Capstan—a mechanical amplifier

Photograph removed due to copyright restrictions.

A schematic diagram of a basic capstan and a force diagram for a small segment of the rope are shown in the figures.

 $F_{normal} = F \sin \Delta \theta / 2 + (F + \Delta F) \sin \Delta \theta / 2$

In the limit of small angles

 $F_{normal} = F d\theta/2 + (F+dF) d\theta/2$

Assuming continuous slip and Coulomb friction between rope and drum,

 $dF = \mu F_{normal} = \mu \frac{2F + dF}{2} d\theta$ $dF = F d\theta \text{ or } d \ln F = \mu d\theta$ Integrating from 0 to θ $F_{out} = e^{\mu\theta} F_{control}$ Note that this relation is only valid if $\omega r \ge v_{control}$ From continuity: $v_{control} = v_{out}$ Torque required of capstan drive: $\tau = (F_{out} - F_{control}) r = (e^{\mu\theta} - 1) r F_{control}$ Power dissipated:

 $P_{dissipated} = \tau \omega + F_{control} v_{control} - F_{out} v_{out}$

 $P_{dissipated} = (e^{\mu\theta} - 1) r F_{control} \omega - (e^{\mu\theta} - 1) F_{control} v_{control}$

Note that $P_{dissipated} \ge 0$ with $P_{dissipated} = 0$ if $\omega r = v_{control}$

A bond graph follows:

Mod. Sim. Dyn. Sys.

This is a three-port resistor.

Typical boundary conditions result in the following causality.

Constitutive equations are

F _{out}	0	0	e ^{μθ} -	Vout
$ \tau =$	0	0	$(e^{\mu\theta}-1)r$	ω
_v _{control} _	L_1	0	0 _	Fcontrol