
ENERGY-STORING COUPLING BETWEEN DOMAINS 
MULTI-PORT ENERGY STORAGE ELEMENTS 
Context: examine limitations of some basic model elements. 
EXAMPLE: 
open fluid container with deformable walls 

P = ρ g h 

h = A V 

V = Cf P 

where Cf = 
A

ρ g  

—fluid capacitor 
But when squeezed, h (and hence P) may vary with time even though V does not.  
Seems to imply Cf = Cf(t) 

i.e., Cf = 
A(t)
ρ g   

—apparently a “modulated capacitor” 



PROBLEM! 

Ep = 
V2

2 Cf
  

V is constant, therefore no (pressure) work done 

dV = 0 ∴ PdV = 0 
—yet (stored) energy may change 

This would violate the first law (energy conservation) 

P

V

where did
this energy
come from?

initial stored energy

 

—a BIG problem! 
 
MODULATED ENERGY STORAGE IS PROSCRIBED! 



SOLUTION 
Identify another power port to keep track of the work done to change the stored energy 

C
P

Q = dV/dtv = dx/dt
F

 
introduces a new network element: a multiport capacitor 
 

Mathematical foundations: 
Power variables: 

Each power port must have properly defined conjugate power and energy variables. 
Net input power flow is the sum of the products of effort and flow over all ports. 

P = ∑
i

ei fi  
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Energy variables 
Energy variables are defined as in the scalar case as time integrals of the flow and effort vectors respectively. 

generalized displacement 

q = ⌡⌠f dt  + qo 

generalized momentum 

p = ⌡⌠e dt  + po 

 
MULTI-PORT CAPACITOR 
A “vectorized” or multivariable generalization of the one-port capacitor.  

definition 
A multiport capacitor is defined as an entity for which effort is a single-valued (integrable) function of 
displacement . 

e = Φ(q) 

The vector function Φ(·) is the capacitor constitutive equation. 
—a vector field (in the mathematical sense of the word). 
A multi-port capacitor is sometimes called a C-field or capacitive field.  



BOND GRAPH NOTATION 
By convention, power is defined positive into all ports.  

C
f1 = dq1/dt

e2 f2 = dq2/dt

f3 = dq3/dt

e1 e3

 
 
An alternative notation: 

Cn  
n denotes the number of ports. 
More on this multi-bond notation later. 
 
STORED ENERGY: 
determined by integrating the constitutive equation. 

Ep - Epo = ⌡⌠etf dt  = ⌡⌠etdq  = ⌡⌠Φ(q)tdq  = Ep(q) 

potential energy, as it is a function of displacement 
—a function of as many displacements as there are ports. 



COUPLING BETWEEN PORTS. 
Each effort may depend on any or all displacements. 

ei = Φi(q1,q2,... qn) all i 

This coupling between ports is constrained. 
 

Mathematically: 
Energy stored is a scalar function of vector displacement.  
Stored energy is a scalar potential field.  
The effort vector is the gradient of this potential field. 

e = ∇qEp(q) 

Therefore the constitutive equation, Φ(·), must have zero curl.  

∇ × e = 0 
or 

∇ × Φ = 0 



In terms of the individual efforts and displacements, 
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Coupling between ports must be symmetric.  
The dependence of ei on qj must be identical to the dependence of ej on qi.  

This is known as Maxwell's reciprocity condition. 
Later we will see that stability and passivity further constrain the capacitor constitutive equation. 



EXAMPLE: “CONDENSER” MICROPHONE 
HEADS UP! 

There’s an error in what follows — see if you can spot it. 
The sketch depicts a simple electro-mechanical transducer, a “condenser” microphone.  

—essentially a moving-plate capacitor.  
Electrically a capacitor, but capacitance varies with plate separation.  
Mechanically, electric charge pulls the plates together.  

 

 



DEVICE CAN STORE ENERGY. 
Energy can change in two ways:  

mechanical displacement 
charge displacement 
—a two-port capacitor 

C
e

i = dq/dtv = dx/dt
F

 
 
like a spring in the mechanical domain 
like a capacitor in the electrical domain 

Two constitutive equations needed 
both relate effort to displacement 

e = e(q, x) 

F = F(q, x) 



Assuming electrical linearity: 

e = 
q

C(x)  

To find C(x) assume a pair of parallel plates very close together. 
(i.e., plates are very large compared to their separation) 
(Fringing effects can be handled in a completely analogous way) 

C = ε0A/x 

εο is a permittivity 
A is plate area 

One constitutive equation is 

e = 
qx
εA  

To find the other constitutive equation we could work out the attraction due to the charges on the plates ... 



AN EASIER WAY:  
—use the energy equation 

Ep = Ep(q, x) 

capacitor effort = gradient of stored energy.  
(by definition) 

energy is the same in all domains. 
compute energy in the electrical domain 

(easy) 
gradient with respect to plate separation = force 

(also easy) 



Stored electrical energy: 

Eelectrical = 
1
2  C e2 = 

1
2 

εA
x   e2 

Gradient: 

F = 
x

Eelectrical
∂

∂ = – 
1
2 

εA
x2   e2 

 
Why the minus? 
—a sign error! 



ENERGY AND CO-ENERGY  

e

q

energy

co-energy

 
There are two ways to integrate the capacitor constitutive 
equation. 

—only one of them is energy 
—the other is co-energy 

 
energy: 

Ep(q) ∆__  ⌡⌠etdq  

q2
2 C   is electrical energy 

co-energy: 

Ep*(q) ∆__  ⌡⌠qtde  

1
2  C e2 is electrical co-energy 



THE ERROR WAS TO CONFUSE ENERGY WITH CO-ENERGY 
Stored electrical energy: 

Ep = 
q2x
2εA  

gradient of energy with respect to plate separation: 

F = 
x

Ep
∂

∂
 = 

q2
2εA   

Sign error corrected, but ... 
this equation implies force is independent of plate separation.  



IS THAT PHYSICALLY REASONABLE? 
Shouldn’t electrostatic attraction weaken as plate separation increases?  
Would the plates pull together just as hard if they were infinitely far apart? 

A PARADOX? 
Cross-check: 

are the two constitutive equations reciprocal (symmetric)? 
partial derivatives 

q
F

∂
∂  = 

q
εA  

x
e

∂
∂  = 

q
εA  

As required, the constitutive equations are reciprocal. 
WHAT’S WRONG? 



A “PARADOX” RESOLVED: 
A clue: the electrical constitutive equation 

e = 
qx
εA  

voltage drop increases with plate separation.  
for a fixed charge, infinite separation requires infinite voltage. 

 
—NOT THE USUAL ARRANGEMENT 

real devices cannot sustain arbitrarily large voltages. 



Change “boundary conditions” to input voltage: 

q = 
eεA

x   

F = 
1

2εA 
⎝
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e2εA
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For fixed voltage, force between plates declines sharply with separation.  
—much more plausible 

Mechanically, a spring 
—albeit a highly nonlinear one.  

 
KEY POINT: 
BOUNDARY CONDITIONS PROFOUNDLY INFLUENCE BEHAVIOR 



CAUSAL ASSIGNMENT 
Different “boundary conditions” correspond to different causal assignments. 

displacement in, effort out on both ports 

e = e(q, x) = 
qx
εA  

F = F(q, x) = 
q2

2εA  

—Integral causality 

C e

i = dq/dtv = dx/dt
F

 
Energy function: 

Ep = Ep(q,x) = 
q2x
2εA  



Expressing force as a function of voltage and displacement is equivalent to changing the electrical boundary 
conditions. 

voltage in, charge out on the electrical port. 

q = e(e, x) = 
eεA

x   

F = F(e, x) = 
q2

2εA  

—differential causality on the electrical port. 

C
e

i = dq/dtv = dx/dt
F

 
Co-energy function: 

Ep* = Ep*(e,x) = 
e2εA

2x   

 



CO-ENERGY AND LEGENDRE TRANSFORMATIONS 
Energy and co-energy are related by a Legendre transformation 

e

q

energy

co-energy

 

The rectangle eq is the sum of energy and co-energy. 

eq = Ep(q) + Ep*(e) 

Re-arranging: 

Ep*(e) = eq – Ep(q) 

This is the negative of a Legendre transformation 

L{ }Ep(q)   = Ep(q) - ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

q
Ep  q = –E*(e) 

Commonly used in thermodynamics 



SINGLE-PORT CAPACITOR: 
Constitutive equation 

e = Φ(q) 
Energy equation 

Ep = Ep(q) = ⌡⌠Φ(q)dq  

e = ∂Ep(q)/∂q 

Co-energy equation 

Ep*(e) = ⌡⌠Φ-1(e)de  

Legendre transformation 

L{ }Ep(q)  e = Ep(q) - eq = -Ep*(e) 

thus 

Ep*(e) = eq - Ep(q) 

Partial differential with respect to e 

∂Ep*(e)/∂e = q 

Note the positive sign. 



TWO-PORT CAPACITOR: 
Constitutive equations 

e1 = Φ(q1,q2) 

e2 = Φ(q1,q2) 

Energy equation 

Ep = Ep(q1,q2) 

e1 = ∂Ep/∂q1 

e2 = ∂Ep/∂q2 

Co-energy equations: three possibilities 

Ep* = Ep*(e1,q2) 

Ep* = Ep*(q1,e2) 

Ep* = Ep*(e1,e2) 



Legendre transformation applied to port 1 

Ep*(e1,q2) = e1q1 - Ep(q1,q2) 

Partial differential with respect to e1 

∂Ep*(e1,q2)/∂e1 = q1 

Partial differential with respect to q2 

∂Ep*(e1,q2)/∂q2 = - ∂Ep(q1,q2)/∂q2 

∂Ep*(e1,q2)/∂q2 = - e2 

Note the negative sign. 



APPLY TO THE CONDENSER MICROPHONE 
Energy: 

Ep = 
q2x
2εA  

Legendre transform: 

L
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2εA   = Ep(q) – eq = 
q2x
2εA  – eq = – Ep*(e) 

Substitute 

q = 
eεA

x   

Co-energy: 
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This is the “electrical energy” we had used previously. It is actually a co-energy. Thus 

F = 
x

*Ep
∂

∂
−  = 

e2εA
2x2   

Note:  
mechanical force is the negative gradient of electrical co-energy with respect to displacement. 
—That fixes our sign error. 

 
Comment: 

In this simple (electrically linear) example, co-energy may as easily be determined without the Legendre transform 
by substitution for q in the energy equation.  



REMARKS: 
Even with the idealizing assumptions above 

(no electrical saturation, no “fringe effects” in the electrostatic field) 
the multi-port constitutive equations are  

profoundly nonlinear 

e = e(q, x) = 
qx
εA  

F = F(q, x) = 
e2εA
2x2   

fundamentally coupled 

q
F

∂
∂  = 

x
e

∂
∂  = 

q
εA  ≠ 0 if q ≠ 0 



That is, except when the stored charge is identically zero,  
—the electrical domain affects the mechanical domain and  
—the mechanical domain affects the electrical domain. 

The condenser microphone is not well modeled by one-port energy storage elements in either the 
mechanical or the electrical domains. 
Because of inter-domain coupling, this device serves is both  

a sensor (a microphone)  
or  

an actuator (a speaker) 
—It is commonly used for both purposes. 
It is an example of an energy-storing transducer. 

Energy may be stored or removed from either domain 
Thus energy and power may be transferred between domains. 



INTRINSIC STABILITY 
Review the multi-port capacitor definition 

e = Φ(q) 
such that 

Ep - Epo = ⌡⌠Φ(q)tdq  = Ep(q) 

That is, q uniquely determines e and hence Ep 

The converse is not required — q need not be a well-defined function of e. 
The constitutive equation(s) may be recovered by differentiation 

e = ∇qEp(q) 

In other notation, 

ei = 
i

p
q
E

∂

∂
 all i 

The constitutive equations may be coupled 

ei = Φi(q1,q2,... qn) all i 



MAXWELL’S RECIPROCITY CONSTRAINT 
The coupling is constrained such that 

∇ × e = 0 
In other notation, 
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Define inverse capacitance 
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The inverse capacitance must be a symmetric matrix. 



STABILITY 
A physically observable multi-port capacitor must also be intrinsically stable.  
A further constraint on the constitutive equations. 

Mathematically: 

Intrinsically stable if C-1 positive definite 

—sufficient condition, not necessary 
EXAMPLE: CONDENSER MICROPHONE (REVISITED) 

Energy 

Ep(q, x) = 
q2x
2εA  

Inverse capacitance 
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—Unstable for non-zero charge 



PHYSICALLY REASONABLE 
 — STABILITY REQUIRES SOMETHING TO OPPOSE THE ATTRACTIVE ELECTROSTATIC FORCE. 

Include elasticity of the supporting structure 
Assume elastic linearity (for simplicity) 

Eelastic = 
1
2  k (x – xo)2 

Energy (revised) 

Ep(q, x) = 
q2x
2εA  + 

1
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Inverse capacitance (revised) 
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Stability (revised) 

determinant C-1 = 
kx
εA  – 
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Sufficient condition for stability: 

k > 0 

x
εA  > 0 

k > 
q2

xεA  



PHYSICAL INTERPRETATION 
With charge as an input, electrostatic force is independent of displacement.  

Felectrostatic = F(q, x) = 
q2

2εA  

Electrostatic force will pull the capacitor plates together until equilibrium is reached.  

Ftotal = 
q2

2εA  + k (x – xo) = 0 

xequilibrium = xo – 
q2

2εAk  

This establishes a minimum value for xo if xequilibrium is to be positive. 

Intuitively, stability about that equilibrium point should only require non-zero mechanical stiffness. 
Why does the mechanical stiffness have to be any larger? 



CONSIDER EACH SUFFICIENT CONDITION IN TURN 
If charge remains constant (∆q = 0) 
a displacement from equilibrium of ∆x  
requires an applied force change of k ∆x 

k > 0 means that  
increasing displacement requires increasing applied force 

—provided charge remains constant 
If displacement remains constant (∆x = 0) 
a displacement from equilibrium of ∆q  

requires an applied voltage change of 
x

εA  ∆q 

x
εA  > 0 means that  

increasing charge requires increasing applied voltage 
—provided displacement remains constant 



HOWEVER 
If displacement may also change (∆x ≠ 0) 

∆q also increases electrostatic force by 
q

εA  ∆q 

that decreases displacement by ∆x = – 
q

εA 
1
k  ∆q 

that, in turn, decreases voltage by ∆e = – 
q

εA 
1
k 

q
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The net voltage increase is 
⎝
⎜
⎛

⎠
⎟
⎞x

εA – 
q

εA 
1
k 

q
εA  ∆q 

If increasing charge is to require increasing applied voltage, then 

x
εA  > 

q
εA 

1
k 

q
εA  

manipulating: 

k > 
q2

xεA   means that 

increasing charge requires increasing applied voltage 
—when both charge and displacement are free to change 
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