
Kinematic transformation of mechanical behavior 
Neville Hogan 

Generalized coordinates are fundamental 
If we assume that a linkage may accurately be described as a collection of linked rigid 
bodies, their generalized coordinates are a fundamental requirement for any model of 
mechanical behavior. However, to describe functional behavior it will often be necessary 
to express mechanical behavior as it appears in a different frame of reference, for 
example, the Cartesian coordinates of the end-point. Knowledge of the geometry relating 
the two frames is sufficient to transform mechanical behavior, but care is required. 

Transformation to end-point coordinates 
Express the kinematic equations relating end-point coordinates to generalized 
coordinates. 

( )θLx ~=  
The relations between incremental displacements, velocities, forces and momenta are 
obtained by differentiating and using power continuity. 

( ) θθJθ
θ
Lx ddd ~~

=
∂
∂

=  

( )ωθJv ~=  

( ) fθJτ t~=  

( ) pθJη t~=  
Note that transformation of motion variables (displacement, velocity) is always well-
defined from generalized coordinates to any other coordinates. Conversely, the 
transformation of force variables (force, momentum) is always well-defined to 
generalized coordinates from any other coordinates. In general, the inverse of these 
transformations may not be well-defined. 

Inertia 
Inertia relates momentum and velocity. 

( )ωθIη =  
If every rigid body in the linkage has non-zero mass, the inertia tensor is positive-definite 
and its inverse exists. To define stored kinetic energy, the inverse of this relation is 
required, the causally-preferred form for an inertia. 

( ) ηθIω 1−=  
Transformation to end-point coordinates is a straightforward matter of substitution. 

pMv 1−= x  

( ) ( ) ( ) pθJθIθJv t~~ 1−=  
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( ) ( ) ( ) ( )tx θJθIθJθM ~~ 11 −− =  
The inverse inertia at the end-point can always be defined. Due to linkage geometry it 
varies with end-point position and linkage configuration. In generalized coordinates, 
inertia (and hence inverse inertia) is positive definite. In end-point coordinates, inverse 
inertia is only positive semi-definite (strictly non-negative); in some configurations it 
may lose rank. In those cases the end-point inertia approaches infinity—force may be 
applied but no motion results. This is an argument for considering an inertial mechanism 
fundamentally to be an admittance, not an impedance. 

Friction 
Energy dissipation (friction) is characterized by a relation between force and velocity. In 
end-point coordinates a nonlinear form is as follows. 

( )vΠf x=  

where Πx(·) denotes a function with 10≥vf t  and f = 0 at v = 0. The corresponding force-
velocity relation in generalized coordinates is always well-defined and is obtained by 
substitution. 

( ) ( )( ) ( )ωθΠωθJΠθJτ ,~~ == x
t  

Note that the linkage kinematics introduces a dependence on configuration.  

Damping 
Damping is defined as the gradient of force with respect to velocity. In end-point 
coordinates: 

v
Π

B
∂
∂

= x
x  

In generalized coordinates: 

( )
ω
ΠθB
∂
∂

=θ  

( ) ( ) ( )θJBθJθB ~~
x

t=θ  
From this we see that it is always possible to find the generalized-coordinate damping 
corresponding to a specified end-point damping. However, this generalized-coordinate 
damping may not have full rank and its inverse may not be defined. For example, if the 
dimension of configuration space (the number of generalized coordinates) exceeds the 
dimension of end-point space (the number of end-point coordinates) the generalized-
coordinate damping corresponding to any end-point damping has rank less than the 
dimension of configuration space. In the limit of very large damping, the end-point is 
effectively immobilized but the linkage, which has more degrees of freedom than the 
end-point, remains free to move2.  

                                                 
1 This assumes a sign convention with power positive into any passive element. 
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Generalized-coordinate damping in end-point coordinates 
To transform a full-rank generalized-coordinate damping to end-point coordinates we 
express it in admittance form. 

τBω 1−= θ  

The corresponding end-point damping is obtained by substitution. 

( ) ( ) fθJBθJv t~~ 1−= θ  

( ) ( )tx θJBθJB ~~ 11 −− = θ  

Again we see that even if the generalized-coordinate damping is independent of 
configuration, the end-point damping will, in general, vary with configuration. 

Static impedance 
Damping and inertia (two of an infinite set of admittance parameters) transform between 
coordinates in the same way. However, static impedance or admittance parameters 
transform differently.  
 
A general form for static impedance (i.e., force-position behavior) in generalized 
coordinates is 

( )oθθΦτ ,=  

where Φ(·) denotes a function and θo denotes a zero of the function, a configuration at 
which the (generalized) force is zero. Causal arguments3 indicate this impedance form 
must always exist though it may not always have an inverse (admittance) form. Consider 
the differential of this function. 

o
o

ddd θ
θ
Φθ

θ
Φτ

∂
∂

+
∂
∂

=  

In the following, we assume the zero configuration does not change: . Stiffness is 
defined as the gradient of force with respect to displacement. 

0=odθ

( )
θ
ΦθK
∂
∂

=θ  

Note that stiffness is (in general) a function of configuration. As the static impedance 
form always exists, stiffness may always be defined though it may vanish or lose rank at 
some configurations. When the stiffness has full rank, compliance is defined as the 
inverse of stiffness. 

( ) 1−= θθ KθC  

Kinematic stiffness 
Differentiate the force transformation to find the relation between stiffness in end-point 
and generalized coordinates. 

                                                 
3 Hogan, N. (1985) Biol. Cyb. 52:315-331. 
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( ) ( ) θf
θ
θJfθJτ ddd

t
t

∂
∂

+=
~~  

This reveals the fundamental difficulty: quite aside from any elastic behavior, any non-
zero force acts through configuration-dependent moment arms4 to produce an apparent 
stiffness. Denote the apparent kinematic stiffness by Γ. 

( ) ( ) f
θ
θJθΓ

∂
∂

=
t~

 

Note that the kinematic stiffness vanishes for zero force. However, if non-zero it may be 
positive or negative (stabilizing or destabilizing) depending on the orientation of the 
force. 

End-point stiffness in generalized coordinates 
Static impedance in end-point coordinates may be expressed as follows 

( )ox xxΦf ,=  

where xo denotes a position at which force is zero. The corresponding static impedance in 
generalized coordinates is always well-defined and is obtained by substitution. 

( ) ( )( ) ( )oox
tt θθΦθLθLΦJfJτ ,~,~~~ ===  

End-point stiffness: 

x
Φ

K
∂
∂

= x
x  

Stiffness in generalized coordinates: 

θ
L

x
Φ

Jf
θ
J

θ
ΦK

∂
∂

∂
∂

+
∂
∂

=
∂
∂

=θ

~~~
xt

t

 

JKJΓK ~~
x

t+=θ  
If the stiffness is evaluated at zero net end-point force, the kinematic stiffness vanishes. 

JKJK
f

~~
0 x

t=
=θ  

As with damping, we see that it is always possible to find the generalized-coordinate 
stiffness corresponding to a specified end-point stiffness. However, this generalized-
coordinate stiffness may not have full rank and its inverse (generalized-coordinate 
compliance) may not be defined. If the dimension of configuration space exceeds the 
dimension of end-point space the generalized-coordinate stiffness corresponding to any 
end-point stiffness has rank less than the dimension of configuration space. In the limit of 
very large end-point stiffness, the end-point is effectively immobilized but the linkage, 
which has more degrees of freedom than the end-point, remains free to move.  

                                                 
4 These moment arms are defined by the columns of the Jacobian.  

 page 4 



Generalized-coordinate compliance in end-point coordinates 
To transform a full-rank generalized-coordinate stiffness to end-point coordinates we 
express it in compliance form. 

( )θΓfJCτCθ dddd t +== θθ
~  

( ) fJCθΓC1 dd t~
θθ =−  

( ) fJCKθΓC1K dd t~
θθθθ =−  

( ) fJθΓK dd t~=−θ  

Assuming the inverse exists, this expression may be solved for dθ and dx. 

( ) fJΓKθ dd t~1−
θ −=  

( ) fJΓKJθJx ddd t~~~ 1−
θ −==  

fCx dd x=  

( ) t
x JΓKJC ~~ 1−−= θ  

If the compliance is evaluated at zero end-point force, the kinematic stiffness vanishes 
and the expression simplifies. 

t
x JCJC
f

~~
0 θ=

=
 

If the Jacobian may be inverted these expressions are equivalent to those found above. 

( 11 )~~ −−− −= ΓKJCJ θ
t

x JKJΓK ~~
x

t+=θ hence  

In general the inverse Jacobian may not exist but, provided the difference between 
generalized-coordinate stiffness and kinematic stiffness can be inverted, end-point 
compliance can always be defined. However, it may not always have full rank, and hence 
it may not always be possible to define end-point stiffness. 

Remark 
Note the profound influence of linkage kinematics on all components of impedance. For 
example, at singular configurations (at which the Jacobian loses rank) all of the 
admittance parameters (compliance, inverse damping, inverse inertia, etc.) lose rank and 
all corresponding impedance parameters (stiffness, damping, inertia, etc.) become 
undefined (i.e., approach infinity in at least one direction). Thus pose is one of the most 
important ways to modulate interactive behavior. 
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