
INERTIAL MECHANICS 
Neville Hogan 

The inertial behavior of a mechanism is substantially more complicated than that of a 
translating rigid body. Strictly speaking, the dynamics are simple; the underlying 
mechanical physics is still described by Newton’s laws. The complexity arises from the 
kinematic constraints between the motions of its members. One powerful method to 
describe inertial mechanics is Lagrange’s equation, which is traditionally introduced 
using the variational calculus with Hamilton’s principle of stationary action. Here’s a 
more direct approach that may provide more insight. 

Inertial Mechanics page 1 Neville Hogan 



LAGRANGE’S EQUATION FOR MECHANISMS 
Begin with the uncoupled members of the mechanism. 

x uncoupled coordinates (orientations, locations of mass centers) with respect to a 
non-accelerating (inertial) reference frame 

v velocities 
p momenta 
f forces 

These four fundamental quantities are related as follows. 

dx/dt = v 

dp/dt = f 
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The constitutive equation for kinetic energy storage (inertia) is: 

p = Mv 
M diagonal matrix of inertial parameters (masses, moments of inertia, e.g. about mass 

centers) 
Kinetic co-energy is the dual of kinetic energy: 

Ek* = ⌡⌠ ptdv  = 
1
2  vt Mv = Ek*(v) 

Thus, by definition: 

p = ∂Ek*/∂v 
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Aside: 
The underlying mechanical physics is fundamentally independent of choice of 
coordinates. Therefore, these may be regarded as tensor equations. By the usual 
conventions: 
v is a contravariant rank 1 tensor (vector) 
M is a twice co-variant rank 2 tensor 
p is covariant rank 1 tensor (vector) 
These observations become more useful when we consider transformations of 
variables. 

Inertial Mechanics page 4 Neville Hogan 



Next consider the kinematically coupled mechanism. 
θ generalized coordinates (or configuration variables)  
— a (non-unique) set of independent variables that uniquely and completely define 

the (mechanism) configuration 
ω generalized velocities 
— the time derivatives of generalized coordinates. 

dθ/dt = ω 
τ generalized forces (moments or torques) 
η generalized momenta 
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The relation between generalized forces and momenta requires care. If the kinematic 
constraints are holonomic, the relation between coordinates is a set of algebraic 
equations1. 

x = L(θ) 
Relation between velocities: 

dx/dt = dθ/dt ( )θθL ∂∂ /)(

v = J(θ)ω 

where J(θ) =  ( )θθL ∂∂ /)(

                                 
1 Non-holonomic constraints are commonplace. A typical example is a constraint between velocities that cannot be integrated to a 
constraint between coordinates. 
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The relation between generalized forces may be derived from power continuity2 (a 
differential statement of energy conservation).  

Power: 

P = τt ω  

Power continuity: 

P = τt ω = ft v = ft J(θ)ω 
This must be true for all values of ω, therefore 

τ = J(θ)t f 

Aside: 
A common error is to mis-identify generalized forces. The relation between power, 
generalized force and generalized velocity is a rigorous and reliable definition of 
generalized forces. 

                                 
2 This avoids the sometimes-confusing principle of virtual work but is completely equivalent. 
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The relation between kinetic co-energies may be obtained by substitution using the 
relation between velocities. 

Ek* = 
1
2  ωt J(θ)t MJ(θ)ω 

Kinetic energy in generalized coordinates is a quadratic form in velocity. The kernel of 
the quadratic form is the inertia tensor. 

I(θ) = J(θ)t MJ(θ) 

Ek* = 
1
2  ωt I(θ)ω 

Note that kinetic co-energy, which previously was a function of velocity alone, is now a 
function of velocity and position.  

Ek* = Ek*(θ,ω) 
This is the main reason why (to paraphrase Prof. Stephen Crandall) “mechanics is hard 
for humans”. 
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The relation between momenta follows directly. Generalized momenta are defined as 
before. 

η = ∂Ek*/∂ω 

η = I(θ)ω = J(θ)t MJ(θ)ω  

η = J(θ)t Mv = J(θ)t p 

η = J(θ)t p 
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KEY POINT: 

Generalized force is not the derivative of generalized momentum 

dη/dt ≠ τ 
Differentiate the relation between momenta 

dη/dt = J(θ)t dp/dt + ωt [∂J(θ)t /∂θ]p 

dη/dt = J(θ)t f + ωt [∂J(θ)t /∂θ]MJ(θ)ω 
The second term appears to be related to the kinetic co-energy. It is: 

∂Ek*/∂θ = 
1
2  ωt [∂J(θ)t /∂θ]MJ(θ)ω + 

1
2  ωt J(θ)t M[∂J(θ)/∂θ]ω 

∂Ek*/∂θ = ωt [∂J(θ)t /∂θ]MJ(θ)ω 

dη/dt = τ + ∂Ek*/∂θ 
This is Lagrange's equation 

dη/dt – ∂Ek*/∂θ = τ 
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It may be more familiar in expanded form. Identify kinetic co-energy with the 
Lagrangian, L(θ,ω) 

L(θ,ω) = Ek*(θ,ω) 
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A SCALAR EXAMPLE: 

x = L(θ) 

v = J(θ)ω 

τ = J(θ)f 

Ek* = 
1
2  mv2 = 

1
2  mJ(θ)2ω2 

η = ∂Ek*/∂ω = mJ(θ)2ω = J(θ)mv = J(θ)p 

dη/dt = J(θ)dp/dt + [ ]θ/)θ(J ∂∂ ωp  

dη/dt = τ + ωmJ(θ)ω [ ]θ/)θ(J ∂∂

∂Ek*/∂θ = mJ(θ)ω2∂J(θ)/∂θ 

dη/dt = τ + ∂Ek*/∂θ 
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SUMMARIZING: 
 inertial 

coordinates 
relation generalized 

coordinates 
displacement x x = L(θ) θ 
flow v v = J(θ)ω ω 
effort f τ = J(θ)t f τ 
momentum p η = J(θ)t p η 
inertia tensor M I(θ) = J(θ)t MJ(θ) I(θ) 
constitutive 
equation 

p = Mv  η = I(θ)ω 

kinetic co-
energy 

1
2  vt Mv 

 1
2  ωt I(θ)ω 

 dx/dt = v  dθ/dt = ω 
 dp/dt = f  dη/dt = τ + 

∂Ek*/∂θ 
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The key ideas behind the Lagrangian formulation: 
1. Incorporate holonomic kinematic constraints directly. 
2. Write the momentum balance equation in terms of a state function, the kinetic co-

energy. 

Advantages: 
1. Velocities are easily identified and kinetic co-energy is easily computed. 
2. There is no need to write explicit expressions for the forces of constraint. 

Disadvantages: 
1. The kinetic co-energy is a quadratic form whose kernel typically contains 

trigonometric functions of sums of coordinates. Differentiating trigonometric 
functions of sums of coordinates breeds terms very rapidly. The Lagrangian 
approach requires a partial derivative of the co-energy followed by a total derivative 
of the co-energy. The algebraic complexity of the result can be staggering. 

2. The Lagrangian approach is fundamentally a 2° form. To achieve the 1° form 
required for a state-determined representation (useful for numerical integration and 
most mathematical analysis) the inertia tensor must be inverted. This is anything but 
trivial. 
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