q1 = 
⎝⎜ 
P2 + 2 ρ 

Q22
⎟⎞ Q2A22⎠⎟


1 1

⎝⎜
⎛ P1 + 2 ρ v12

⎠⎟
⎞ Q1 = ⎝⎜⎛ P2 + 2 ρ v22

⎠⎟
⎞ Q2 

Define: 
1
Pdynamic = 2 ρ v12


Phydraulic = Pstatic + Pdynamic 

Net power flux: 
Phydraulic Q 
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NETWORK REPRESENTATION


HOW DO YOU DEPICT THIS PHENOMENON IN A NETWORK 
(MODEL? 

One possibility is to define a “Bernoulli resistor” 
(see Karnopp, D. C. (1972) “Bond Graph Models for Fluid 
Dynamic Systems.” ASME J. Dyn. Sys. Meas. & Cont. pp. 
222-229; Karnopp, D. C, Margolis, D. L. & Rosenberg, R. 
C. (1990) System Dynamics: A Unified Approach, 2nd. Ed.
Wiley Interscience). 

RB 

P1 P2 
1 :


Q 

The constitutive equation of the “Bernoulli resistor” 
is defined as 

1 1
 1 
A22 A12 

1
ρ
⎛⎜
⎝


⎞
⎟
⎠


Q2
PBernoulli = ρ (v22 – v12) = – 2 2 

This element is called a “resistor” because it relates 
a pressure drop to a flow rate. 
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THIS APPROACH YIELDS THE RIGHT EQUATIONS BUT IT HAS 
SEVERAL UNSATISFACTORY ASPECTS. 

• The “Bernoulli resistor” does not dissipate free 
energy.


In fact, this “resistor” violates an important

constraint on resistor constitutive equations


—it may supply as well as absorb power. 
To be fair, that flaw could be rectified by a suitable change
of terminology. 

• Hydraulic pressure cannot be represented explicitly. 
As a result, the bond graph seems to suggest that 
power flux is Pstatic Q, not Phydraulic Q. 
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• The “Bernoulli resistor” is not related to the kinetic 
energy from which it arises. 

To model the power required to accelerate or 
decelerate the fluid, we may add a fluid inertia 

RB 

1 
P1 P2 

I I f: 

:


Q 

the fluid inertia appears to be independent of the 
dynamic pressure effects 
but they are different aspects of the same 
phenomenon 
—kinetic energy stored in the fluid 
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AN ALTERNATIVE (AND SUPERIOR) APPROACH: 
Carefully analyze the kinetic energy stored in the 

pipe. 
The co-energy is 

E*k = E*k(Q,m) = 1 If Q22

where If depends on the specific geometry but is 
proportional to m. 

The corresponding “pressure momentum”, Γ, is 
defined by 

∂E*kΓ = = If Qm∂Q 

The kinetic energy may be found using a (negative) 
Legendre transform. 

Ek(Γ,m) = E*k(Q,m) - ΓQ 
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This kinetic energy storage element has three ports. 
One is due to the power required to accelerate the 
fluid. 

It is associated with the change of pressure momentum, Γ, 
and the conjugate (equilibrium-determining) variable is the
volumetric flow rate, Q. 

The other two ports are due to the mass flows at 
sections 1 and 2. 

The corresponding conjugate variables are found from the
gradient of the kinetic energy with respect to mass. 

In this case the kinetic energy and co-energy are 
numerically equal. 

∂Ek ∂E*k


Q
∂m Γ = 
∂m 
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It is easier to work with the kinetic co-energy. 
The effort corresponding to the mass flow, ṁ i, is the 
kinetic (co-)energy flux per unit mass. 

µikin = 1 vi2 = 1 Pdynamic,i2 ρ 

As the total mass of fluid in the pipe is proportional 
to the total volume of the pipe 
and the corresponding effort is proportional to the 
dynamic pressure, 

the mass flow ports have the character of a capacitor 
while the momentum port has the character of an 
inertia. 

This may be represented as an IC-type storage 
element as follows. 

1 2 
Γ̇ 2 v2 

IC
Q ṁ2 

1 2 ṁ12 v1 
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AN ALTERNATIVE REPRESENTATION 

(perhaps less ambiguous) 
a three-port capacitor with a unit gyrator on one port. 

1 2 
Γ̇ Q 2 v2 

GY C 
Γ̇ ˙Q m2 
1 2 ṁ12 v1 

As the fluid is assumed incompressible, we need to 
add a constraint that the mass flow in equals the mass 
flow out. 

This may be represented by a junction structure as 
follows. 

1 2 
2 v2 

"B
er

no
ul

li 
re

sis
to

r"
Fluid inertia 

GY C ṁ2 

1 2Γ̇ ṁ12 v1 

0 1 
21 (v2

2– v1 )2 
TF :ρ 

P1 P2
1 :


Q
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The transformer relates mass flow rate, ṁ , to 
volumetric flow rate, Q. 

ṁ = ρ Q 
It also relates the “Bernoulli pressure” to the 
difference of the kinetic efforts. 

1PBernoulli = 2 ρ (v22 – v12) 

The zero and one junctions represent the 
incompressibility constraint. 

˙ ˙
m 2 = –m 1 

The pattern of power orientations has been chosen to 
resemble that used with the “Bernoulli resistor” 
above. 

With this orientation, the left and right sides of the 
energy-storage element correspond to the fluid 
inertia and “Bernoulli resistor” as indicated. 

The multiport representation has two merits 
the lossless assumption is self-evident 
the fundamental relation between the two phenomena 

—fluid inertia and “dynamic pressure”— 
has been represented explicitly. 
Hydraulic pressure has not been represented 
explicitly. 

Revise the bond graph as follows. 

Mod. Sim. Dyn. Sys. Bernoulli’s equation page 11 



1 2 1 2 
2 v1 2 v2 1 

ρ :TF 0 C TF :ρ 
ṁ ṁ1 2 

P d
yn
am
ic,
1

Pstatic,1 

P d
yn
am
ic,
2

GY 

Γ̇ 
Phydraulic,1 Phydraulic,2 Pstatic,2

1 1 1 :


Q 

This representation clearly shows that the rate of 
change of pressure momentum is driven by the 
difference in hydraulic pressures. 

dΓ

dt = Phydraulic,1 – Phydraulic,2
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dΓIf we assume steady flow, dt = 0 and hence ∆Phydraulic 

= 0 and we may eliminate the momentum port as 
follows. 

1 2 1 2 
2 v1 2 v2 1 

ρ :TF 0 C TF :ρ 
m m˙ ˙1 2 

P d
yn
am
ic,
1

Pstatic,1 

P d
yn
am
ic,
2 

Phydraulic,1 Phydraulic,2 Pstatic,2=

1 1 :


Q 

This representation clarifies the transition from static 
fluid storage to steady fluid flow. 
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For example, it is common to assume that the kinetic 
energy flux at the inlet section may be neglected, 
resulting in the following model. 

1 2 
2 v2 

C TF :ρ 
ṁ2 

P d
yn
am
ic,
2 

Pstatic,1 Pstatic,2
1 :

Q 

This is an energetically correct model of an orifice 
flow “resistor”. 
If the exit kinetic energy flux is discarded, the result 
is a loss of available energy as in a dissipator. 
However, as indicated by the capacitor, that energy 
has been stored and can be recovered, which is what 
happens in a diffuser. 
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REMARK:

One curious aspect of this depiction of Bernoulli's equation
is the difficulty of identifying the net power flow. 
For example, if we consider “vertical sections” of the
graphs, reading from left to right we first encounter Pstatic 
Q, then Phydraulic Q. 
This is related to the fact that the kinetic energy storage is 
fundamentally coupled to the flow phenomenon.

It also shows that “simple” pipe flow may not be as simple

as it looks.

For example, incompressible flow through a simple pipe

“tee” junction appears on first examination to exhibit the

behavior of a three-port common-flow (type one) junction

and, furthermore, to be equivalent to a pipe “wye”

junction.

However, even at modest flow rates, that is far from

correct.

In fact, these components (especially the “wye” junction)

can be used as primitive amplifiers and switching elements.
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