ENERGY-STORING COUPLING BETWEEN DOMAINS

MULTI-PORT ENERGY STORAGE ELEMENTS

Context: examine limitations of some basic model elements.

EXAMPLE:

open fluid container with deformable walls

$$
\begin{aligned}
& \mathrm{P}=\rho \mathrm{g} \mathrm{~h} \\
& \mathrm{~h}=\mathrm{AV} \\
& \mathrm{~V}=\mathrm{C}_{\mathrm{f}} \mathrm{P}
\end{aligned}
$$

where $\mathrm{C}_{\mathrm{f}}=\frac{\mathrm{A}}{\rho \mathrm{g}}$
-fluid capacitor
But when squeezed, h (and hence P) may vary with time even though V does not.
Seems to imply $\mathrm{C}_{\mathrm{f}}=\mathrm{C}_{\mathrm{f}}(\mathrm{t})$
i.e., $\mathrm{C}_{\mathrm{f}}=\frac{\mathrm{A}(\mathrm{t})}{\rho \mathrm{g}}$
—apparently a "modulated capacitor"

PROBLEM!

$$
\mathrm{E}_{\mathrm{p}}=\frac{\mathrm{V}^{2}}{2 \mathrm{C}_{\mathrm{f}}}
$$

V is constant, therefore no (pressure) work done

$$
\mathrm{dV}=0 \therefore \mathrm{PdV}=0
$$

-yet (stored) energy may change
This would violate the first law (energy conservation)

-a BIG problem!

MODULATED ENERGY STORAGE IS PROSCRIBED!

SOLUTION

Identify another power port to keep track of the work done to change the stored energy

$$
\frac{\mathrm{F}}{\mathrm{v}=\mathrm{dx} / \mathrm{dt}} \mathrm{C} \frac{\mathrm{P}}{\mathrm{Q}=\mathrm{dV} / \mathrm{dt}}
$$

introduces a new network element: a multiport capacitor

Mathematical foundations:

Power variables:

Each power port must have properly defined conjugate power and energy variables.
Net input power flow is the sum of the products of effort and flow over all ports.

$$
\mathrm{P}=\sum_{\mathrm{i}} \mathrm{e}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}
$$

In vector notation:

$$
\mathrm{P}=\mathbf{e}^{\mathrm{t}} \mathbf{f}=\mathbf{f}^{\mathrm{t}} \mathbf{e}
$$

Energy variables

Energy variables are defined as in the scalar case as time integrals of the flow and effort vectors respectively. generalized displacement

$$
\mathbf{q}=\int \mathbf{f} d t+\mathbf{q}_{\mathbf{o}}
$$

generalized momentum

$$
\mathbf{p}=\int \mathbf{e} \mathrm{dt}+\mathbf{p}_{0}
$$

MULTI-Port CAPACITOR

A "vectorized" or multivariable generalization of the one-port capacitor.

definition

A multiport capacitor is defined as an entity for which effort is a single-valued (integrable) function of displacement.

$$
\mathbf{e}=\Phi(\mathbf{q})
$$

The vector function $\Phi(\cdot)$ is the capacitor constitutive equation.
-a vector field (in the mathematical sense of the word).
A multi-port capacitor is sometimes called a C-field or capacitive field.

BOND GRAPH NOTATION

By convention, power is defined positive into all ports.

An alternative notation:

n denotes the number of ports.
More on this multi-bond notation later.

STORED ENERGY:

determined by integrating the constitutive equation.

$$
\mathrm{E}_{\mathrm{p}}-\mathrm{E}_{\mathrm{po}}=\int \mathbf{e}^{\mathrm{t}} \mathbf{f} \mathrm{dt}=\int \mathbf{e}^{\mathrm{t}} \mathrm{~d} \mathbf{q}=\int \Phi(\mathbf{q})^{\mathrm{t}} \mathrm{~d} \mathbf{q}=\mathrm{E}_{\mathrm{p}}(\mathbf{q})
$$

potential energy, as it is a function of displacement
-a function of as many displacements as there are ports.

COUPLING BETWEEN PORTS.

Each effort may depend on any or all displacements.

$$
\mathrm{e}_{\mathrm{i}}=\Phi_{\mathrm{i}}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots \mathrm{q}_{\mathrm{n}}\right) \text { all } \mathrm{i}
$$

This coupling between ports is constrained.

Mathematically:

Energy stored is a scalar function of vector displacement.
Stored energy is a scalar potential field.
The effort vector is the gradient of this potential field.

$$
\mathbf{e}=\nabla_{\mathbf{q}} \mathrm{E}_{\mathbf{p}}(\mathbf{q})
$$

Therefore the constitutive equation, $\Phi(\cdot)$, must have zero curl.

$$
\nabla \times \mathbf{e}=\mathbf{0}
$$

or

$$
\nabla \times \Phi=\mathbf{0}
$$

In terms of the individual efforts and displacements,

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{i}}=\frac{\partial \mathrm{E}_{\mathrm{p}}}{\partial \mathrm{q}_{\mathrm{i}}} \quad \text { all } \mathrm{i} \\
& \frac{\partial \mathrm{e}_{i}}{\partial \mathrm{q}_{j}}=\frac{\partial}{\partial \mathrm{q}_{j}} \frac{\partial \mathrm{E}_{p}}{\partial \mathrm{q}_{i}}=\frac{\partial}{\partial \mathrm{q}_{i}} \frac{\partial \mathrm{E}_{p}}{\partial \mathrm{q}_{j}}=\frac{\partial \mathrm{e}_{j}}{\partial \mathrm{q}_{i}} \quad \text { all } \mathrm{i}, \mathrm{j} .
\end{aligned}
$$

Coupling between ports must be symmetric.

The dependence of e_{i} on qj_{j} must be identical to the dependence of e_{j} on qi .
This is known as Maxwell's reciprocity condition.
Later we will see that stability and passivity further constrain the capacitor constitutive equation.

EXAMPLE: "CONDENSER" MICROPHONE

HEADS UP!
There's an error in what follows - see if you can spot it.
The sketch depicts a simple electro-mechanical transducer, a "condenser" microphone.
-essentially a moving-plate capacitor.
Electrically a capacitor, but capacitance varies with plate separation.
Mechanically, electric charge pulls the plates together.

Fixed plate on

Schematic of condenser microphone

DEVICE CAN STORE ENERGY.

Energy can change in two ways:
mechanical displacement
charge displacement
-a two-port capacitor

$$
\frac{F}{v=d x / d t} C \underset{i=d q / d t}{C}
$$

like a spring in the mechanical domain
like a capacitor in the electrical domain
Two constitutive equations needed
both relate effort to displacement

$$
\begin{aligned}
& e=e(q, x) \\
& F=F(q, x)
\end{aligned}
$$

Assuming electrical linearity:

$$
\mathrm{e}=\frac{\mathrm{q}}{\mathrm{C}(\mathrm{x})}
$$

To find $C(x)$ assume a pair of parallel plates very close together.
(i.e., plates are very large compared to their separation)
(Fringing effects can be handled in a completely analogous way)

$$
\mathrm{C}=\varepsilon_{0} \mathrm{~A} / \mathrm{x}
$$

ε_{o} is a permittivity
A is plate area
One constitutive equation is

$$
\mathrm{e}=\frac{\mathrm{qX}}{\varepsilon \mathrm{~A}}
$$

To find the other constitutive equation we could work out the attraction due to the charges on the plates ...

AN EASIER WAY:

-use the energy equation

$$
\mathrm{E}_{\mathrm{p}}=\mathrm{E}_{\mathrm{p}}(\mathrm{q}, \mathrm{x})
$$

capacitor effort $=$ gradient of stored energy.
(by definition)
energy is the same in all domains.
compute energy in the electrical domain
(easy)
gradient with respect to plate separation = force
(also easy)

Stored electrical energy:

$$
\text { Eelectrical }=\frac{1}{2} \mathrm{Ce}^{2}=\frac{1}{2} \frac{\varepsilon \mathrm{~A}}{\mathrm{x}} \mathrm{e}^{2}
$$

Gradient:

$$
\mathrm{F}=\frac{\partial \mathrm{E}_{\text {electrical }}}{\partial \mathrm{x}}=-\frac{1}{2} \frac{\varepsilon \mathrm{~A}}{\mathrm{x}^{2}} \mathrm{e}^{2}
$$

Why the minus?
-a sign error!

ENERGY AND CO-ENERGY

There are two ways to integrate the capacitor constitutive equation.
-only one of them is energy
—the other is co-energy

energy:
$\mathrm{E}_{\mathrm{p}}(\mathbf{q}) \triangleq \int \mathbf{e}^{\mathrm{t}} \mathrm{d} \mathbf{q}$
$\frac{q^{2}}{2 \mathrm{C}} \quad$ is electrical energy
co-energy:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{p}}^{*}(\mathbf{q}) \triangleq \int \mathbf{q}^{\mathrm{t}} \mathrm{~d} \mathbf{e} \\
& \frac{1}{2} \mathrm{C} \mathrm{e}^{2} \quad \text { is electrical co-energy }
\end{aligned}
$$

THE ERROR WAS TO CONFUSE ENERGY WITH CO-ENERGY
Stored electrical energy:

$$
E_{p}=\frac{q^{2} x}{2 \varepsilon A}
$$

gradient of energy with respect to plate separation:

$$
\mathrm{F}=\frac{\partial \mathrm{E}_{\mathrm{p}}}{\partial \mathrm{x}}=\frac{\mathrm{q}^{2}}{2 \varepsilon \mathrm{~A}}
$$

Sign error corrected, but ...
this equation implies force is independent of plate separation.

IS THAT PHYSICALLY REASONABLE?

Shouldn't electrostatic attraction weaken as plate separation increases?
Would the plates pull together just as hard if they were infinitely far apart?
A paradox?
Cross-check:
are the two constitutive equations reciprocal (symmetric)?
partial derivatives

$$
\begin{aligned}
& \frac{\partial F}{\partial q}=\frac{q}{\varepsilon A} \\
& \frac{\partial \mathrm{e}}{\partial \mathrm{x}}=\frac{\mathrm{q}}{\varepsilon \mathrm{~A}}
\end{aligned}
$$

As required, the constitutive equations are reciprocal.
WHAT'S WRONG?

A "PARADOX" RESOLVED:
A clue: the electrical constitutive equation

$$
\mathrm{e}=\frac{\mathrm{qx}}{\varepsilon \mathrm{~A}}
$$

voltage drop increases with plate separation.
for a fixed charge, infinite separation requires infinite voltage.
-NOT THE USUAL ARRANGEMENT
real devices cannot sustain arbitrarily large voltages.

Change "boundary conditions" to input voltage:

$$
\begin{aligned}
& q=\frac{e \varepsilon A}{x} \\
& F=\frac{1}{2 \varepsilon A}\left(\frac{e \varepsilon A}{x}\right)^{2}=\frac{e^{2} \varepsilon A}{2 x^{2}}
\end{aligned}
$$

For fixed voltage, force between plates declines sharply with separation.
-much more plausible
Mechanically, a spring
—albeit a highly nonlinear one.

KEY POINT:

BOUNDARY CONDITIONS PROFOUNDLY INFLUENCE BEHAVIOR

CAUSAL ASSIGNMENT

Different "boundary conditions" correspond to different causal assignments.
displacement in, effort out on both ports

$$
\begin{aligned}
& \mathrm{e}=\mathrm{e}(\mathrm{q}, \mathrm{x})=\frac{\mathrm{qx}}{\varepsilon \mathrm{~A}} \\
& \mathrm{~F}=\mathrm{F}(\mathrm{q}, \mathrm{x})=\frac{\mathrm{q}^{2}}{2 \varepsilon \mathrm{~A}} \\
& \text {-Integral causality }
\end{aligned}
$$

$$
\stackrel{F}{\mathrm{v}=\mathrm{dx} / \mathrm{dt}} \mathrm{C} \frac{\mathrm{e}}{\mathrm{i}=\mathrm{dq} / \mathrm{dt}}
$$

Energy function:

$$
E_{p}=E_{p}(q, x)=\frac{q^{2} x}{2 \varepsilon A}
$$

Expressing force as a function of voltage and displacement is equivalent to changing the electrical boundary conditions.
voltage in, charge out on the electrical port.

$$
\begin{aligned}
& q=e(e, x)=\frac{e \varepsilon A}{x} \\
& F=F(e, x)=\frac{q^{2}}{2 \varepsilon A}
\end{aligned}
$$

—differential causality on the electrical port.

$$
\frac{\mathrm{F}}{\mathrm{v}=\mathrm{dx} / \mathrm{dt}} \mathrm{C} \frac{\mathrm{e}}{\mathrm{i}=\mathrm{dq} / \mathrm{dt}}
$$

Co-energy function:

$$
\mathrm{E}_{\mathrm{p}}^{*}=\mathrm{E}_{\mathrm{p}} *(\mathrm{e}, \mathrm{x})=\frac{\mathrm{e}^{2} \varepsilon \mathrm{~A}}{2 \mathrm{x}}
$$

CO-ENERGY AND LEGENDRE TRANSFORMATIONS

Energy and co-energy are related by a Legendre transformation

The rectangle eq is the sum of energy and co-energy.

$$
\mathrm{eq}=\mathrm{E}_{\mathrm{p}}(\mathrm{q})+\mathrm{E}_{\mathrm{p}} *(\mathrm{e})
$$

Re-arranging:

$$
\mathrm{E}_{\mathrm{p}} *(\mathrm{e})=\mathrm{eq}-\mathrm{E}_{\mathrm{p}}(\mathrm{q})
$$

This is the negative of a Legendre transformation

$$
\mathrm{L}\left\{\mathrm{E}_{\mathrm{p}}(\mathrm{q})\right\}=\mathrm{E}_{\mathrm{p}}(\mathrm{q})-\left(\frac{\partial \mathrm{E}_{\mathrm{p}}}{\partial \mathrm{q}}\right) \mathrm{q}=-\mathrm{E}^{*}(\mathrm{e})
$$

Commonly used in thermodynamics

SINGLE-PORT CAPACITOR:

Constitutive equation

$$
\mathrm{e}=\Phi(\mathrm{q})
$$

Energy equation

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{p}}=\mathrm{E}_{\mathrm{p}}(\mathrm{q})=\int \Phi(\mathrm{q}) \mathrm{dq} \\
& \mathrm{e}=\partial \mathrm{E}_{\mathrm{p}}(\mathrm{q}) / \partial \mathrm{q}
\end{aligned}
$$

Co-energy equation

$$
\mathrm{E}_{\mathrm{p}}^{*}(\mathrm{e})=\int \Phi^{-1}(\mathrm{e}) \mathrm{de}
$$

Legendre transformation

$$
\mathrm{L}\left\{\mathrm{E}_{\mathrm{p}}(\mathrm{q})\right\} \mathrm{e}=\mathrm{E}_{\mathrm{p}}(\mathrm{q})-\mathrm{eq}=-\mathrm{E}_{\mathrm{p}}^{*}(\mathrm{e})
$$

thus

$$
\mathrm{E}_{\mathrm{p}} *(\mathrm{e})=\mathrm{eq}-\mathrm{E}_{\mathrm{p}}(\mathrm{q})
$$

Partial differential with respect to e

$$
\partial \mathrm{E}_{\mathrm{p}}{ }^{*}(\mathrm{e}) / \partial \mathrm{e}=\mathrm{q}
$$

TWO-PORT CAPACITOR:

Constitutive equations

$$
\begin{aligned}
& \mathrm{e}_{1}=\Phi\left(\mathrm{q} 1, \mathrm{q}_{2}\right) \\
& \mathrm{e}_{2}=\Phi\left(\mathrm{q} 1, \mathrm{q}_{2}\right)
\end{aligned}
$$

Energy equation

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{p}}=\mathrm{E}_{\mathrm{p}}(\mathrm{q} 1, \mathrm{q} 2) \\
& \mathrm{e}_{1}=\partial \mathrm{E}_{\mathrm{p}} / \partial \mathrm{q} 1 \\
& \mathrm{e}_{2}=\partial \mathrm{E}_{\mathrm{p}} / \partial \mathrm{q} 2
\end{aligned}
$$

Co-energy equations: three possibilities

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{p}}^{*}=\mathrm{E}_{\mathrm{p}} *\left(\mathrm{e} 1, \mathrm{q}_{2}\right) \\
& \mathrm{E}_{\mathrm{p}}^{*}=\mathrm{E}_{\mathrm{p}} *\left(\mathrm{q} 1, \mathrm{e}_{2}\right) \\
& \mathrm{E}_{\mathrm{p}}^{*}=\mathrm{E}_{\mathrm{p}}^{*}\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)
\end{aligned}
$$

Legendre transformation applied to port 1

$$
\mathrm{E}_{\mathrm{p}} *\left(\mathrm{e} 1, \mathrm{q}_{2}\right)=\mathrm{e} 1 \mathrm{q} 1-\mathrm{E}_{\mathrm{p}}(\mathrm{q} 1, \mathrm{q} 2)
$$

Partial differential with respect to e1

$$
\partial \mathrm{E}_{\mathrm{p}} *\left(\mathrm{e}_{1}, \mathrm{q}_{2}\right) / \partial \mathrm{e}_{1}=\mathrm{q} 1
$$

Partial differential with respect to q 2

$$
\begin{aligned}
& \partial \mathrm{E}_{\mathrm{p}}^{*}\left(\mathrm{e} 1, \mathrm{q}_{2}\right) / \partial \mathrm{q}_{2}=-\partial \mathrm{E}_{\mathrm{p}}\left(\mathrm{q} 1, \mathrm{q}_{2}\right) / \partial \mathrm{q}_{2} \\
& \partial \mathrm{E}_{\mathrm{p}} *(\mathrm{e} 1, \mathrm{q} 2) / \partial \mathrm{q}_{2}=-\mathrm{e}_{2}
\end{aligned}
$$

APPLY TO THE CONDENSER MICROPHONE

Energy:

$$
E_{p}=\frac{q^{2} x}{2 \varepsilon A}
$$

Legendre transform:

$$
L\left\{\frac{q^{2} x}{2 \varepsilon A}\right\}=E_{p}(q)-e q=\frac{q^{2} x}{2 \varepsilon A}-e q=-E_{p}^{*}(e)
$$

Substitute

$$
q=\frac{e \varepsilon A}{x}
$$

Co-energy:

$$
E_{p}^{*}(e)=-\left(\frac{e \varepsilon A}{x}\right) 2 \frac{x}{2 \varepsilon A}+e\left(\frac{e \varepsilon A}{x}\right)=\frac{e^{2} \varepsilon A}{2 x}
$$

This is the "electrical energy" we had used previously. It is actually a co-energy. Thus

$$
\mathrm{F}=-\frac{\partial \mathrm{E}_{\mathrm{p}} *}{\partial \mathrm{x}}=\frac{\mathrm{e}^{2} \varepsilon \mathrm{~A}}{2 \mathrm{x}^{2}}
$$

Note:

mechanical force is the negative gradient of electrical co-energy with respect to displacement.
-That fixes our sign error.

Comment:

In this simple (electrically linear) example, co-energy may as easily be determined without the Legendre transform by substitution for q in the energy equation.

REMARKS:

Even with the idealizing assumptions above
(no electrical saturation, no "fringe effects" in the electrostatic field)
the multi-port constitutive equations are
profoundly nonlinear

$$
\begin{aligned}
& \mathrm{e}=\mathrm{e}(\mathrm{q}, \mathrm{x})=\frac{\mathrm{qx}}{\varepsilon \mathrm{~A}} \\
& \mathrm{~F}=\mathrm{F}(\mathrm{q}, \mathrm{x})=\frac{\mathrm{e}^{2} \varepsilon \mathrm{~A}}{2 \mathrm{x}^{2}}
\end{aligned}
$$

fundamentally coupled

$$
\frac{\partial \mathrm{F}}{\partial \mathrm{q}}=\frac{\partial \mathrm{e}}{\partial \mathrm{x}}=\frac{\mathrm{q}}{\varepsilon \mathrm{~A}} \neq 0 \text { if } \mathrm{q} \neq 0
$$

That is, except when the stored charge is identically zero,
-the electrical domain affects the mechanical domain and
-the mechanical domain affects the electrical domain.
The condenser microphone is not well modeled by one-port energy storage elements in either the mechanical or the electrical domains.
Because of inter-domain coupling, this device serves is both a sensor (a microphone)
or
an actuator (a speaker)
-It is commonly used for both purposes.
It is an example of an energy-storing transducer.
Energy may be stored or removed from either domain
Thus energy and power may be transferred between domains.

INTRINSIC STABILITY

Review the multi-port capacitor definition

$$
\mathbf{e}=\Phi(\mathbf{q})
$$

such that

$$
\mathrm{E}_{\mathrm{p}}-\mathrm{E}_{\mathrm{po}}=\int \Phi(\mathbf{q})^{\mathrm{t}} \mathrm{~d} \mathbf{q}=\mathrm{E}_{\mathrm{p}}(\mathbf{q})
$$

That is, \mathbf{q} uniquely determines \mathbf{e} and hence E_{p}
The converse is not required - \mathbf{q} need not be a well-defined function of \mathbf{e}.
The constitutive equation(s) may be recovered by differentiation
$\mathbf{e}=\nabla_{\mathbf{q}} \mathrm{E}_{\mathrm{p}}(\mathbf{q})$
In other notation,

$$
\mathrm{e}_{\mathrm{i}}=\frac{\partial \mathrm{E}_{\mathrm{p}}}{\partial \mathrm{q}_{\mathrm{i}}} \quad \text { all } \mathrm{i}
$$

The constitutive equations may be coupled

$$
\mathrm{e}_{\mathrm{i}}=\Phi_{\mathrm{i}}\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots \mathrm{q}_{\mathrm{n}}\right) \text { all i }
$$

MAXWELL'S RECIPROCITY CONSTRAINT

The coupling is constrained such that

$$
\nabla \times \mathbf{e}=\mathbf{0}
$$

In other notation,

$$
\frac{\partial \mathrm{e}_{i}}{\partial \mathrm{q}_{j}}=\frac{\partial}{\partial \mathrm{q}_{j}} \frac{\partial \mathrm{E}_{p}}{\partial \mathrm{q}_{i}}=\frac{\partial}{\partial \mathrm{q}_{i}} \frac{\partial \mathrm{E}_{p}}{\partial \mathrm{q}_{j}}=\frac{\partial \mathrm{e}_{j}}{\partial \mathrm{q}_{i}} \quad \text { all } \mathrm{i}, \mathrm{j} .
$$

Define inverse capacitance

$$
\mathrm{C}^{-1}=\left[\frac{\partial \mathbf{e}}{\partial \mathbf{q}}\right]=\left[\frac{\partial^{2} \mathrm{E}_{\mathrm{p}}}{\partial \mathrm{q}_{\mathrm{i}} \partial \mathrm{q}_{\mathrm{j}}}\right]
$$

The inverse capacitance must be a symmetric matrix.

STABILITY

A physically observable multi-port capacitor must also be intrinsically stable.
A further constraint on the constitutive equations.

Mathematically:

Intrinsically stable if C^{-1} positive definite
-sufficient condition, not necessary

EXAMPLE: CONDENSER MICROPHONE (REVISITED)

Energy

$$
E_{p}(q, x)=\frac{q^{2} x}{2 \varepsilon A}
$$

Inverse capacitance

$$
\mathrm{C}^{-1}=\left[\frac{\partial \mathbf{e}}{\partial \mathbf{q}}\right]=\left[\frac{\partial^{2} \mathrm{E}_{\mathrm{p}}}{\partial \mathrm{q}_{\mathrm{i}} \partial \mathrm{q}_{\mathrm{j}}}\right]=\left[\begin{array}{cc}
0 & \mathrm{q} / \varepsilon \mathrm{A} \\
\mathrm{q} / \varepsilon \mathrm{A} & \mathrm{x} / \varepsilon \mathrm{A}
\end{array}\right]
$$

Stability
determinant $\mathrm{C}^{-1}=-\left(\frac{\mathrm{q}}{\varepsilon \mathrm{A}}\right)^{2}$
-Unstable for non-zero charge

PHYSICALLY REASONABLE

— STABILITY REQUIRES SOMETHING TO OPPOSE THE ATTRACTIVE ELECTROSTATIC FORCE.

Include elasticity of the supporting structure
Assume elastic linearity (for simplicity)

$$
\mathrm{E}_{\text {elastic }}=\frac{1}{2} \mathrm{k}\left(\mathrm{x}-\mathrm{x}_{\mathrm{o}}\right)^{2}
$$

Energy (revised)

$$
E_{p}(q, x)=\frac{q^{2} x}{2 \varepsilon A}+\frac{1}{2} k\left(x-x_{0}\right)^{2}
$$

Constitutive equation

$$
\mathbf{e}=\left[\begin{array}{l}
F \\
e
\end{array}\right]=\left[\begin{array}{c}
\frac{q^{2}}{2 \varepsilon A}+k\left(x-x_{0}\right) \\
\frac{q x}{\varepsilon A}
\end{array}\right]
$$

Inverse capacitance (revised)

$$
\mathrm{C}^{-1}=\left[\frac{\partial \mathbf{e}}{\partial \mathbf{q}}\right]=\left[\frac{\partial^{2} \mathrm{E}_{\mathrm{p}}}{\partial \mathrm{q}_{\mathrm{i}} \partial \mathrm{q}_{\mathrm{j}}}\right]=\left[\begin{array}{cc}
\mathrm{k} & \mathrm{q} / \varepsilon \mathrm{A} \\
\mathrm{q} / \varepsilon \mathrm{A} & \mathrm{x} / \varepsilon \mathrm{A}
\end{array}\right]
$$

Stability (revised)

determinant $\mathrm{C}^{-1}=\frac{\mathrm{kx}}{\varepsilon \mathrm{A}}-\left(\frac{\mathrm{q}}{\varepsilon \mathrm{A}}\right)^{2}$

Sufficient condition for stability:

$\mathrm{k}>0$
$\frac{\mathrm{x}}{\varepsilon \mathrm{A}}>0$
$k>\frac{q^{2}}{x \varepsilon A}$

PHYSICAL INTERPRETATION

With charge as an input, electrostatic force is independent of displacement.

$$
\mathrm{Felectrostatic}=F(\mathrm{q}, \mathrm{x})=\frac{\mathrm{q}^{2}}{2 \varepsilon \mathrm{~A}}
$$

Electrostatic force will pull the capacitor plates together until equilibrium is reached.

$$
\begin{aligned}
& \mathrm{F}_{\text {total }}=\frac{\mathrm{q}^{2}}{2 \varepsilon \mathrm{~A}}+\mathrm{k}\left(\mathrm{x}-\mathrm{x}_{0}\right)=0 \\
& \mathrm{x}_{\text {equilibrium }}=\mathrm{x}_{0}-\frac{q^{2}}{2 \varepsilon \mathrm{Ak}}
\end{aligned}
$$

This establishes a minimum value for x_{0} if $\mathrm{x}_{\text {equilibrium }}$ is to be positive.
Intuitively, stability about that equilibrium point should only require non-zero mechanical stiffness.
Why does the mechanical stiffness have to be any larger?

CONSIDER EACH SUFFICIENT CONDITION IN TURN

If charge remains constant $(\Delta q=0)$
a displacement from equilibrium of Δx
requires an applied force change of $k \Delta x$
$k>0$ means that
increasing displacement requires increasing applied force
—provided charge remains constant
If displacement remains constant $(\Delta \mathrm{x}=0)$
a displacement from equilibrium of Δq
requires an applied voltage change of $\frac{x}{\varepsilon A} \Delta q$
$\frac{\mathrm{x}}{\varepsilon A}>0$ means that
increasing charge requires increasing applied voltage
-provided displacement remains constant

However

If displacement may also change ($\Delta \mathrm{x} \neq 0$)
Δq also increases electrostatic force by $\frac{q}{\varepsilon A} \Delta q$
that decreases displacement by $\Delta x=-\frac{q}{\varepsilon A} \frac{1}{k} \Delta q$
that, in turn, decreases voltage by $\Delta \mathrm{e}=-\frac{\mathrm{q}}{\varepsilon \mathrm{A}} \frac{1}{\mathrm{k}} \frac{\mathrm{q}}{\varepsilon \mathrm{A}} \Delta \mathrm{q}$
The net voltage increase is $\left(\frac{x}{\varepsilon A}-\frac{q}{\varepsilon A} \frac{1}{k} \frac{q}{\varepsilon A}\right) \Delta q$
If increasing charge is to require increasing applied voltage, then

$$
\frac{x}{\varepsilon A}>\frac{q}{\varepsilon A} \frac{1}{k} \frac{q}{\varepsilon A}
$$

manipulating:
$k>\frac{q^{2}}{x \varepsilon A}$ means that
increasing charge requires increasing applied voltage
-when both charge and displacement are free to change

